

DR AYUSH SAHU
JUNIOR RESIDENT
INTERNAL MEDICINE

Introduction

• Half million new cases of Rifampicin resistant TB occurred in 2019.

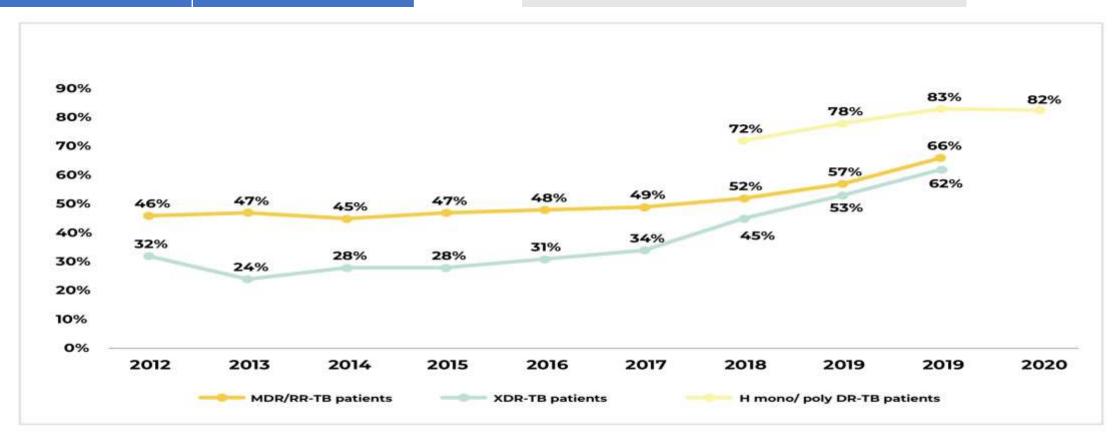
78% of them were confirmed MDR-TB

• Incidence of MDR/RR-TB cases in India is 124000[9.1/lakh population]

PMDT services started in 2007 and complete coverage achieved by 2013

Introduction

First NDRS conducted in India revealed that


- 28% of TB patients were resistant to any drugs (22% among new and 36.82% among previously treated)
- 6.19% had MDR-TB (2.84% among new and 11.62% among previously treated)
- Isoniazid (H) resistance (16% in all with 11.6% in new and 25% in PT)

INDIA TB REPORT 2023

DR-TB CASES

TOTAL CASES

TREATMENT SUCCESS RATE IN DR TB

DEFINITIONS

INH resistant TB

Resistant to INH and Sensitivity to R - confirmed.

Mono-resistant TB (MR TB)

Resistant to one first-line anti-TB drug only.

Multidrug-resistant TB (MDR-TB)

Resistant to both INH and R , +/- Resistance to other first-line anti-TB drugs

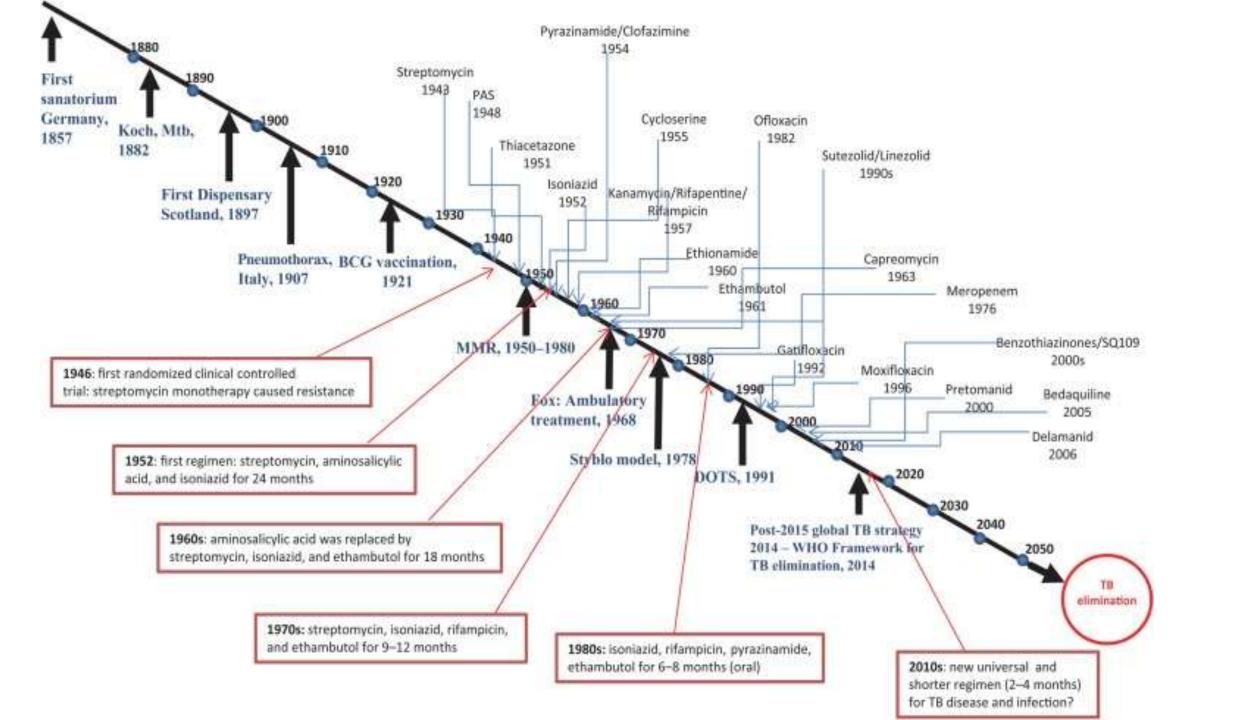
Rifampicin resistant TB (RR-TB)

Resistant to R+/- Resistance to other anti-TB drugs

DEFINITIONS

Poly-drug resistant TB (PDR-TB)

6


Resistant to more than one first-line anti-TB drug, other than both H and R.

Pre-extensively drug resistant TB (Pre-XDR-TB)

MDR/RR-TB + Resistant to any Fluoroquinolone

Extensively drug resistant TB (XDR-TB)

MDR/RR-TB + Resistant to any Fluoroquinolone (levofloxacin or moxifloxacin) + at least one Group A drug (either Bedaquiline or Linezolid [or both])

Evolution of PMDT

Expansion of DR-TB services

- Establishment and expansion of LPA and LC-DST services and initiation of Baseline SL-DST
- Testing all follow-up positive for MDR-TB for early detection
- Treatment services for M/XDR-TB

National Strategic Plan 2017-25 for Ending TB

- Introduction of Truenat
- Nation-wide coverage of UDST, Dlm, shorter, longer oral MDR-TB regimen

Initiation of DR-TB services

- Diagnosis by Solid culture & DST in specific labs
- Limited testing only of patients with unfavourable outcome
- Standardized treatment only for MDR-TB

National Strategic Plan 2012-17

- Introduction and expansion of CBNAAT (GeneXpert)
- Universal drug susceptibility testing is a national policy
- Introduction of newer drugs- Bdq & Dlm

Figure 1.2 Milestones in evolution of PMDT in India

DR TB CASE FINDING

SPECIMEN COLLECTION

Number of Sputum Specimen-

One spot and one early morning, or 2 spot specimens collected with a gap of at least one hour.

Good quality Sputum specimen-

- 2-5 ml, preferably mucopurulent and not heavily blood stained or contaminated on visual appearance.
- Collect the specimen in a sterile container (50ml screw capped conical tube; after thorough rinsing of the mouth with clean water)
- Triple layer packaging procedure

Extra-pulmonary specimen

- Collected in sterile saline with no other added preservatives (Formalin).
- Transported to the laboratory as soon as it is collected, not exceeding 4 hours.

DR-TB CASE FINDING

DRUG RESISTANCE TESTING [DRT]	DRUG SUSCEPTIBILITY TESTING [DST]
1. Genotypic test	1. Phenotypic test
2. Detects specific genetic mutations associated with drug resistance	2. TB bacilli are grown and subsequently tested for drug susceptibility
 Respiratory specimen , Non-respiratory specimen & Culture isolates 	3. Only on culture isolates

Rapid Molecular Drug Resistance Testing

i. The Xpert MTB /RIF

ii. The Xpert MTB/XDR

iii. Truenaat real-time quantitative micro PCR system

iv. Line Probe Assay [LPA]

RAPID MOLECULAR METHODS

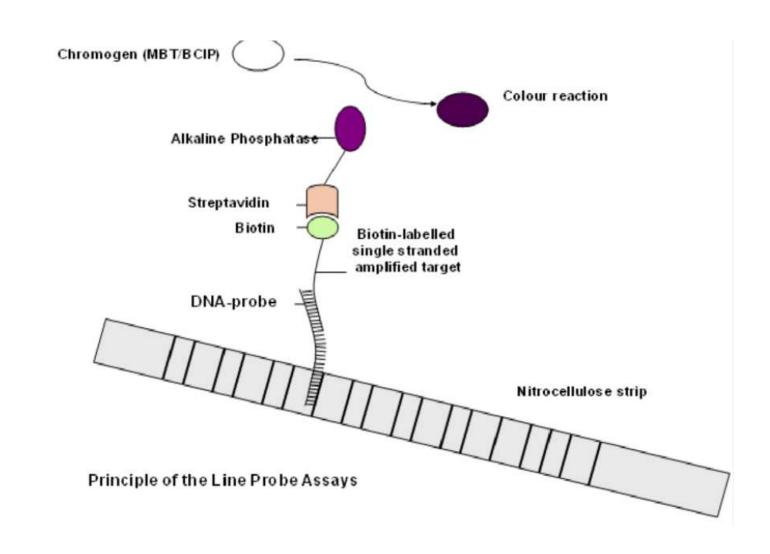
The Xpert MTB/RIF

- CB-NAAT
- Detects MTB specific DNA sequences and mutations in the RNA polymerase beta (rpob) gene – simultaneously.
- Unprocessed sputum sample result in 90 minutes
- Ambient room temperature of below 30 degrees
- Designed for larger volumes of sample

Truenat

- NAAT based
- Truenat MTB -M. tb bacilli in sputum after DNA extraction- 1 hour.
- Truenat MTB -Rif Dx -used sequentially for RIF resistance detection- 1 hour.
- Does not need air conditioning, it is portable and battery operated, needs trained technician.
- Single sample at one time

The Xpert MDR/XDR


Mutations associated with resistance towards INH, FQ, SLI and Eto in a single test.

• Results in 90 min

LPA

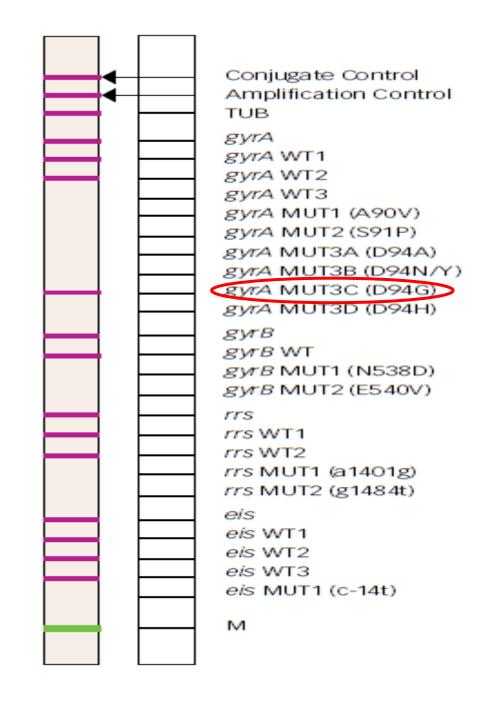
- PCR and reverse hybridization methods
- FL LPA mutations in the rpoB, KatG and InhA gene.
- SL LPA mutations in gyrA, gyr B, rrs and eis gene.

Principle of Line Probe assay

Line Conjugate Control Amplification Control Amplification Control M. tuberculosis complex TUB TypoB Locus Control TypoB TypoB Locus Control TypoB TypoB wild type probe 1 ftpoB WT1 TypoB wild type probe 2 ftpoB WT2 TypoB wild type probe 2 ftpoB WT3 TypoB wild type probe 3 ftpoB WT3 TypoB wild type probe 3 ftpoB WT3 TypoB wild type probe 3 ftpoB WT4 TypoB wild type probe 5 ftpoB WT4 TypoB wild type probe 5 ftpoB WT5 TypoB wild type probe 5 ftpoB WT6 TypoB wild type probe 6 ftpoB WT7 TypoB wild type probe 8 ftpoB WT8 TypoB wild type probe 8 ftpoB WT8 TypoB wild type probe 2 ftpoB WT7 TypoB wild type probe 2 ftpoB WT7 TypoB wild type probe 3 ftpoB WUT1 TypoB mutation probe 1 ftpoB MUT1 TypoB mutation probe 2 ftpoB MUT2A TypoB mutation probe 2 ftpoB MUT2A TypoB mutation probe 3 ftpoB MUT2B TypoB mutation probe 3 ftpoB MUT2B TypoB mutation probe 3 ftpoB MUT3 TypoB mutation probe 3 ftpoB MUT3 TypoB mutation probe 2 ftpoB MUT2B TypoB mutation probe 3 ftpoB MUT3 TypoB mutation probe 2 ftpoB MUT2B TypoB mutation probe 2 ftpoB MUT2B TypoB mutation probe 3 ftpoB MUT3 TypoB mutation probe 2 ftpoB MUT3 TypoB mutation probe 2 ftpoB MUT3 TypoB mutation probe 2 ftpoB MUT3 TypoB mutation probe 1 ftpoB MUT1 TypoB mutation probe 1 ftpoB MUT1 TypoB mutation probe 1 ftpoB MUT1 TypoB mutation probe 2 ftpoB MUT3 TypoB mutation probe 1 ftpoB MUT3 TypoB mutation probe 1 ftpoB MUT3 TypoB mutation probe 1 ftpoB MUT3 TypoB mutation probe 2 ftpoB MUT3 TypoB mutation probe 1 ftpoB				a. T	
Amplification Control M. tuberculosis complex TUB TyoB Locus Control ryoB TyoB Underculosis complex TUB TyoB Locus Control ryoB TyoB wild type probe 1 ryoB WT1 TyoB wild type probe 2 ryoB WT2 TyoB wild type probe 2 ryoB WT3 TyoB wild type probe 3 ryoB WT3 TyoB wild type probe 3 ryoB WT4 TyoB wild type probe 4 ryoB WT4 TyoB wild type probe 2 ryoB WT5 TyoB wild type probe 5 ryoB WT5 TyoB wild type probe 5 ryoB WT6 TyoB wild type probe 5 ryoB WT6 TyoB wild type probe 5 ryoB WT6 TyoB wild type probe 5 ryoB WT7 TyoB wild type probe 6 ryoB WT7 TyoB wild type probe 8 ryoB WT8 TyoB wild type probe 2 ryoB WU73 TyoB mutation probe 2 ryoB MUT3 TyoB mutation probe 2 ryoB MUT2B TyoB mutation probe 2 ryoB MUT3 TyoB mutation probe 2 ryoB WT7 TyoB mutation probe 2 ryoB MUT3 TyoB mutation probe 1 ryoB mutation TyoB mutation probe 2 ryoB MUT3 TyoB mutation probe 2 ryoB MUT3 TyoB mutation probe 2 ryoB WT1 TyoB mutation probe 2 ryoB WT2 TyoB mutation probe 2 ryoB WT1 TyoB mutation probe			Conjugate Control		Conjugata Control
M. tuberculosis complex TUB Trob Locus Control rpoB Trob Wild type probe 1 rpoB WT1 Trob Wild type probe 2 rpoB WT2 Trob Wild type probe 3 rpoB WT3 Trob Wild type probe 3 rpoB WT3 Trob Wild type probe 3 rpoB WT5 Trob Wild type probe 4 rpoB WT5 Trob Wild type probe 5 rpoB WT5 Trob Wild type probe 5 rpoB WT5 Trob Wild type probe 6 rpoB WT6 Trob Wild type probe 5 rpoB WT7 Trob Wild type probe 5 rpoB WT7 Trob Wild type probe 6 rpoB WT6 Trob Wild type probe 6 rpoB WT7 Trob Wild type probe 6 rpoB WT7 Trob Wild type probe 8 rpoB WT8 Trob Wild type probe 9 rpoB WT8 Trob Mutation probe 1 rpoB MUT1 Trob Mutation probe 2 rpoB MUT2B Trob Mutation probe 2 rpoB MUT3 Trob Mutation probe 3 rpoB MUT3 Trob Mutation probe 1 rpoB MUT3 Trob Mutation probe 1 rpoB MUT1 Trob Mutation probe 1 rpoB MUT1 Trob Mutation probe 1 rpoB MUT2 Trob Mutation probe 1 rpoB WT1 Trob Mutation probe 2 rpoB MUT2 Trob Mutation probe 1 rpoB WT1 Trob Mutation probe 2 rpoB MUT2 Trob Mutation probe 1 rpoB WT1 Trob Mutation probe 1 rpoB WT1 Trob Mutation probe 2 rpoB WT2 Trob Mutation probe 1 rpoB WT1 Trob Mutation probe 2 rpoB WT1 Trob Mutation probe 2 rpoB WT2 Trob Mutation probe 2 rpoB WT1 Trob Mutation probe 2 rpoB WT2 Trob Mutation probe 2 rpoB WT3 Trob Mutation probe 3 rpoB WT3 T			, 0		이 - 1 1780이라 특히 뉴스리스 이번 1880의 이 1280이다
4			·		
5			•	65,03388	
6			·		
7					
8					
9				50 000,000	보는 - 1000 (BUBLES)
10				5742	
11				10 8000000	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
12				. 500 10000	[1] (1) (1) -
13 rpoB mutation probe 1 rpoB MUT1 14 rpoB mutation probe 2A rpoB MUT2A 15 rpoB mutation probe 2B rpoB MUT2B 16 rpoB mutation probe 3 rpoB MUT3 17 katG Locus Control katG 18 katG wild type probe katG WT 19 katG mutation probe 1 katG MUT1 20 katG mutation probe 2 katG MUT2 21 inhA Locus Control inhA 22 inhA wild type probe 1 inhA WT1 23 inhA mutation probe 2 inhA MUT3 24 inhA mutation probe 3 inhA MUT3A 25 inhA mutation probe 3 inhA MUT3B 26 inhA mutation probe 3B inhA MUT3B 27 inhA mutation probe 3B inhA MUT3B 28 inhA mutation probe 1 inhA MUT1 29 inhA mutation probe 2 inhA MUT3B 20 inhA mutation probe 3 inhA MUT3B 21 inhA mutation probe 2 inhA MUT3B 22 inhA mutation probe 3 inhA MUT3B 23 inhA mutation probe 3 inhA MUT3B 24 inhA mutation probe 3 inhA MUT3B 25 inhA mutation probe 3 inhA MUT3B 26 inhA mutation probe 3 inhA MUT3B 27 inhA mutation probe 1 inhA MUT1 28 inhA mutation probe 3 inhA MUT3B 29 inhA mutation probe 3 inhA MUT3B 20 inhA mutation probe 3 inhA MUT3B 21 inhA mutation probe 3 inhA MUT3B 22 inhA mutation probe 3 inhA MUT3B 23 inhA mutation probe 4 inhA MUT3B 24 inhA mutation probe 6 inhA MUT3B 25 inhA mutation probe 6 inhA MUT3B 26 inhA mutation probe 6 inhA MUT3B 27 inhA mutation probe 1 inhA MUT3B					
14				50-10 Dec 1986	[1]
rpoB mutation probe 2B rpoB MUT2B rpoB mutation probe 3 rpoB MUT3 16			· · · · · · · · · · · · · · · · · · ·	13	gyrA mutation probe 3D gyrA MUT3D
16 rpoB mutation probe 3 rpoB MUT3 16 gyrB mutation probe 1 gyrB MUT1 17 katG Locus Control katG 18 katG wild type probe katG WT 19 katG mutation probe 1 katG MUT1 20 katG mutation probe 2 katG MUT2 21 inhA Locus Control inhA 22 inhA wild type probe 1 inhA WT1 23 inhA wild type probe 2 inhA WT2 24 inhA mutation probe 1 inhA MUT1 25 inhA mutation probe 2 inhA MUT2 26 inhA mutation probe 3A inhA MUT3A 27 inhA mutation probe 3B inhA MUT3B 18 gyrB mutation probe 1 gyrB MUT1 19 gyrB mutation probe 2 gyrB MUT2 18 gyrB mutation probe 2 gyrB MUT2 19 gyrB mutation probe 2 gyrB MUT2 19 gyrB mutation probe 2 gyrB MUT2 10			·	14	gyrB Locus Control gyrB
17 katG Locus Control katG 18 katG wild type probe katG WT 19 katG mutation probe 1 katG MUT1 20 katG mutation probe 2 katG MUT2 21 inhA Locus Control inhA 22 inhA wild type probe 1 inhA WT1 23 inhA wild type probe 2 inhA WT2 24 inhA mutation probe 1 inhA MUT1 25 inhA mutation probe 2 inhA MUT2 26 inhA mutation probe 3 inhA MUT3 27 inhA mutation probe 3 inhA MUT3A 28 inhA mutation probe 3 inhA MUT3B 29 inhA mutation probe 3 inhA MUT3B 20 inhA mutation probe 3 inhA MUT3B 21 inhA mutation probe 3 inhA MUT3B 22 inhA mutation probe 3 inhA MUT3B 23 inhA mutation probe 3 inhA MUT3B 25 inhA mutation probe 3 inhA MUT3B 26 inhA mutation probe 3 inhA MUT3B 27 inhA mutation probe 1 inhA MUT3B			· · · · · · · · · · · · · · · · · · ·	15	gyrB wild type probe gyrB WT
18 katG wild type probe katG WT 19 katG mutation probe 1 katG MUT1 20 katG mutation probe 2 katG MUT2 21 inhA Locus Control inhA 22 inhA wild type probe 1 inhA WT1 23 inhA wild type probe 2 inhA WT2 24 inhA mutation probe 2 inhA MUT1 25 inhA mutation probe 2 inhA MUT1 26 inhA mutation probe 3 inhA MUT2 27 inhA mutation probe 3 inhA MUT3 28 inhA mutation probe 3 inhA MUT3 29 inhA mutation probe 3 inhA MUT3 20 inhA mutation probe 1 inhA MT1 21 inhA mutation probe 2 inhA MT2 22 inhA mutation probe 3 inhA MUT3 23 inhA mutation probe 3 inhA MUT3 24 inhA mutation probe 3 inhA MUT3 25 inhA mutation probe 3 inhA MUT3 26 inhA mutation probe 3 inhA MUT3 27 inhA mutation probe 3 inhA MUT3 28 inhA mutation probe 3 inhA MUT3 29 inhA mutation probe 3 inhA MUT3 20 inhA mutation probe 3 inhA MUT3 21 inhA mutation probe 3 inhA MUT3 22 inhA mutation probe 3 inhA MUT3 23 inhA mutation probe 3 inhA MUT3 24 inhA mutation probe 3 inhA MUT3 25 inhA mutation probe 3 inhA MUT3 26 inhA mutation probe 3 inhA MUT3 27 inhA mutation probe 3 inhA MUT3 28 inhA mutation probe 3 inhA MUT3 29 inhA mutation probe 3 inhA MUT3 20 inhA mutation probe 3 inhA MUT3 21 inhA mutation probe 3 inhA MUT3 22 inhA mutation probe 3 inhA MUT3 23 inhA mutation probe 3 inhA MUT3 24 inhA mutation probe 3 inhA MUT3 25 inhA mutation probe 3 inhA MUT3 26 inhA mutation probe 3 inhA MUT3 27 inhA mutation probe 3 inhA MUT3 28 inhA mutation probe 3 inhA MUT3 29 inhA mutation probe 3 inhA MUT3 20 inhA mutation probe 3 inhA MUT3 21 inhA mutation probe 3 inhA MUT3 22 inhA mutation probe 3 inhA MUT3 23 inhA mutation probe 3 inhA MUT3 24 inhA mutation probe 3 inhA MUT3 25 inhA mutation probe 3 inhA MUT3	16		rpoB mutation probe 3 rpoB MUT3	16	gyrB mutation probe 1 gyrB MUT1
katG mutation probe 1 katG MUT1 19	17		katG Locus Control katG	17	gyrB mutation probe 2 gyrB MUT2
19 katG mutation probe 1 katG MUT1 20 katG mutation probe 2 katG MUT2 21 inhA Locus Control inhA 22 inhA wild type probe 1 inhA WT1 23 inhA wild type probe 2 inhA WT2 24 inhA mutation probe 1 inhA MUT1 25 inhA mutation probe 2 inhA MUT2 26 inhA mutation probe 2 inhA MUT2 27 inhA mutation probe 3 inhA MUT3 28 inhA mutation probe 1 inhA MUT1 29 inhA mutation probe 1 inhA MUT1 20 inhA mutation probe 2 inhA WT2 21 inhA mutation probe 1 inhA MUT1 22 inhA mutation probe 3 inhA MUT3 23 inhA mutation probe 3 inhA MUT3A 25 inhA mutation probe 3B inhA MUT3B 26 inhA mutation probe 3B inhA MUT3B 27 inhA mutation probe 1 eis MUT1 28 inhA mutation probe 3 eis WT3 29 inhA mutation probe 1 eis MUT1	18		katG wild type probe katG WT	18	rrs Locus Control rrs
20 katG mutation probe 2 katG MUT2 21 inhA Locus Control inhA 22 inhA wild type probe 1 inhA WT1 23 inhA wild type probe 2 inhA WT2 24 inhA mutation probe 1 inhA MUT1 25 inhA mutation probe 2 inhA MUT2 26 inhA mutation probe 3A inhA MUT3A 27 inhA mutation probe 3B inhA MUT3B 20 rrs wild type probe 2 rrs WT2 21 rrs mutation probe 2 rrs MUT2 22 rrs mutation probe 2 rrs MUT2 23 eis Locus Control eis 24 eis wild type probe 1 eis WT1 25 eis wild type probe 2 eis WT2 26 inhA mutation probe 3A inhA MUT3A 27 inhA mutation probe 3B inhA MUT3B 28 eis mutation probe 1 eis MUT1	19		katG mutation probe 1 katG MUT1		35
21 inhA Locus Control inhA 21 rrs mutation probe 1 rrs MUT1 22 inhA wild type probe 1 inhA WT1 22 rrs mutation probe 2 rrs MUT2 23 inhA wild type probe 2 inhA WT2 23 eis Locus Control eis 24 inhA mutation probe 1 inhA MUT1 24 eis wild type probe 1 eis WT1 25 inhA mutation probe 3A inhA MUT3A 26 eis wild type probe 2 eis WT3 27 inhA mutation probe 3B inhA MUT3B 27 eis mutation probe 1 eis MUT1	20		katG mutation probe 2 katG MUT2	20	점
22 inhA wild type probe 1 inhA WT1 22 rrs mutation probe 2 rrs MUT2 23 inhA wild type probe 2 inhA WT2 23 eis Locus Control eis 24 inhA mutation probe 1 inhA MUT1 24 eis wild type probe 1 eis WT1 25 inhA mutation probe 3A inhA MUT3A 25 eis wild type probe 2 eis WT2 26 inhA mutation probe 3B inhA MUT3B 26 eis mutation probe 1 eis MUT1	21		inhA Locus Control inhA	10230	
23 inhA wild type probe 2 inhA WT2 23 eis Locus Control eis 24 inhA mutation probe 1 inhA MUT1 24 eis wild type probe 1 eis WT1 25 inhA mutation probe 2 inhA MUT2 25 eis wild type probe 2 eis WT2 26 inhA mutation probe 3A inhA MUT3A 26 eis wild type probe 3 eis WT3 27 eis mutation probe 1 eis MUT1					
24 inhA mutation probe 1 inhA MUT1 25 inhA mutation probe 2 inhA MUT2 26 inhA mutation probe 3A inhA MUT3A 27 inhA mutation probe 3B inhA MUT3B 28 eis totas control eis 29 eis wild type probe 1 eis WT1 20 eis wild type probe 2 eis WT2 21 eis wild type probe 3 eis WT3 22 eis mutation probe 1 eis MUT1			** *	10-0415	Committee and the committee of the commi
inhA mutation probe 2 inhA MUT2 25 inhA mutation probe 3 inhA MUT3A 27 inhA mutation probe 3A inhA MUT3A 28 inhA mutation probe 3B inhA MUT3B 29 inhA mutation probe 3B inhA MUT3B 20 inhA mutation probe 3B inhA MUT3B 20 inhA mutation probe 3B inhA MUT3B 21 inhA mutation probe 2 inhA MUT3B 22 inhA mutation probe 3 eis WT3 23 inhA mutation probe 3B inhA MUT3B 24 inhA mutation probe 2 eis WT2 25 inhA mutation probe 3 eis WT3 26 inhA mutation probe 3B inhA MUT3B 27 inhA mutation probe 3B inhA MUT3B			2	25.70.761 190.7427	
26 inhA mutation probe 3A inhA MUT3A 27 inhA mutation probe 3B inhA MUT3B 28 eis wild type probe 2 eis WT3 29 eis mutation probe 1 eis MUT1			•		CO VARIO FOR BUILDING CO.
27 inhA mutation probe 3B inhA MUT3B 27 eis mutation probe 1 eis MUT1			·		[1] - [2] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2
Colored and an			•	Salating and a second	
Colored marker — Colored marker				2/	els mutation probe i els ivio i i
		\square	Colored marker	<u> </u>	Colored marker
		Ш			

Interpretation of Line Probe Assays [LPA]

 Results of LPA are interpreted based on development/absence of Wild Type[WT] and Mutant Type bands [MUT]

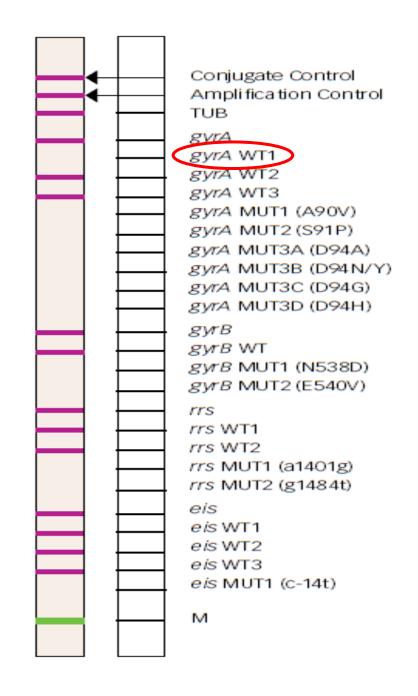

LPA FINDINGS	INTERPRETATION
All WT probes developed and none of MUT probes	"Resistance not Detected"
One or more WT probes are not developed and none of the MUT probes developed	"Resistance Inferred"
One or more MUT probes are developed Regardless of WT probe status	"Resistance Detected"

Case Scenario 1

- What is the interpretation?
 - -All WT probes developed & gyrA MUT3C[D94G] developed
- Final Report :

Levofloxacin-Resistance detected

Moxifloxacin-Mutations associated with
high level increase in MIC for Mx detected



Case Scenario 2

What is the interpretation
 -gyrA WT1 probe not developed &
 none of the mutant probes developed

- Final Report:
 - -Levofloxacin- Resistance Inferred

 Moxifloxacin-Mutations associated with atleast
 low level increase in MIC detected for Mx

Interpretation of Line Probe Assays [LPA]

Drug	Gene	Test results	Clinical Interpretation
Rifampicin	гроВ	Resistance inferred or detected	R –not effective
Isoniazid	katG	Resistance to high level H inferred or detected Resistance to low level H inferred or detected	H is unlikely to be effective even at high dose H at high dose is likely effective Eto/Pto are not effective
Second line injectable drugs	eis	Resistance inferred or detected Resistance inferred or detected	Am,Km and Cm- not effective Am,Cm-likely effective Km-not effective

Interpretation of Line Probe Assays [LPA]

Drug	Gene	Test results	Clinical interpretation
Fluoroquinolones	gyrA	Resistance to Lfx and low level Mfx inferred/detected	Lfx –not effective Mfx could be used at higher dose
		Resistance Lfx and high level Mfx detected (MUT 3B,MUT 3C,MUT 3D)	Lfx/Mfx- not effective
	gyrB	Resistance to Lfx and low level Mfx inferred/detected	Lfx- not effective Mfx- could be at higher dose

LPA

DRUG	SENSITIVITY	SPECIFICITY
Rifampicin	96.7%	98.8%
Isoniazid	90.2%	99.2%
Fluroquinolone	86.2%	98.6%
Second Line Injectables	87.0%	99.5%

LPA

Limitations

- Performed only on positive cultures or smear positive clinical specimens
- Some mutations that confer resistance are outside the regions covered by these tests and therefore resistance cannot be completely excluded
- Has high Biosafety requirements [Level 2 or 3]
- Requires well trained staff in professional laboratory
- Not fully automated so Error in interpretation possible

GROWTH BASED DST

BACTEC MGIT 960 – LIQUID CULTURE	LOWENSTEIN JENSEN – SOLID CULTURE
AUTOMATED LIQUID CULTURE SYSTEM PREFERRED METHOD FOR DST	LONGER TURNAROUND TIME
 Higher rate of MTB detection Shorter turnaround time Uses oxygen quencher for fluorescence detection as growth index Can be used for both pulmonary and EP specimens Used to monitor response to treatment and follow up of patients on drug resistant TB treatment. 	Not preferred anymore.

The Xpert MTB/XDR

- Introduced as an follow-on test to Xpert MTB/RIF
- Detects mutations associated with resistance to INH,FQ, SLI and Ethionamide

- Uses a semi quantitative nested PCR followed by high resolution melt technology
- Results are obtained in less than 90 minutes

 Especially important for ruling out FQ resistance, before starting shorter Oral Bedaquiline-containing MDR/RR-TB regimen

The Xpert MTB/XDR

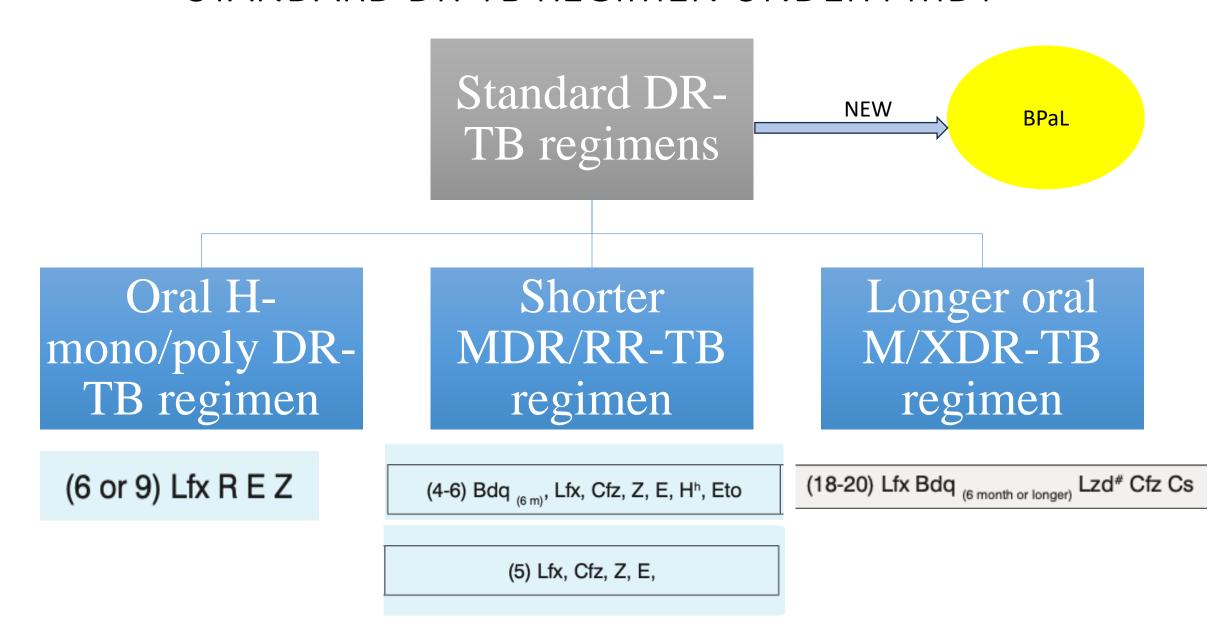
Drug Resistance	Target Region
Isoniazid	inhA promoter ,katG , fabG1 & oxyR-ahpC intergenic region
Ethionamide	InhA promotor region
Fluoroquinolones	gyrA and gyrB
Amikacin, Kanamycin Capreomycin	rrs , eis promotor

Detection of isoniazid, fluoroquinolone, ethionamide, amikacin, kanamycin, and capreomycin resistance by the Xpert MTB/XDR assay: a cross-sectional multicentre diagnostic accuracy study

Adam Penn-Nicholson, PhD 🙏 * 🖾 • Sophia B Georghiou, PhD * • Nelly Ciobanu, MD • Mubin Kazi, PhD Manpreet Bhalla, MD • Anura David, MSc • et al. Show all authors • Show footnotes

Published: October 07, 2021 DOI: https://doi.org/10.1016/S1473-3099(21)00452-7

	Number*	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)
Isoniazid resista	nce						
MTBDRplus	575	461	0	36	78	93% (90 to 95)	100% (94 to 100)
Xpert MTB/XDR	575	469	0	28	78	94% (92 to 96)	100% (94 to 100)
Difference	575	55	(5)	776	277	1.6% (0.2 to 3.4)	0 (-4·7 to 4·7)
Fiuoroquinoione	resistance						
MTBDRsI	532	222	2	13	295	95% (91 to 97)	99% (97 to 100)
Xpert MTB/XDR	532	222	2	13	295	95% (91 to 97)	99% (97 to 100)
Difference	532	**	39	•••	564	0 (-1-6 to 1-6)	0 (-1·3 to 1·3)
Amikacin resista	nce						
MTBDRsl	511	60	2	22	427	73% (62 to 82)	100% (98 to 100)
Xpert MTB/XDR	511	60	2	22	427	73% (62 to 82)	100% (98 to 100)
Difference	511	55	155	770	27	0 (-4·5 to 4·5)	0 (-0.9 to 0.9)
Kanamycin resis	tance						
MTBDRsI	515	181	5	29	300	86% (81 to 90)	98% (96 to 99)
Xpert MTB/XDR	515	181	5	29	300	86% (81 to 90)	98% (96 to 99)
Difference	515	**	**	**	***	0 (-1.8 to 1.8)	0 (-1-2 to 1-2)
Capreomycin res	istance						
MTBDRsl	513	53	1	34	425	61% (50 to 71)	100% (99 to 100)
Xpert MTB/XDR	513	53	1	34	425	61% (50 to 71)	100% (99 to 100)
Difference	513		22	#	84	0 (-4·2 to 4·2)	0 (-0-9 to 0-9)

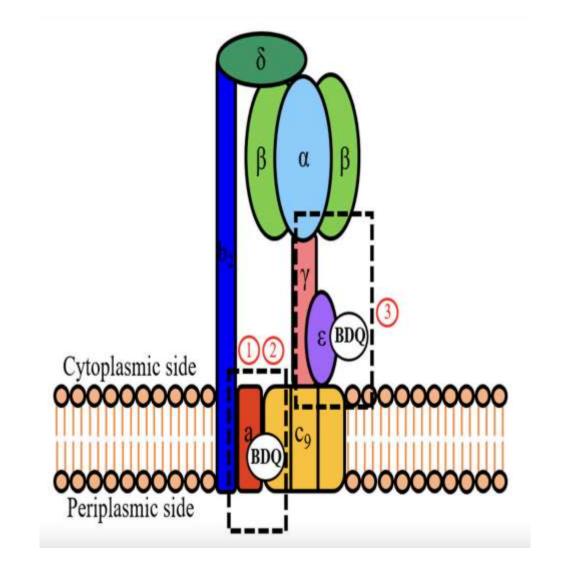

TREATMENT

GOALS OF TREATMENT

- Render the patient non-infectious
- Break the chain of transmission
- Decrease the pool of infection
- Decrease TB deaths and related comorbidity by ensuring relapse-free cure
- Minimize & prevent the development and amplification of drug resistance

GROUPS & STEPS	MEDICINE	ABBREVIATION
Group A	Levofloxacin or	Lfx
Include all three medicines	Moxifloxacin	Mfx
	Bedaquiline	Bdq
	Linezolid	Lzd
Group B	Clofazimine	Cfz
Add one or both medicines	Cycloserine or	Cs
	Terizidone	Trd
Group C	Ethambutol	E
Add to complete the regimen and	Delamanid	Dlm
when medicines from Group A and B cannot be used	Pyrazinamide	Z
Carriot be useu	Imipenem-cilastatin or	lpm-Cln
	Meropenem	Mpm
	Amikacin	Am
	(OR Streptomycin)	(S)
	Ethionamide or	Eto
	Prothionamide	Pto
	p-aminosalicylic acid	PAS

STANDARD DR-TB REGIMEN UNDER PMDT


BEDAQUILINE (Bdq)

Targets mycobacterial ATP synthase.

High volume of distribution, extensive tissue distribution, highly bound to plasma proteins, hepatically metabolized.

Extended half-life, present in the plasma up to 5.5 months post stopping Bdq.

Improves the time to culture conversion in MDR-TB patients.

DELAMANID (Dlm)

Class of nitro-dihydro-imidazo-oxazoles

Bactericidal drug

36 hours of half-life

Two different mechanism of action

Blocks the synthesis of mycolic acids

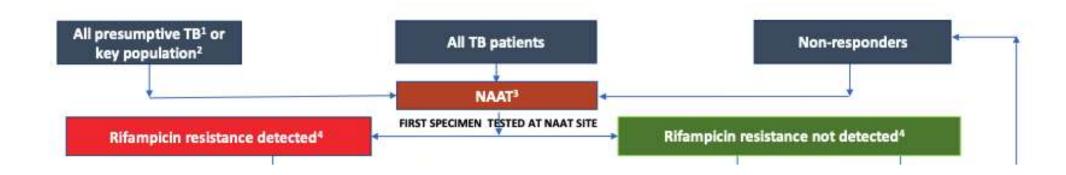
Drugs release Nitric Oxide when metabolized

Dlm - approved for use and available under NTEP for >/= 6 years

Use of Dlm - 3-6 years approved by WHO, the regulatory approval in India is awaited.

PRETOMANID (Pa)

Class of Nitroimidazoles


First identified in 2000

Orphan drug

Activity against static M.tuberculosis isolates that survive under anaerobic conditions.

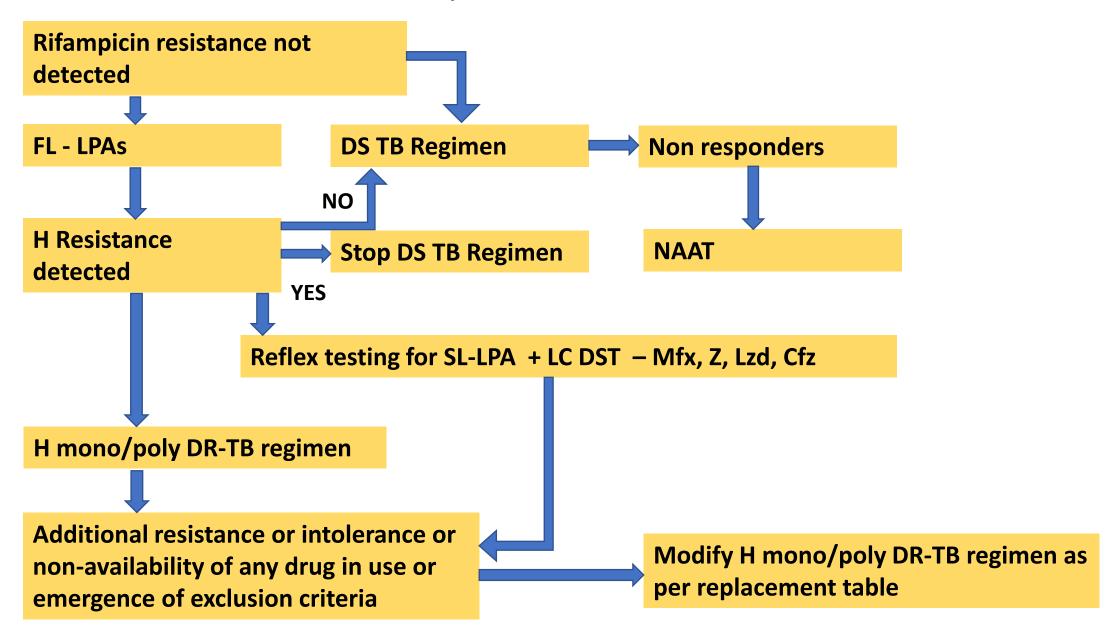
FDA – approval of Pa only with Bdq and Lzd for treatment of a limited and specific population of DR-TB patients.

Diagnostic and treatment algorithm

Key population:

PLHIV

Children


EP TB

Smear negative/ NA

with CXR s/o TB

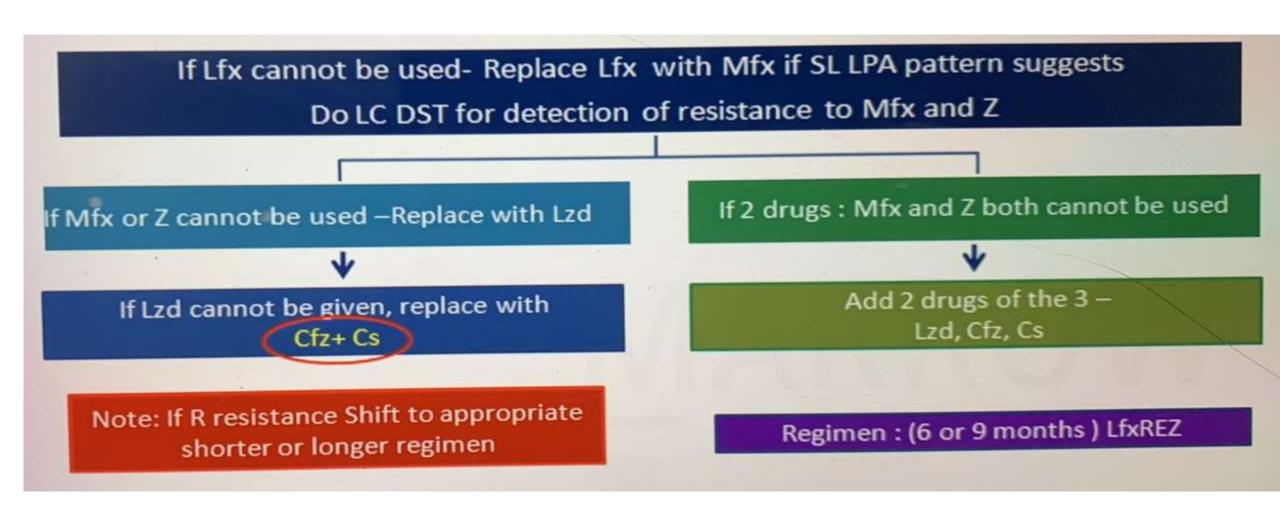
Contacts of DR-TB

H MONO/POLY DR-TB REGIMEN

H MONO/POLY DR-TB REGIMEN

PRE-TREATMENT EVALUATION

thorough clinical evaluation by a doctor with


- History and physical examination , Height/weight
- Random blood sugar (RBS)
- Chest X-ray ,HIV testing

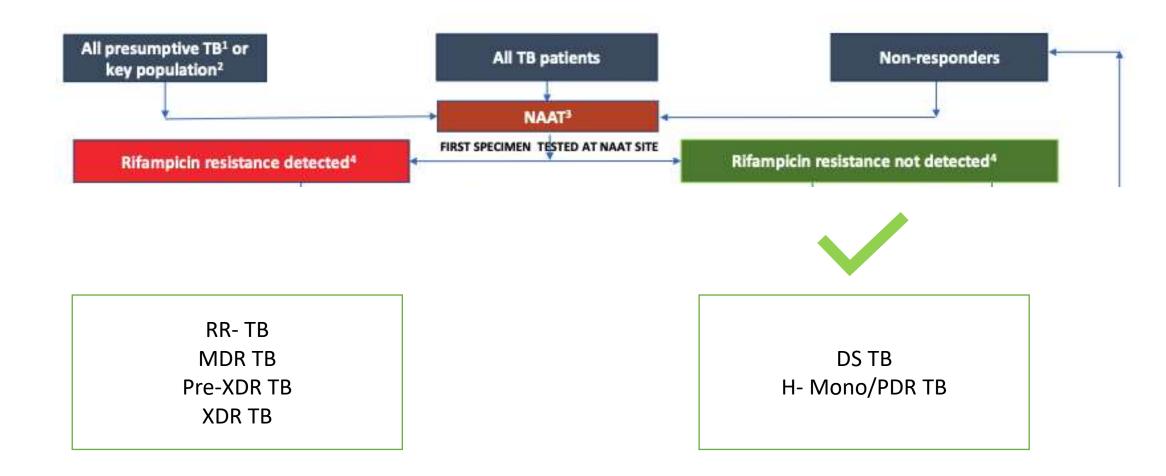
REGIMEN, DURATION AND DOSAGE

(6 or 9) Lfx R E Z

6 or 9 months
No separate IP/ CP

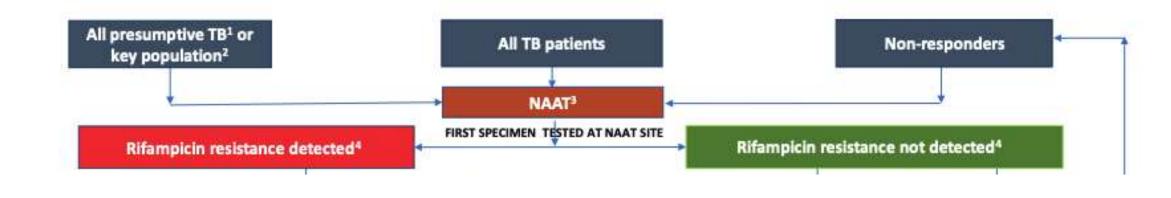
Replacement sequence

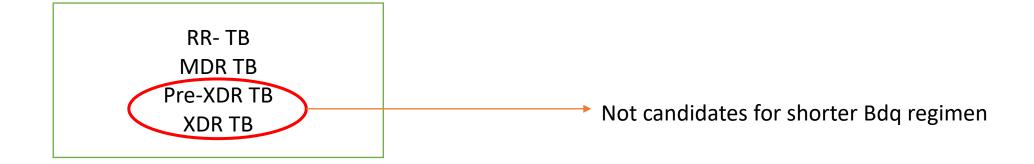
H MONO/POLY DR-TB REGIMEN


TREATMENT EXTENSION - Extended directly to 9 months in

- Patients with extensive disease
- Uncontrolled comorbidity
- Extra- pulmonary TB
- If smear at the end of month 4 is found positive and
- When regimen is modified

No monthly extensions in this regimen


Sputum smear positive at the end of month 5 or later - Treatment outcome declared as 'treatment failed'


Patient will be re-evaluated as per the diagnostic algorithm as a non-responder.

AIM:

- 1) Which regimen Shorter ? Longer ?
- 2) How to modify the regimen if needed? (replacements)

AIM:

- 1) Which regimen Shorter ? Longer ?
- 2) How to modify the regimen if needed? (replacements)

Inclusion Criteria (shorter regimen)

- DST Based
- Rifampicin resistance
- MDR/RR-TB with H resistance based on either InhA mutation or KatG mutation (not both)
- MDR/RR-TB with FQ resistance not detected
- 2. Other Criteria
- Children, aged 5 years onwards and weighing at least 15 kg
- No history of exposure to previous treatment with second-lir
 Cfz) for more than 1 month (unless susceptibility to these med
- No extensive TB disease or severe EP TB
- Women who are not pregnant or lactating

Extensive disease:

B/L cavitary disease or extensive parenchymal damage on chest radiogaphy

(5) Lfx, Cfz, Z, E,

x, Eto or

Severe EPTB – Miliary TB/ TBM/ CNS TB

Exclusion Criteria

DST Based

- MDR/RR-TB patients with H resistance detected with both KatG and InhA mutation
- MDR/RR-TB patients with FQ resistance detected.

2. Other Criteria

- History of exposure for > 1 month to Bdq, Lfx, Eto or Cfz, if result for DST (Bdq, FQ, Inh A mutation, Cfz & Z) is not available;
- Intolerance to any drug or risk of toxicity (eg: drug drug interactions)
- Extensive TB disease
- Severe EP-TB disease
- Pregnant and lactating women (with conditional exceptions)
- Children below 5 years

Discordance between RR in FL-LPA and NAAT – second NAAT Rifampicin resistance detected

CBNAAT

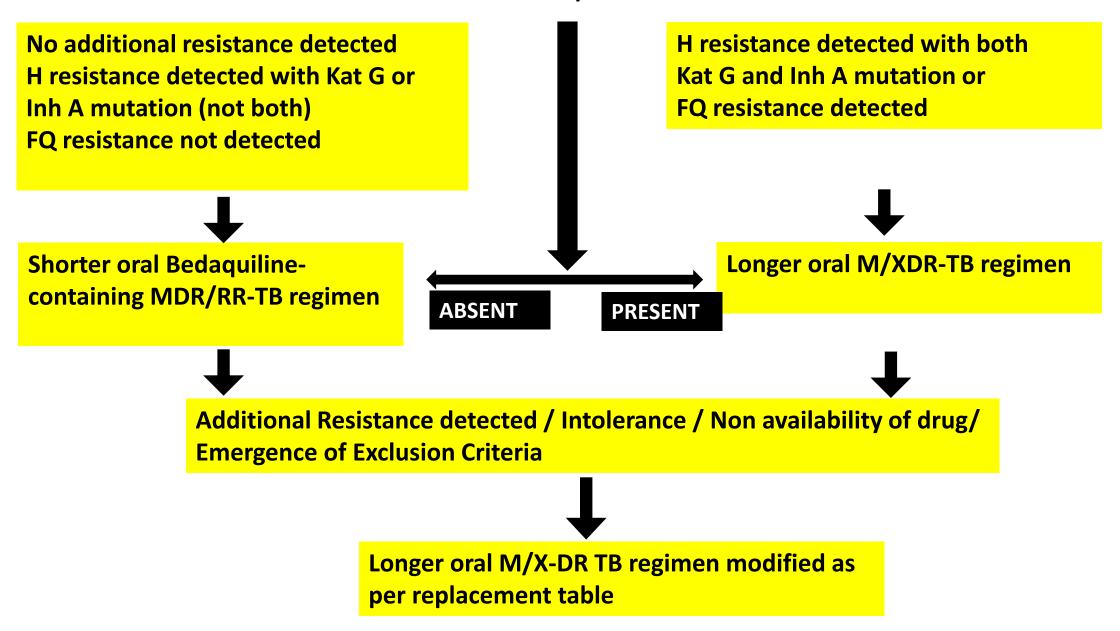
Second sample at DST lab

FL-LPA + SL-LPA + LC DST – Z, Bdq, Cfz, Mfx, Lzd, Dlm

Whenever DST is available

Lfx, Mfx and Am resistance

Start treatment with LPA results modify based on LC&DST


After completing PTE, check on Nikshay or with C&DST lab, if LPA results are available

YES

Other exclusion criteria for shorter regimen

YES

PRE-TREATMENT EVALUATION

Clinical evaluation	Laboratory based evaluation
History and physical examination	Random blood sugar (RBS)
Height	HIV testing following counselling
Weight	Complete blood count (Hb, TLC, DLC, platelet count)
Psychiatric evaluation if required	Liver function tests (including serum proteins)
	TSH levels
	Urine examination – routine and microscopic
	Serum electrolytes (Na, K, Mg, Ca)
	Urine pregnancy test (in women of reproductive age group)
	Chest X-ray
	ECG

WHERE IS THE EVIDENCE FROM

Based on the programmatic data from South Africa - reviewed by WHO <u>Shorter regimen</u> - Injectable agent was replaced by Bdq, in combination with Lfx (or Mfx), Cfz, Hh, E, Z and Eto.

Preliminary analysis –

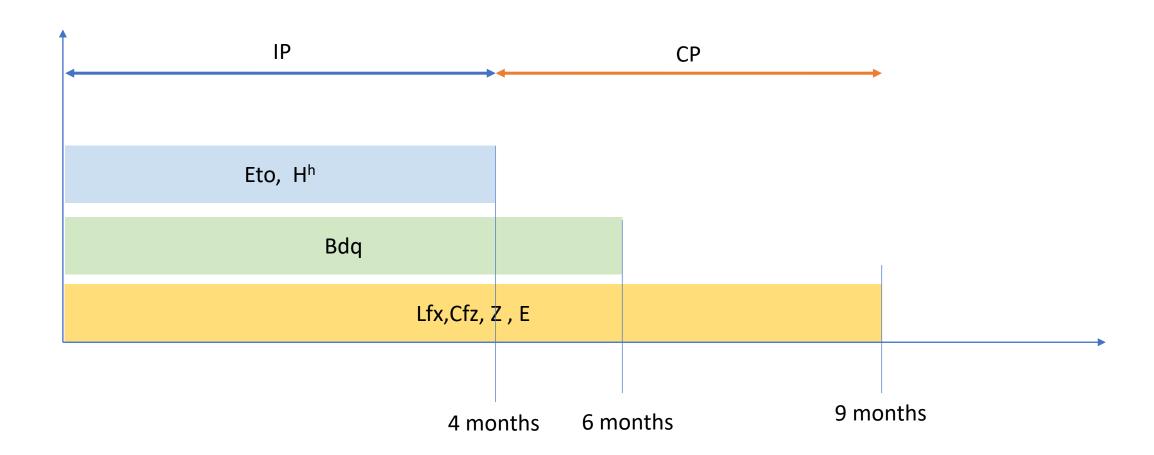
13% higher treatment success rates among the shorter oral Bedaquiline-containing MDR/RR-TB regimen group as compared to the <u>Shorter injectable containing regimen</u> and

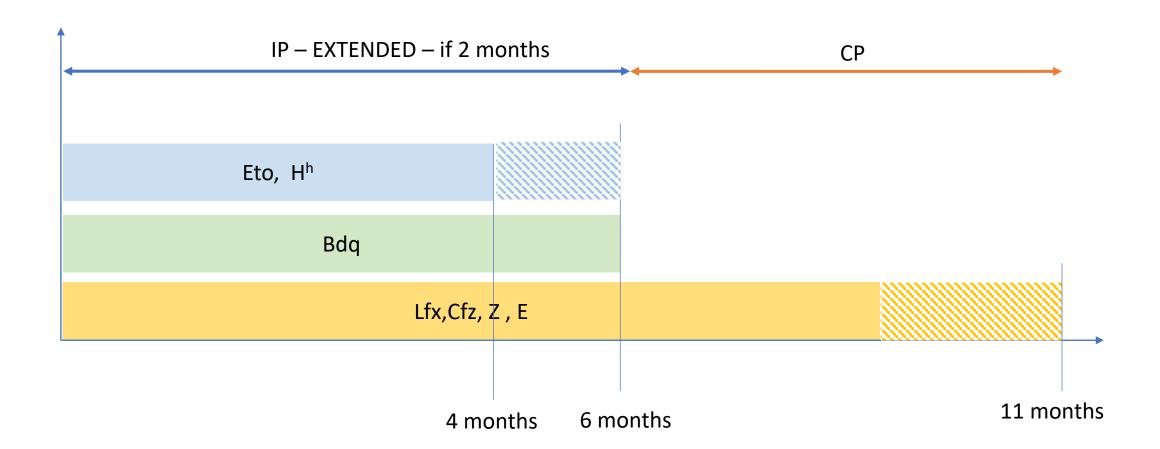
Similar treatment success rates compared to Longer oral M/XDR-TB regimen.

REGIMEN AND DURATION

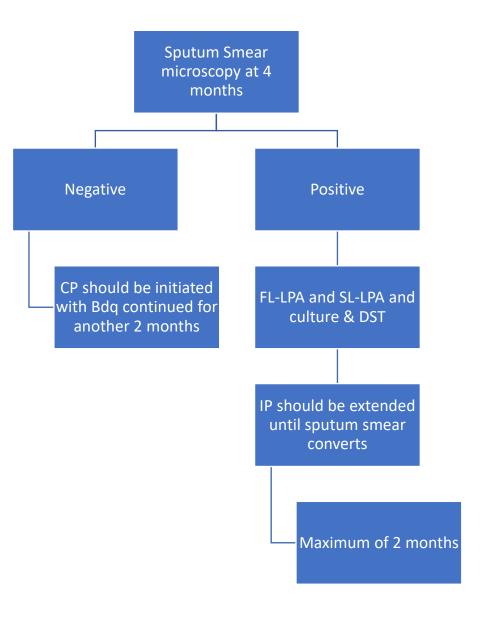
(4-6) Bdq _(6 m), Lfx, Cfz, Z, E, H^h, Eto

(5) Lfx, Cfz, Z, E,


Initial phase - 4 months, may be extended up to 6 months


Continuation - 5 months

Total duration - 9–11 months


Bdq is used for a duration of 6 months

Composition/ Duration of the IP or CP cannot be changed

Treatment Extension

If found to be smear/culture positive at the end of 6 months or later, the patient

will be declared as 'treatment

failed'

- Needs evaluation for longer oral M/XDR-TB regimen

CONSIDERATIONS FOR Bdq

Inclusion criteria

- Age > 5 years , and weight at least 15 kg, in consultation with pediatrician.
- Controlled stable arrhythmia after cardiac consultation.
- Pregnant & lactating women

Exclusion criteria

- Currently having uncontrolled cardiac arrhythmia that requires medication.
- QTcF > 500 at baseline & normal electrolytes,
- ECG to be repeated after 6 hours if both ECGs show C challenged with cardiotoxic drugs; and
- History of additional risk factors for Torsade de Point initiation family history of long QT syndrome.

Hypokalemia, hypomagnesemia and hypocalcemia should be corrected prior to treatment

Drug Dosage- Shorter Bdq Regimen

Drugs	16-29 kg	30-45 kg	46-70 kg	>70 kg		
High dose H (H _h) (15 to 20mg/kg)	300 mg	600 mg	900 mg	900 mg		
Ethambutol(E)	400 mg	800 mg	1200 mg	1600 mg		
Pyrazinamide(Z)	750 mg	1250 mg	1750 mg	2000 mg		
Levofloxacin (Lfx)	250 mg	750 mg	1000 mg	1000 mg		
Bedaquiline (Bdq)	Week 0–2: Bdq 400 mg daily Week 3–24: Bdq 200 mg 3 times per week					
Clofazimine (Cfz)	50 mg	100 mg	100 mg	200 mg		
Ethionamide (Eto)	375 mg	500 mg	750 mg	1000 mg		
Pyridoxine (Pdx)	50 mg	100 mg	100 mg	100 mg		

- •If weight increases or decreases by 5 kg or more & crosses the current weight band, then weight band must be changed at the time of issuing next month box.
- •Don't consume milk containing products at the same time, as the calcium in these can decrease the absorption of FQs.
- •Large fatty meals should be avoided, as these can impair absorption of some of the other anti-TB drugs (Cs, H etc.).

FOLLOW UP

Regimen Class	Shorter oral Bedaquiline-containing MDR/RR-TB re	gimen
Clinical + Wt.	Monthly in IP, Quarterly in CP	
Smear Microscopy	Monthly from 3rd month onwards	Extend IP if
Culture	 At the end of month 3, end of month 6 and/or end 	d of treatment
DST	 FL & SL LPA and LC&DST if any- 1. culture +ve (end of month 3 or later and end of tr 2. smear +ve at end of IP, end of extended IP and end 	•
TSH & LFT	• At end of IP, then as and when clinically indicated	
CXR	 At end of IP, then as and when clinically indicated, treatment 	end of
ECG ^{\$}	 At 2 weeks, then monthly in first 6 months, then a clinically indicated 	is and when

Long-term follow-up will be done with 6 monthly cultures among symptomatic patients till two years after completion of any DR-TB regimen i.e. months 6, 12, 18 and 24 post treatment.

SPECIAL SITUATION

RENAL IMPAIREMENT

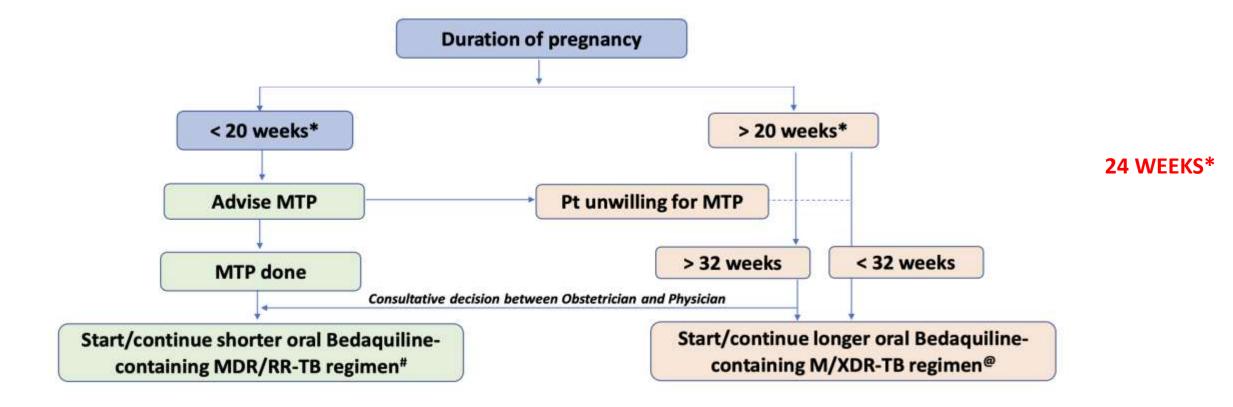
Drug	Recommended dose and frequency for patients with creatinine clearance < 30 ml/min or for patients receiving hemodialysis (unless otherwise indicated dose after dialysis)
Isoniazid	No adjustment necessary
Pyrazinamide	25-35 mg/kg per dose three times per week (not daily)
Ethambutol	15-25 mg/kg per dose three times per week (not daily)
Levofloxacin	750-1000 mg per dose three times per week (not daily)
Moxifloxacin	No adjustment necessary
Ethionamide	No adjustment necessary
Bedaquiline	No dosage adjustments required in patients with mild to moderate renal impairment (dosing not established in severe renal impairment, use with caution)
Clofazimine	No adjustment necessary

Hepatic Impairment

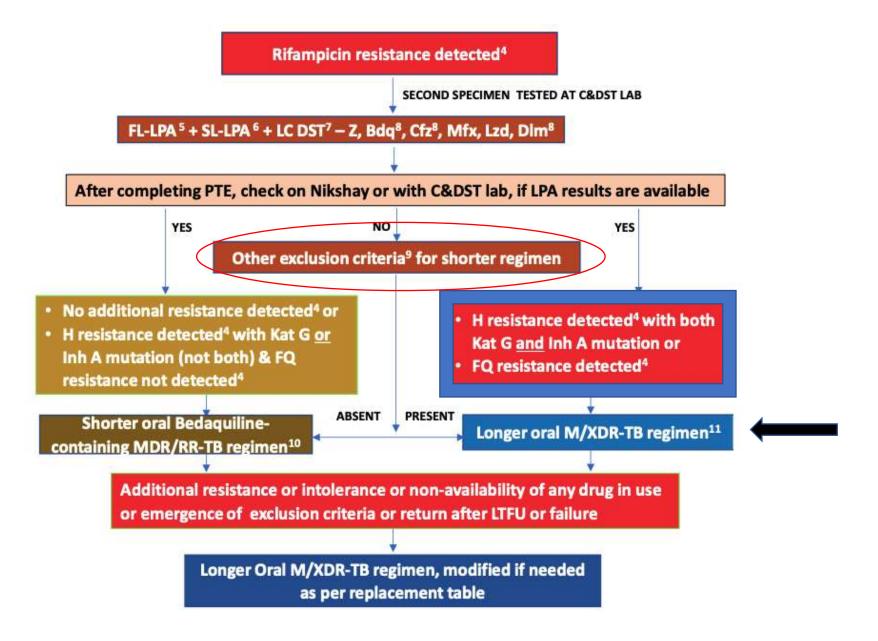
- Hepatotoxic drugs H, Z, Eto and Bdq. Rarely FQ.
- The potential for hepatotoxicity more in elderly, alcoholics, malnourished and in patients with pre-existing liver disease.
- Other etiologies should be excluded.

In patients with pre-existing liver disease with persistently abnormal liver function test, a shorter oral MDR/RR-TB regimen will be avoided due to presence of H(h), Eto and Z.

People Living With HIV


- The shorter or longer oral MDR-TB regimen can be used
- Toxicities or drug-drug interactions between anti-TB and ART medicines
- Efavirenz and Bdq,
 Ritonavir and Bdq increase the risk of Bdq related adverse events avoid combined use / use with caution.

- Patients co-infected with HIV and TB start on ART as soon as possible after initiating TB treatment, irrespective of CD4 cell counts.
- (Generally, within the first two weeks of initiating DR-TB treatment)


SPECIAL SITUATIONS

Pregnancy and lactation

Ethionamide - contraindicated during the first 32 weeks of pregnancy – animal reproduction studies - adverse effect on the foetus, no adequate studies in humans.

Longer MDR/XDR Regimen

LONGER ORAL M/XDR-TB REGIMEN

Eligibility criteria

- MDR/RR-TB patients excluded from shorter oral Bedaquiline-containing MDR/RR-TB regimen
- PRE/XDR- TB patients
- Additional resistance / Intolerance / Non-availability of any drug in use
- Emergence of exclusion criteria to shorter oral Bedaquiline-containing regimen the patient re-evaluated and initiated on longer oral M/XDR-TB regimen.

Regimen and duration

In MDR/RR-TB patients on longer oral M/XDR-TB regimen,

- All three Group A agents
- At least one Group B agent should be included

Treatment starts with at least four effective TB agents and

At least three agents are included for rest of the treatment if Bdq is stopped.

If only one or two Group A agents are used, both Group B agents are to be included.

If the regimen cannot be composed with agents from Groups A and B alone, Group C agents are added to complete it as recommended by WHO.

In India –

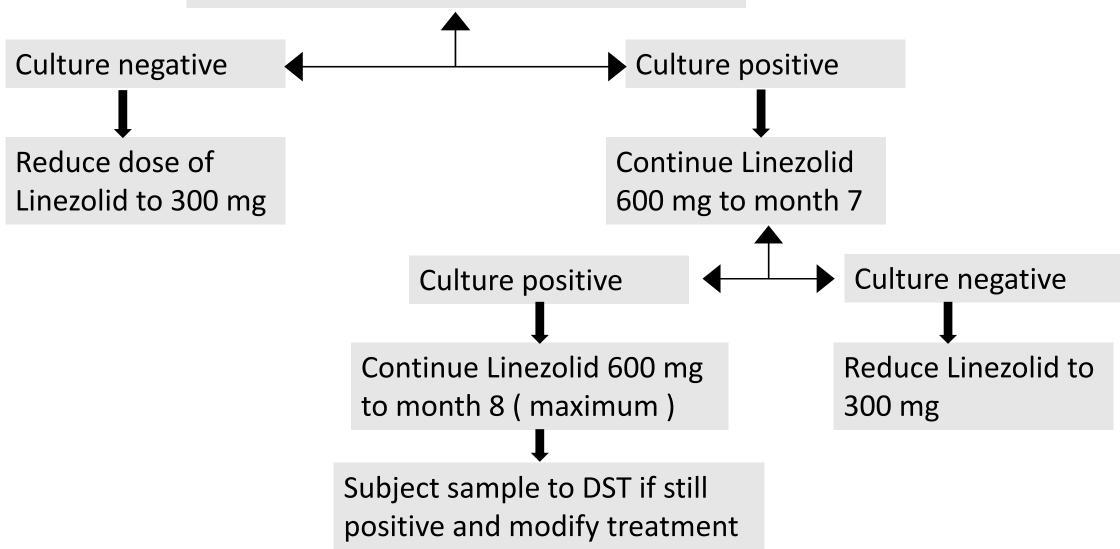
Start with all 5 drugs of Group A and B and

Continue with 4 drugs in the latter part of the regimen (beyond 6-8 months)

18-20 months, no separate IP or CP

Once patient is placed on a longer regimen for at least 4 weeks - can no longer be switched to the shorter regimen

(18-20) Lfx Bdq (6 month or longer) Lzd# Cfz Cs


#dose of Lzd will be tapered to 300 mg after the initial 6-8 months of treatment

Bdq will be given for 6 months & extended beyond 6 months as an exception

Pyridoxine to be given to all DR-TB patients as per weight band

For Pre-XDR-TB and XDR-TB patients the duration of longer oral XDR-TB regimen would be for 20 months with appropriate modifications

After 6 months of treatment – review patient based on cultures of 5th month

Replacement Sequence- Rules

- 1. Replaced according to their efficacy, no demonstrable resistance, prior use, side-effects profile and background resistance.
- 2. Preferably be fully **oral**.
- 3. Replacement sequence of Group C drugs is in the order of delamanid, amikacin, pyrazinamide, ethionamide, PAS, ethambutol, carbapenems, DA(PE)2
- 4. Combined use of Bdq and Dlm is recommended for those M/XDR-TB patients in whom an appropriate regimen cannot be designed using all 5 drugs from Group A and B.
- 5. In final 12 months of treatment, atleast 3-4 drugs from group A and B to be used. (group C may be used if needed as per replacement seq)
- 6. Dlm and Am will not be started in final 12 months of treatment.

Replacement Sequence- Outcome

	Duran to be	No. of drugs to include from				
Sr. No	Drugs to be replaced	Group A (3 drugs)	Group B (2 drugs)	Group C (7 drugs)	Final Regimen after replacement	
1	None	3	2	-	6-8 Lfx, Bdq, Lzd, Cfz, Cs / 12 Lfx, Lzd, Cfz, Cs	
2	1 group A drug	2	2	1	No FQ, then 6-8 Bdq, Lzd, Cfz, Cs, Dlm / 12 Lzd, Cfz, Cs No Bdq then 6-8 Lfx*, Lzd, Cfz, Cs, Dlm / 12 Lfx*, Lzd, Cfz,Cs No Lzd, then 6-8 Lfx*, Bdq, Cfz, Cs, Dlm / 12 Lfx* Cfz, Cs	
3	1 group B drug	3	1	1	No Cfz, then 6-8 Lfx* Bdq, Lzd, Cs Dlm / 12 Lfx* Lzd, Cs No Cs, then 6-8 Lfx* Bdq, Lzd, Cfz Dlm / 12 Lfx* Lzd, Cfz	
4	1 group A drug& 1 group B drug	2	1	2	No FQ & Cf2 then 6-8 Bdq, Lzd, Cs, Dlm, Am# 12 Lzd, Cs, Z#, Eto# No FQ & Cs then 6-8 Bdq, Lzd, Cfz Dlm, Am# 12 Lzd, Cfz Z#, Eto# No Bdq & Cfz then 6-8 Lfx* Lzd, Cs, Dlm, Am# / 12 Lfx* Lzd, Cs No Bdq & Cs then 6-8 Lfx* Lzd, Cfz, Dlm, Am# / 12 Lfx* Lzd, Cfz No Lzd & Cf2 then 6-8 Lfx* Bdq, Cs Dlm, Am# / 12 Lfx*, Cs, Z#, Eto# No Lzd & Cs then 6-8 Lfx* Bdq, Cfz Dlm, Am# / 12 Lfx*, Cfz, Z#, Eto#	

Replacement Sequence- Outcome

		No. of drugs t	o include from	1		
Sr. No	Drugs to be replaced	Group A (3 drugs)	Group B (2 drugs)	Group C (7 drugs)	Final Regimen after replacement	
5	2 group A drugs	1	2	2	No FQ & Bdg then 6-8 Lzd, Cfz, Cs, Dlm, Am# / 12 Lzd, Cfz, Cs, Z# No FQ & Lzd then 6-8 Bdq, Cfz, Cs, Dlm, Am# / 12 Cfz, Cs, Z#, Eto# No Bdq & Lzd then 6-8 Lfx*, Cfz, Cs, Dlm, Am# / 12 Lfx*, Cfz, Cs, Z#	
6	2 group B drugs	3	0	2	No Cfz & Cs then 6-8 Lfx* Bdq, Lzd, Qlm, Am# / 12 Lfx*, Lzd, Z#, Eto#	
7	3 or more from group A drugs& group B drugs	Use the remaining drugs		3 or more	Remaining drugs from Group A and B plus 3-5 drugs from Group C using the sequence explained to make a regime with at least 5-6 drugs known to be effective. If Bdq and Dlm can be used, their combined use in the regimen with at least 4-5 drugs or its extended use beyond 6 months till clinical and bacteriological conversion is achieved. If Bdq and Lzd can be used, explore the possibility of using BPaL regimen under prevailing ethical conditions.	

FOLLOW UP

Regimen Class	Longer Oral M/XDR-TB Regimen
Clinical + Wt.	Monthly up to month 6 or 7 or 8 if previous month S+ve, Quarterly in from month 7 or 9 onwards
Smear microscopy	With culture at C&DST lab
Culture	Monthly from month 3 onwards to end of 6 months or 7 or 8 if the previous month's culture is +ve Quarterly from month 6 or 7 or 8 onwards based on previous month's culture results
DST	FL & SL-LPA (Lfx, Mfx, Am, Eto) and LC&DST (Mfx, Lzd, Cfz*, Bdq*, Dlm*, Z) if any time culture +ve at the end of 6 months or beyond
CBC^	Day 15, monthly in first 6 months or 7 or 8 if previous month S+ve
TSH & LFT	LFT quarterly, TSH every 6 months
CXR	At the end of month 6, end of treatment
ECG	At 2 weeks, monthly in first 6 months and till Bdq/Mfx/Cfz/Dlm is extended
S. electrolytes (K, Mg, Ca)	In case of any QTc prolongation

^ If Lzd is part of the regimen to rule out bone marrow suppression

If found to be smear/culture
positive at the end of 8 months or
later, the patient will be declared as
'treatment failed'

Long-term follow-up will be done

with 6 monthly cultures

among

symptomatic

patients till two years after
completion of any DR-TB
regimen i.e. months 6, 12, 18

and 24 post treatment.

BPaL REGIMEN

Bedaquiline, Pretomanid, Linezolid (BPaL) regimen

May be used under operational research conditions –

MDR-TB patients with no previous exposure to Bedaquiline and Linezolid or

Exposure < 2 weeks

To be used under operational research conditions - does not apply to routine programmatic use

90% favourable outcomes among XDR, MDR with FQ resistance, treatment intolerant /non responders.

Treatment of Highly Drug-Resistant Pulmonary Tuberculosis

BPaL REGIMEN

Dosage & duration

<u>Pretomanid</u>

200 mg once daily for 26 weeks

<u>Bedaquiline</u>

400 mg once daily for the first 2 weeks of treatment (days 1–14)

200 mg three times a week for 24 weeks

<u>Linezolid</u>

1200 mg once daily for 24 weeks

with an option to extend treatment to 39 weeks if they were culture-positive at week 16.

Last resort by NTEP under prevailing ethical standards in patients for whom the design of an effective regimen is not possible as per WHO recommendations.

Table B. Evidence available for the guidelines update

Trial (setting)	Population	Intervention regimen(s)	Comparator regimen(s)
TB-PRACTECAL trial (South Africa, Belarus, Uzbekistan)	Microbiologically confirmed M. tuberculosis in sputum and resistance to rifampicin The primary analysis population is followed up at 72 weeks. The number of people reaching 24, 72 and 108 weeks differs because the study was terminated early	Stage 2 (phase 3 trial) 24 weeks BPaLM (B-Pa-Lzd _{600->300} -Mfx) Stage 1 (phase 2 trial) 24 weeks BPaLC (B-Pa-Lzd _{600->300} -Cfz) 24 weeks BPaL (B-Pa-Lzd _{600->300})	Multiple – local standard of care, including: 9–12-month injectable-containing regimen 18–24-month WHO-recommended regimen (pre-2019) 9–12-month all-oral regimen 18–20-month all-oral regimen
Nix-TB (South Africa)	14 years and older XDR-TB (pre- 2021 definition) or treatment intolerant nonresponsive MDR-TB	6–9 month BPaL _{1200–26} Including linezolid 1 200 mg daily for 6 months (option of 9 months for subjects who remain culture positive at month 4) ¹⁰	No standard of care control group
ZeNix (South Africa, Georgia, Moldova and the Russian Federation) (22)	14 years and older XDR-TB, pre-XDR-TB (pre-2021 definition) or intolerant/nonresponsive MDR/RR-TB Stratified by HIV status and type of TB Phase 3 partially blinded	6–9 month BPaL 4 arms with varying linezolid dosing BPaL _{1200–26 weeks} BPaL _{1200–9 weeks} BPaL _{600–9 weeks} BPaL _{600–9 weeks} Treatment extended if culture positive in weeks 16–26	No standard of care control group

WHO CONSOLIDATED
GUIDELIONES ON TB – 2022
UPDATE

STUDY	Regimens	Duration	N	Favorable outcomes	ADVERSE EFFECTS
Nix	BPaL	26 wks	105	90 % favorable	neuropathy 81% , myelosuppression 45 %
ZeNix	BPaL (L 1200 & 600 mg for 26 /9 wks)	26 wks	181	Linezolid 1200 mg 26/9 wks- 93 /84 % & 600 mg 26 /9 wks- 91 /84 %	Neuropathy – 1200mg 26 /9 wks- 38 /24 % 600mg – 26/9 wks- 24/13 % Myelosupression 1200 mg 26/9 wk- 22/15 % % 600mg 26/9 wk- 2/7 %
TB PRACTICAL	WHO standard BPaL BPaLM BPaLC	24 wks	522	WHO- 52 % BPaL- 77 % BPaLM- 89 % BPaLC- 81 %	BPaLM vs WHO regimen toxicity -20 VS 59 %

Remarks

- 1. Drug susceptibility testing (DST) for fluoroquinolones is strongly encouraged in people with MDR/RR-TB, and although it should not delay initiation of the BPaLM, results of the test should guide the decision on whether moxifloxacin can be retained or should be dropped from the regimen in cases of documented resistance to fluoroquinolones, BPaL without moxifloxacin would be initiated or continued.
- 2. This recommendation applies to the following:
 - a. People with MDR/RR-TB or with MDR/RR-TB and resistance to fluoroquinolones (pre-XDR-TB).
 - b. People with confirmed pulmonary TB and all forms of extrapulmonary TB except for TB involving the CNS, osteoarticular and disseminated (miliary) TB.¹¹
 - c. Adults and adolescents aged 14 years and older.
 - d. All people regardless of HIV status.
 - e. Patients with less than 1-month previous exposure to bedaquiline, linezolid, pretomanid or delamanid. When exposure is greater than 1 month, these patients may still receive these regimens if resistance to the specific medicines with such exposure has been ruled out.
- 3. This recommendation does not apply to pregnant and breastfeeding women owing to limited evidence on the safety of pretomanid.¹²
- 4. The recommended dose of linezolid is 600 mg once daily, both for the BPaLM and the BPaL regimen.¹³

Section 1. The 6-month bedaquiline, pretomanid, linezolid and moxifloxacin (BPaLM) regimen for MDR/RR-TB (NEW)

1.1 Recommendation

NEW RECOMMENDATION

No. Recommendation

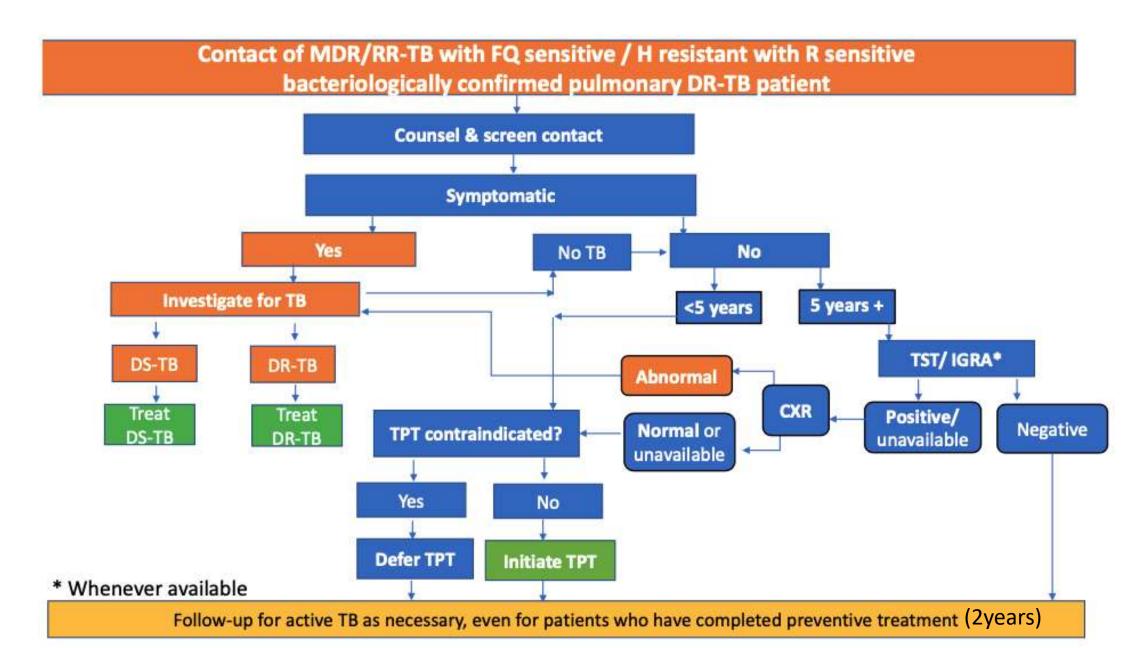
1.1 WHO suggests the use of a 6-month treatment regimen composed of bedaquiline, pretomanid, linezolid (600 mg) and moxifloxacin (BPaLM) rather than the 9-month or longer (18-month) regimens in MDR/RR-TB patients.

(Conditional recommendation, very low certainty of evidence)

WHO CONSOLIDATED
GUIDELIONES ON TB – 2022
UPDATE

Preventive treatment for contacts of DR-TB

• **Tuberculosis (TB)-** Is the disease that occurs in someone infected with M. tuberculosis having signs or symptoms of TB disease. AKA "active" TB or TB "disease" to distinguish it from TB infection.


• Tuberculosis infection (TBI)- Is a state of persistent immune response to stimulation by M. tuberculosis antigens with no evidence of clinically manifest TB disease. They have no signs or symptoms of TB but are at risk for developing TB disease. AKA "latent TB infection" (LTBI)

• Tuberculosis preventive treatment (TPT)- Treatment offered to individuals who are considered to be at risk of developing TB disease, in order to reduce that risk. [AKA treatment of TBI.]

WHO IS A CONTACT?

HOUSEHOLD CONTACT	CLOSE CONTACT
Shares the same enclosed living space as index TB patient for one or more nights or for frequent or extended daytime periods during the 3 months before the start of current TB treatment.	Not a HHC but shares an enclosed space, such as at a social gathering, workplace, or facility, for extended periods during the day with the index TB patient during the 3 months before the the start of current TB treatment. THIS GROUP WILL BE INCLUDED FOR ALL INTERVENTIONS AS APPLICABLE FOR HHC.

Integrated Algorithm

Regimen, Dosage & Duration

Regimen	Dose by age and weight band
Six months of daily levofloxacin (6Lfx) for contacts of MDR/RR FQ sensitive patients#	Age > 14 years, by body weight: < 45 kg, 750 mg/day; ≥ 45 kg, 1g/day Age < 15 years (range approx. 15–20 mg/kg/day), by body weight: 5–9 kg: 150 mg/day 10–15 kg: 200–300mg/day 16–23 kg: 300–400mg/day 24–34 kg: 500–750mg/day
Four months of rifampicin daily (4R) for contacts of H resistant R sensitive patients*	Age 10 years & older: 10 mg/kg/day (Max-600mg/d) Age <10 years: 15 mg/kg/day (range, 10–20 mg)

	Total duration in months	Expected no. of doses	80% of recommended doses (days)
6Lfx (daily)	6	180	144
4R (daily)	4	120	96

Contraindications for TPT

TPT is contraindicated in the following situations:

- Active TB disease
- Acute or chronic hepatitis
- Concurrent use of other hepatotoxic medications (such as nevirapine)
- Regular and heavy alcohol consumption
- Signs and symptoms of peripheral neuropathy like persistent tingling, numbness and burning sensation in the limbs
- Allergy or known hypersensitivity to any drugs being considered for TPT

Note

Pregnancy or a previous history of TB are not contraindications for TPT

Thank you