

MANAGEMENT OF PULMONARY THROMBOEMBOLISM

ROADMAP:

- CLINICAL VIGNETTE
- ➢ EVALUATION AND ASSESSMENT OF CLINICAL PROBABILITY
- ➢ UTILITY OF D-DIMER
- ➢ UTILITY OF RADIOLOGICAL INVESTIGATIONS
- > MANAGEMENT
- ➤ TREATMENT OPTIONS PHARMACOLOGICAL AND CATHETER BASED MODALITIES
- > SPECIAL SITUATIONS: CANCER/PREGNANCY
- > CONCLUSION

CASE VIGNETTE:

FINDINGS?

ASSESSMENT OF CLINICAL PROBABILITY

Clinical judgement includes signs, symptoms, ECG, chest radiographs Main disadvantage- lacks standardization

Prediction rules

a. Wells score

b. Geneva rule

Wells score

Items Clinical decision rule points		
	Original version ¹	Simplified version ²
Previous PE or DVT	1.5	1
Heart rate >100 b.p.m.	1.5	1
Surgery or immobilization within the past 4 weeks	1.5	1
Haemoptysis	1	1
Active cancer	1	1
Clinical signs of DVT	3	1
Alterative diagnosis less likely than PE	3	1
Clinical probability		
Three-level score		
Low	0-1	N/A
Intermediate	2-6	N/A
High	≥7	N/A
Two-level score		
PE unlikely	0-4	0-1
PE likely	≥5	≥2

Revised Geneva Rule

.

items Cunical decision rule po	
Original version ⁹¹	Simplified version ⁸⁷
3	1
3	1
5	2
2	1
2	1
2	1
3	1
4	1
1	1
0-3	0-1
4-10	2-4
≥11	≥5
0-5	0-2
≥6	≥3
	Cumcat decis Original version ⁹¹ 3 3 3 5 2 2 2 2 2 3 4 1 0 -3 4 -10 ≥ 11 0 -5 ≥ 6

Comparison of the Wells score with the revised Geneva score for assessing suspected pulmonary embolism: a systematic review and meta-analysis

	Sensitivity	Specificity
Wells score	63.8 to 79.3 %	48.8 to 90 %
Revised Geneva score	55.3 to 73.6 %	51.2 to 89 %

Wells score was more effective than the revised Geneva score in determining PE in suspected patients

Shen JH et al. J Thromb Thrombolysis. 2016;41(3):482

- Wells score more accurate than the revised Geneva score for assessing the pretest probability of PE in hospitalized patients
- Revised Geneva score more appropriate for screening tool in ED

INDEX PATIENT:

Items	Clinical decision rule points	
	Original version ¹	Simplified version ²
Previous PE or DVT	1.5	1
Heart rate >100 b.p.m.	1.5	1
Surgery or immobilization within the past 4 weeks	1.5	1
Haemoptysis	1	1
Active cancer	1	1
Clinical signs of DVT	3	1
Alterative diagnosis less likely than PE	3	1
Clinical probability		
Three-level score		
Low	0-1	N/A
Intermediate	2-6	N/A
High	≥7 INTERMEDIATE	N/A
Two-level score		
PE unlikely	0-4	0-1
PE likely	≥5	≥2

PULMONARY EMBOLISM RULE OUT CRITERIA (PERC)

ightarrow Age <50y

≻ HR <100/MIN

- ➢ Oxyhaemoglobin saturation >94%
- ≻ No haemoptysis
- > No oestrogen use
- ≻ No prior DVT or PE
- ≻ No unilateral limb swelling

➤ No surgery/trauma requiring hospitalization within prior 4 weeks

Only valid in low clinical probability

INDEX PATIENT

Values	Result	
СКМВ	<1ng/ml	
MYO	17.6ng/ml	
TnI	0.06ng/ml	
BNP	1800	
DDIM	3000	
Raised D-Dimer and BNP		

D- dimer testing

≻ Highly sensitive D dimer assay (ELISA)

Immuno fluorescence method used in SOB kits

➢ Sensitivity >95 %

 \blacktriangleright Specificity 35 – 40 %

> Normal D-dimer excludes acute PE with either a low or a moderate pre-test probability (rule out)

≻ Not useful for confirmation of PE

Original Investigation

March 19, 2014

Age-Adjusted D-Dimer Cutoff Levels to Rule Out Pulmonary Embolism The ADJUST-PE Study

Marc Righini, MD¹; Josien Van Es, MD, PhD²; Paul L. Den Exter, MD³; et al

- > Multi-center multi-national prospective in 19 centers
- ➢ Outpatients with clinically suspected PTE: 3346
- > Intervention: Age adjusted D-dimer score:(Patient's age x10) μ g/l as new cut-off
- Primary outcome: Failure rate of diagnostic strategy during 3month follow-up
- > Outcome: Larger number of patients >75yrs age could be ruled out with age adjusted D-dimer
- ➤ (6.4% using 500ug/L vs 29.7% using age adjusted variable could be excluded)

Simplified diagnostic management of suspected pulmonary embolism (the YEARS study): a prospective, multicentre, cohort study

Tom van der Hulle, Whitney Y Cheung, Stephanie Kooij, Ludo F M Beenen, Thomas van Bemmel, Josien van Es, Laura M Faber, Germa M Hazelaar, Christian Heringhaus, Herman Hofstee, Marcel M C Hovens, Karin A H Kaasjager, Rick C J van Klink, Marieke J H A Kruip, Rinske F Loeffen, Albert T A Mairuhu, Saskia Middeldorp, Mathilde Nijkeuter, Liselotte M van der Pol, Suzanne Schol-Gelok, Marije ten Wolde, Frederikus A Klok, Menno V Huisman, for the YEARS study group*

Van der Hulle T et al. Lancet. 2017,15;390(10091):289-297

D-dimer cut-offs adapted to clinical probability

CTPA was avoided in 48% of the included patients using this algorithm, compared to 34% if the Wells rule and a fixed D-dimer threshold of 500 ng/mL would have been applied

INDEX PATIENT

CT PULMONARY ANGIOGRAPHY

• FIRST CHOICE DIAGNOSTIC IMAGING MODALITY

SENSITIVITY AND SPECIFICITY OF >90% IN LOW AND INTERMEDIATE

SENSITIVITY INCREASE >96% IN HIGH RISK GROUP

 Contraindicated in patients with history of moderate to severe iodinated contrast allergy or renal insufficiency (eGFR <30 ml/min per 1.73m²)

ORIGINAL ARTICLE

Multidetector Computed Tomography for Acute Pulmonary Embolism

Paul D. Stein, M.D., Sarah E. Fowler, Ph.D., Lawrence R. Goodman, M.D., Alexander Gottschalk, M.D., <u>et</u> for <u>al.</u>, the PIOPED II Investigators* Prospective Investigation On Pulmonary EmbolismDiagnosis (PIOPED) II - sensitivity 83% specificity 96%

PRE-TEST PROBABILITY	NPV	PPV
Low	89%	58%
Intermediate	96%	92%
High	60%	96%

June 1, 2006 N Engl J Med 2006; 354:2317-2327 DOI: 10.1056/NEJMoa052367

CTPA

Advantages

- ≻ Excellent accuracy
- ≻ Low rate of inconclusive results (3-5%)
- May provide alternative diagnosis if PE excluded
- ➤ Short acquisition time

Disadvantages

- ► Radiation exposure
- Exposure to iodine contrast
- ≻ Risks in pregnant and breastfeedingwomen
- ≻ C/I in renal failure
- Clinical relevance of CTPA diagnosis of

subsegmental PE unknown.

Imaging Modality	Strengths	Weakness
V/Q Scan	 Almost no contraindications Relatively inexpensive Strong validation in prospective management outcome studies 	 Not readily available in all centres Interobserver variability in interpretation Results reported as likelihood ratios Inconclusive in 50% of cases Cannot provide alternative diagnosis if PE excluded
Pulmonary Angiography	Historical Gold Standard	 Invasive procedure Not readily available in all centres
Compression USG	>90% sensitivity and >95% specificity for proximal DVT High PPV for PE if proximal positive CUS Useful in cases with CT contraindication-Pregnancy	1/3 cases of PE with neg CUS Operator variability Upper limb DVT occasionally missed Neg CUS doesn't rule out PE

ECHOCARDIOGRAPHY

- Risk stratification
- ✤ Thrombus demonstration: RV/PA
- RV strain or pressure overload (sensitivity and specificity -53% and 61%)
- ✤ Rule out mimics:
- Pericardial tamponade
- Acute valvular dysfunction
- Severe global or regional LV dysfunction
- Aortic dissection

RISK STRATIFICATION AND ASSESSMENT

Pulmonary Embolism Severity Index (PESI)

Parameter	Original version ²²⁶	Simplified version ²²⁹
Age	Age in years	1 point (if age >80 years)
Male sex	+10 points	-
Cancer	+30 points	1 point
Chronic heart failure	+10 points	
Chronic pulmonary disease	+10 points	1 point
Pulse rate ≥110 b.p.m.	+20 points	1 point
Systolic BP <100 mmHg	+30 points	1 point
Respiratory rate >30 breaths per min	+20 points	-
Temperature <36°C	+20 points	
Altered mental status	+60 points	
Arterial oxyhaemo- globin saturation	+20 points	1 point

Risk strata ^a	
Class I: ≤65 points very low 30 day mor- tality risk (0-1.6%) Class II: 66-85 points low mortality risk (1.7-3.5%)	0 points = 30 day mortality risk 1.0% (95% CI 0.0-2.1%)
Class III: 86–105 points moderate mortality risk (3.2–7.1%) Class IV: 106–125 points high mortality risk (4.0–11.4%) Class V: >125 points very high mortality risk (10.0–24.5%)	<pre>≥1 point(s) = 30 day mortality risk 10.9% (95% Cl 8.5 - 13.2%)</pre>

Classification of Severity

Early mortality risk		Indicators of risk			
		Hemodynamic instability	PESI III or IV or sPESI ≥1	RV dysfunction on CTPA or TTE	Elevated troponin levels
High (15-65)%		+	+	+	+
Interne 1: 44 (5, 150()	High	-	+	+	+
Intermediate(5-15%)	Low	-	+	One or none positive	
Low (<1%)		-	-	-	-

Hemodynamic instability : Acute high-risk pulmonary embolism

Cardiac Arrest	Obstructive Shock	Persistent Hypotension
Need for Cardio-pulmonary resuscitation	Systolic BP < 90 mmHg or vasopressors required to achieve a BP >90 mmHg despite adequate filling status	Systolic BP < 90 mmHg or systolic BP drop >_40 mmHg, lasting longer than 15 min and not caused by new-onset
	And	arrhythmia, hypovolemia, or
	End-organ hypoperfusion (altered mental status; cold,	sepsis
	clammy skin; oliguria/anuria; increased serum lactate)	

INDEX PATIENT:

Dx: Intermediate High Risk PTE

- Started on Inj UFH subcutaneous dosing(333U/kg f/b 250U/kg BD)
- ➤ IV fluid-500ml over 1hr
- > Oxygen supplementation
- Close monitoring of vitals

Treatment of Acute PE

4 PILLARS

Hemodynamic and respiratory support

➤ Anticoagulation

> Reperfusion treatment

➢ Vena cava filters

Hemodynamic and respiratory support

> Oxygen therapy and ventilation

- Target $\ge 90\%$
- Severe hypoxemia, hemodynamic collapse or respiratory failure intubation with mechanical ventilation
- Coexistent right heart failure: Prone for hypotension following intubation
- (NIV/HFNC > IMV)

> Pharmacological treatment of RVF

- Small volume of fluids :(500-1000ml); Improves cardiac index
- Vasopressors Nonresponsive to IVF
- Norepinephrine Most frequently used as its effective and less likely to cause tachycardia
- Dobutamine –Increase myocardial contractility

Systemic hypotension which worsen hypotension at low doses
Anticoagulation

Parenteral anticoagulation- LMWH/UFH/Fondaparinux

≻NOACs-

a. Direct thrombin inhibitors: Dabigatran

b. Oral Xa inhibitors: Rivaroxaban, Apixaban, Edoxaban

DEFINITION

- INITIAL ANTICOAGULATION: Administered immediately following VTE
- ANTI-COAGULATION FOLLOWING INITIAL PHASE: Typically administered for finite time period
- EXTENDED ANTICOAGULATION: Beyond typical 3months with scheduled stop date
- INDEFINITE ANTICOAGULATION: Beyond 3months but without scheduled stop date

Drug	Dosing	Advantages
UFH	Subcutaneous: (333units/kg f/b 250units/kgevery 12hrs)IV: Weight Based (80 units/kg f/b 18units/kg/hr)Non-weight Based (bolus 5000 unitsfollowed by 1000units/hr infusion andsubsequent fixed dose adjustments q6 hrly	Can be given in: ➤ Severe renal failure (CrCl < 30ml/min)/ Obesity ➤ Primary Reperfusion treatment imminent
LMWH	ENOXAPARIN – 1mg/kg BD (preferred); alternatively 1.5mg/kg OD can be used DALTEPARIN – 200 units/kg OD	 Duration is longer Fixed dosing is feasible as anti Xa activity correlates well with body weight Laboratory monitoring is not necessary Lower risk of HIT and can be used as outpatient therapy Fewer thrombotic complications, improved thrombus regression, reduced rates of haemorrhage

NOACs

Large phase III clinical trials comparing VKAs with NOACs for acute VTE

- > Non inferiority trials
- Recurrent VTE occurred in 2.0% of NOAC recipients compared with 2.2% in VKA recipients (RR 0.9)
- ≻ Lower risk of bleeding in NOAC (1.1%) as compared to VKA(1.7%) (RR 0.6)

ORIGINAL ARTICLE

Oral Rivaroxaban for Symptomatic Venous Thromboembolism

The EINSTEIN Investigators*

Oral Rivaroxaban for the Treatment of Symptomatic Pulmonary Embolism

The EINSTEIN-PE Investigators*

December 23, 2010 N Engl J Med 2010; 363:2499-2510 DOI: 10.1056/NEJMoa1007903

April 5, 2012 N Engl J Med 2012; 366:1287-1297 DOI: 10.1056/NEJMoa1113572

TRIAL	DOSAGE	COMPARATOR	OUTCOME
EINSTEIN-DVT	15mg BD for 21days f/b 20mg OD	ENOXAPARIN/VKA (3- 6months)	NON-INFERIOR SIMILAR BLEEDING RISK
EINSTEIN-PE	Same	ENOXAPARIN/VKA	NON-INFERIOR SIMILAR BLEEDING RISK
EINSTEIN-Ext STUDY	Same	PLACEBO	SUPERIOR TO PLACEBO HIGHER BLEEDING RISK
EINSTEIN CHOICE STUDY	10mg OD/20mg OD post 6-12months anticoagulation	ASPIRIN 100mg OD	REDUCED VTE RECURRENCE

Dabigatran versus Warfarin in the Treatment of Acute Venous Thromboembolism

Sam Schulman, M.D., Clive Kearon, M.D., Ajay K. Kakkar, M.D., Patrick Mismetti, M.D., <u>et</u> for the RE-COVER Study Group* <u>al.</u>

December 10, 2009

N Engl J Med 2009; 361:2342-2352 DOI: 10.1056/NEJMoa0906598

TICLE

Extended Use of Dabigatran, Warfarin, or Placebo in Venous Thromboembolism

Sam Schulman, M.D., Ph.D., Clive Kearon, M.D., Ajay K. Kakkar, M.B., B.S., Ph.D., Sebastian Schellong, M.D., <u>et</u> for the RE-MEDY and the RE-SONATE Trials <u>al.</u>, Investigators*

February 21, 2013 N Engl J Med 2013; 368:709-718 DOI: 10.1056/NEJMoa1113697

TRIAL	DOSE	COMPARATOR	OUTCOME
RECOVER	150mg BD	(Post 9days heparin) Warfarin/6months	NON INFERIOR EQUAL BLEEDING RISK
RECOVER-II	150mg BD	(Post 9.5 days heparin) Warfarin/6months	NON INFERIOR LESSER BLEEDING RISK
RESONATE	150mg BD	(Post 12 months of approved anticoagulation) PLACEBO	LOWER RECURRENT VTE HIGHER BLEEDING
RE-MEDY	150mg BD	(Post 3 months of approved anticoagulation) Warfarin	NON INFERIOR LESSER BLEEDING RISK

1 :

Oral Apixaban for the Treatment of Acute Venous Thromboembolism

Giancarlo Agnelli, M.D., Harry R. Buller, M.D., Ph.D., Alexander Cohen, M.D., Madelyn Curto, D.V.M., <u>et al.</u>, for the AMPLIFY Investigators*

August 29, 2013 N Engl J Med 2013; 369:799-808 DOI: 10.1056/NEJMoa1302507

:

JOURNAL of MEDICINE

ORIGINAL ARTICLE

Apixaban for Extended Treatment of Venous Thromboembolism

Giancarlo Agnelli, M.D., Harry R. Buller, M.D., Ph.D., Alexander Cohen, M.D., Madelyn Curto, D.V.M., <u>et</u> for the AMPLIFY-EXT Investigators* <u>al.</u>,

February 21, 2013 N Engl J Med 2013; 368:699-708 DOI: 10.1056/NEJMoa1207541

TRIAL	DOSE	COMPARATOR	OUTCOME
AMPLIFY	10mg BD for 7days f/b 5mg BD	ENOXAPARIN(bridge)f/b WARFARIN 6months	NON INFERIOR LESSER BLEEDING RISK
AMPLIFY-EXT	2.5mg BD 5mg BD	PLACEBO	BOTH DOSES NON- INFERIOR SIMILAR BLEEDING RISK

Drug	Target	Peak effect (hours)	Half Life (hours)	Renal clearance (%)	Protein binding (%)	Renal/Hepatic Monitoring	Dosing
Dabigatran	Factor IIa	1.5	14-17	>80	35	Renal	 CrCl>30: 150mg BD CrCl<30: C/I
Apixaban	Factor Xa	3	8-14	25	85	Renal/Hepatic	 CrCl>50: 5mg BD CrCl 30-50: 2.5mg BD CrCl <30: C/I
Rivaroxaban	Factor Xa	2-3	7-11	33	90	Renal/Hepatic	 CrCl>50: 20mg OD CrCl 30-50: 15mg OD CrCl <30: C/I

NOACs AVOIDED

Severe renal failure

➢ Pregnancy and lactation

> APLA syndrome

Mechanical heart valves

> Along with drugs that are strong inhibitors or inducers of P- glycoprotein and/or CYP3A4

van Es N et al. Blood. 2014 ;124(12):1968

Switching Warfarin to NOAC				
Dabigatran		Stop Warfarin, Monitor INR/PT; Start when INR<2		
Apixaban		Stop Warfarin, Monitor INR/PT; Start when INR<2		
Edoxaban		Stop Warfarin, Monitor INR/PT; Start when INR<2.5		
Rivaroxaban		Stop Warfarin, Monitor INR/PT; Start when INR<3		
Switching One NOAC to other				
Any NOAC		Start second NOAC when next dose of first NOAC due		
LMWH Bridge				
Edoxaban/Dabigatran		Overlap between 5-11 days of treatment		
Switching NOAC to Warfarin				
Dabigatran	 Overlap Dabiga Overlap with W	atran with warfarin until INR therapeutic on Warfarin(ASH) Varfarin for 3days(normal RFT)/2days(CrCl 30-50)/1day(15-30)		
Apixaban	 xaban Overlap Apixaban with Warfarin until INR therapeutic and INR testing before next Apixaban Discontinue Apixaban/Parenteral AC bridge with Warfarin 			
Rivaroxaban	 Overlap Rivaro dose Discontinue Ri 	xaban with Warfarin until INR therapeutic and INR testing before next Apixaban varoxaban/Parenteral AC bridge with Warfarin		

INDEX PATIENT:

After 2hrs:

BP: 84/60 500ml NS given over 30 min Oxygen supplementation- VM:0.28 SpO2: 94% Repeat BP: 88/66

Nor-Adrenaline started-(8/50) @ 10mcg/min BP: 90/66

HEMODYNAMIC INSTABILITY

THROMBOLYSIS IN PTE

> Faster improvement : Pulmonary obstruction/Pulmonary artery pressure/Pulmonary vascular resistance

➤ Greatest benefit within the first 48h, but useful for 6-14days

> Associated with a significant reduction of overall mortality in patients with PE (especially high risk PE)

Persistent RV dysfunction, clinical instability: Unsuccessful thrombolysis

> Associated with an increase in severe bleeding and intracranial haemorrhage

Marti C et al. Eur Heart J. 2015 ;36(10):605

Molecule	Regimen	Contraindications to fibrinolysis
Alteplase	100 mg over 2 h (Preferable) 0.6 mg/kg over 15 min (maximum dose	 Absolute ➤ History of haemorrhagic stroke or stroke of unknown origin ➤ Ischaemic stroke in previous 6 month ➤ Central nervous system neoplasm ➤ Major trauma, surgery, or head injury in previous 3 weeks > Active blooding
	50mg)	 Active bleeding Relative TIA in previous 6 months Oral anticoagulation Pregnancy or first post-partum week
Streptokinase	250 000 IU as a loading dose over 30 min, followed by 100 000 IU/h over 12- 24 h	 Traumatic resuscitation Refractory hypertension (systolic BP >180 mmHg) Advanced liver disease Active peptic ulcer

- > Anticoagulation discontinued immediately before and during thrombolytic therapy
- Minor bleeding: Often seen; Not an indication to stop
- Vitals/Hemoglobin monitoring if bleed noted
- Signs of major bleed: Hemodynamic compromise/Mental status/Hb fall/Need for transfusion/Copious bleeding- STOP THROMBOLYTICS
- Paucity regarding reversal- Cryoprecipitate/FFP/Protamine sulfate: Experience not evidence based
- ➢ Re-initiation of anticoagulation after 24hrs, particularly long acting
- IV UFH restarted without bolus, preferably after aPTT is less than twice its upper limit of normal

Fibrinolysis for Patients with Intermediate-Risk Pulmonary Embolism

Guy Meyer, M.D., Eric Vicaut, M.D., Thierry Danays, M.D., Giancarlo Agnelli, M.D., <u>et</u> <u>al.</u>, for the PEITHO Investigators*

Intermediate-Risk Pulmonary Embolism

PEITHO trial

- > Multicenter double blind placebo controlled RCT: 1006 patients were included
- Compared Tenecteplase plus heparin with placebo plus heparin in normotensive patients with intermediaterisk pulmonary embolism
- ➢ Prevented hemodynamic decompensation and collapse (2.6% vs 5.6%)
- ▶ Increased risk of major haemorrhage (6.3% vs 1.2%) & stroke (2.4% vs 0.2%)

LOW DOSE THROMBOLYSIS

• Meta-analysis of five studies (440 patients), three of which compared low dose rt-PA (0.6 mg/kg, maximum 50mg or 50mg infusion 2h) with standard dose (100mg infusion 2h)

• No statistical differences in recurrent PE or all cause mortality between these two groups

• More major bleeding events in standard dose rt-PA group(OR 0.33, 95%CI 0.12-0.91; P=0.94, I(2)=0%)

Zhang Z et al. Thromb Res. 2014;133(3):357

Trial	Study Design	Patient	Intervention	Comparator	Outcome	
MOPPET	Prospective randomized single center open study		Low dose Alteplase + Heparin	Heparin	Outcome: PHTN at 28months Pulmonary Hypertension in Control vs Thrombolysis group(57% vs 16%; p-value<0.001) Lesser duration of hospital stay in Thrombolysis group(2.2 vs 4.9; p- value<0.001) No bleeding in either group/ No significant mortality difference	
TOPCOAT <i>Terminated</i> <i>prematurely</i>	Randomized double blind placebo controlled	Control: 43 Intervention: 40	Tenecteplase + Heparin	Heparin	Outcome: Composite outcome- Death/Circulatory shock/Intubation/major bleeding within 5days; Recurrent PE/poor functionsl capacity at 90day followupAdverse outcome significantly lower with intervention group (15% v 37% p=0.017	
MAPPET-3	Prospective randomized double blind placebo controlled	Control: 138 Intervention:1 18	Heparin+ Alteplase	Heparin	Outcome: In hospital death or clinical deterioration requiring escalate of treatment at end of hospital stay or on day 30 of randomization Rate of primary endpoint lower in intervention group(11% vs 25%, j value: 0.006) Rate of recurrent PE/Bleeding incidence similar	
TIPES	Randomized double blind placebo controlled	Control: 28 Intervention:2 3	Tenecteplase + Heparin	Heparin	Outcome: Reduction of RV dysfunction at 24hrs Reduction of right to left ventricle EDD ratio at 24hrs was 0.31 for Tenecteplase vs 0.10 for placebo(P=0.04)	

CATHETER BASED THERAPIES

Catheter-directed thrombolysis

Ultrasound-assisted catheter-directed thrombolysis

> Rheolytic thrombectomy plus catheter-directed thrombolysis

Combined techniques

CATHETER BASED THERAPIES

≻ INDICATIONS:

- failed systemic thrombolysis
- shock likely to cause death before systemic thrombolysis can take effect
- high risk of bleeding
- Decrease major bleeding including ICH
- ≻ Lower dose used- 24mg tissue plasminogen activator used
- ➤ Higher risk of
 - vascular access-related complications
 - contrast induced nephropathy
- > Reserved for use in centres with appropriate expertise

SURGICAL EMBOLECTOMY

- > INDICATIONS:
- Hemodynamic instability in whom thrombolysis contra-indicated

- Echocardiographic evidence of embolus within patent foramen ovale/right atrium/right ventricle
- Retrospective cohort (257 vs 1854 of thrombolytic therapy):
- No difference between surgical/thrombolysis in 30 day mortality or 5yr survival
- Bleeding risk and recurrent PE higher in thrombolysis group
- > Combination of ECMO with surgical embolectomy in high risk patients
- Limited to large centers-experienced surgeon and cardiopulmonary bypass required

Vena Cava Filters

Classic Indications -

- ✓ Absolute contraindication to anticoagulant treatment
- ✓ Recurrent PTE despite adequate anticoagulation

✓ Failure of Anti-coagulation

Relative Indications-

- Iliocaval DVT or large, free-floating proximal DVT
- Difficulty establishing therapeutic anticoagulation
- Chronic PE treated with thromboendarterectomy
- Poor compliance with anticoagulation
- High risk of complication of anticoagulation (e.g., risk for frequent falls)

Konstantinides SV et al. Eur Heart J. 2020;41(4):543

Original Investigation

April 28, 2015

Effect of a Retrievable Inferior Vena Cava Filter Plus Anticoagulation vs Anticoagulation Alone on Risk of Recurrent Pulmonary Embolism A Randomized Clinical Trial

Patrick Mismetti, MD, PhD^{1,2,3}; Silvy Laporte, MS, PhD^{2,3}; Olivier Pellerin, MD, MSc^{4,5}; et al

Author Affiliations | Article Information JAMA. 2015;313(16):1627-1635. doi:10.1001/jama.2015.3780

- ≻ Randomized, open-label, blinded end point trial
- Primary outcome: Symptomatic recurrent PE at 3months
- Secondary Outcomes: Recurrent PE at 6months/ Symptomatic DVT/Major Bleeding/Death at 3 and 6months/Filter complications
- Use of a retrievable inferior vena cava filter plus anticoagulation compared with anticoagulation alone did not reduce the risk of symptomatic recurrent pulmonary embolism at 3 months
- > Does not support the use of this type of filter in patients who can be treated with anticoagulation.

FREE

OUTPATIENT ANTICOAGULATION

- Meta analysis of 13 studies(n=1657)
- No statistical significance in outpatient vs in-patient treatment in low risk PE
 - Rate of recurrent VTE (1.7 vs 1.2 %)
 - Mortality (1.9 vs 0.74 %)
 - Major bleeding events (0.97 vs 1 %)
- Home treatment or early discharge of selected low-risk patients with PE is as safe as inpatient

treatment

OUTPATIENT ANTICOAGULATION

> Accepted parameters for selecting home treatment:

a. Hestia criteria

b. PESI

≻ No incremental value of NT- proBNP

Konstantinides SV et al. Eur Heart J. 2020;41(4):543

OUTPATIENT ANTICOAGULATION

HESTIA RULE

HEMODYNAMICALLY STABLE ?

THROMBOLYSIS/EMBOLECTOMY NEEDED ?

HIGH RISK OF BLEEDING ?

NEED OF OXYGEN SUPPLEMENTATION ?

PULMONARY EMBOLISM DIAGNOSED DURING ANTICOAGULANT TREATMENT ?

IV PAIN MEDICATION > 24 HRS ?

MEDICAL OR SOCIAL REASON FOR TREATMENT IN HOSPITAL > 24HRS ?

Cr CLEARANCE < 30 ML/MIN ?

SEVERE LIVER IMPAIRMENT ?

PREGNANT ?

DOCUMENTED HIT ?

IF THE ANSWER TO ANY OF THESE QUESTIONS IS YES, THE PATIENT CAN'T BE TREATED AT HOME

Chronic treatment and Prevention of recurrence

 \triangleright Therapeutic anticoagulation for \geq 3 months is recommended for all patients with PE

First PE/VTE secondary to major transient or reversible factors: 3months

Indefinite duration: APLA/ Recurrent PE/Cancer until remission attained

- > Anticoagulation beyond 3 months should be considered
- a. First episode of PE and no identifiable risk factor.
- b. PE associated with persistent risk factor other than APLA.
- c. First episode of PE associated with a minor transient or reversible risk factor

Chronic treatment and Prevention of recurrence

Estimated risk for long term recurrence	Risk factor category for index PE	Examples	
Low (<3%/year)	Major transient or reversible risk factor associated with >10 fold increase risk	 > Surgery with GA >30min > Confined to hospital bed for ≥ 3 days > Trauma with fractures 	Discontinuation of anticoagula
Intermediate (3-8%/ year)	Minor transient or reversible factors associated with ≤10-fold increased risk for (index) VTE	 Minor surgery Duration of hospital stay < 3 days Pregnancy or estrogen therapy Long haul flight 	recommended
	Non malignant persistent risk factors	 > IBD > Active autoimmune disease 	
	No identifiable risk factor		
High (>8%/year)		 Active cancer >_1 episode in absence of a major transient or reversible factor APLA 	

Konstantinides SV et al. Eur Heart J. 2020;41(4):543

t1011

is

Original Investigation

Six Months vs Extended Oral Anticoagulation After a First Episode of Pulmonary Embolism The PADIS-PE Randomized Clinical Trial

Francis Couturaud, MD, PhD; Olivier Sanchez, MD, PhD; Gilles Pernod, MD, PhD; Patrick Mismetti, MD, PhD; Patrick Jego, MD, PhD; Elisabeth Duhamel, MD; Karine Provost, MD; Claire Bal dit Sollier, MB; Emilie Presles, MS; Philippe Castellant, MD; Florence Parent, MD; Pierre-Yves Salaun, MD, PhD; Luc Bressollette, MD, PhD; Michel Nonent, MD, PhD; Philippe Lorillon, PharmD; Philippe Girard, MD; Karine Lacut, MD, PhD; Marie Guégan, MS; Jean-Luc Bosson, MD, PhD; Silvy Laporte, MS, PhD; Christophe Leroyer, MD, PhD; Hervé Décousus, MD; Guy Meyer, MD; Dominique Mottier, MD; for the PADIS-PE Investigators

- > Unprovoked PTE- no major risk factors/known thrombophilia: 371 patients
- Randomized Double blind trial; 14 French Centers
- > 18months treatment and 24 months follow-up with Initial 6months treatment with VKA
- PRIMARY OUTCOME: 6/184 in Warfarin group(3.3%) vs 25/187 in Placebo group(13.5%)
- SECONDARY OUTCOME: 24 month follow-up- 33(20.8%)in Warfarin vs 42(24%) in placebo
- 18month additional treatment reduced composite outcome of recurrent venous thrombosis but benefit not maintained on discontinuation

Choice of Anticoagulation in Cancer

> Indefinite Anticoagulation unless treatment completed/cured/remission

- Meta analysis in 2015 identified 10 RCTs including 3242 cancer patients
- Compared the relative efficacy and safety of LMWH, VKA, and DOAC for the treatment of cancer-associated VTE
- >LMWH emerged as significantly superior to VKA with respect to risk reduction of recurrent VTE.
- Recent CHEST 2021 update: Oral Xa inhibitor (apixaban, edoxaban, rivaroxaban) over LMWH for the initiation and treatment phases of therapy

Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism

Gary E. Raskob, Ph.D., Nick van Es, M.D., Peter Verhamme, M.D., Marc Carrier, M.D., et al., for the Hokusai VTE Cancer Investigators*

February 15, 2018 N Engl J Med 2018; 378:615-624 DOI: 10.1056/NEJMoa1711948

- > Open label non-inferiority trial
- Oral Edoxaban vs Subcutaneous Dalteparin for 6-12months
- Primary Outcome: Composite of recurrent venous thromboembolism or major bleeding during 12 months
- $\{67/522(\text{Edoxaban}) \text{ vs } 71/524(\text{Dalteparin})\}$
- Rate of major bleeding higher especially Upper GI bleed in patients with GI malignancy(6.9% vs 4%) but not statistically significant
- > Non-inferior with respect to bleeding and recurrent thromboembolism

JOURNAL OF CLINICAL ONCOLOGY

Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D)

RAPID COMMUNICATION

Annie M. Young, Andrea Marshall, Jenny Thirlwall, Oliver Chapman, Anand Lokare, Catherine Hill, Danielle Hale, Janet A. Dunn, Gary H. Lyman, Charles Hutchinson, Peter MacCallum, Ajay Kakkar, F.D. Richard Hobbs, Stavros Petrou, Jeremy Dale, Christopher J. Poole, Anthony Maraveyas, and Mark Levine

- <u>Multicenter</u> randomized open label pilot trial
- Dalteparin vs Rivaroxaban for 6months
- VTE recurrence over 6months/ Safety assessment: Major bleeding and Clinically relevant nonmajor bleeding
- VTE recurrence rate was 11% (95% CI, 7% to 16%) with Dalteparin and 4% (95% CI, 2% to 9%) with rivaroxaban (hazard ratio [HR], 0.43; 95% CI, 0.19 to 0.99)
- Major bleeding was 4% (95% CI, 2% to 8%) for Dalteparin and 6% (95% CI, 3% to 11%) for rivaroxaban (HR, 1.83; 95% CI, 0.68 to 4.96).
- CRNMB were 4% (95% CI, 2% to 9%) and 13% (95% CI, 9% to 19%), respectively (HR, 3.76; 95% CI, 1.63 to 8.69).
- Rivaroxaban was associated with relatively low VTE recurrence but higher CRNMB compared with dalteparin.

PREGNANCY AND PTE

- CTPA/CXR: High clinical suspicion
- ► V/Q SPECT : Low fetal and maternal radiation exposure
- > LMWH : Treatment of choice and advised for future pregnancies
- ➢ High Risk PE: Thrombolysis/Surgical Embolectomy
- > Anticoagulant : Continued >6weeks after delivery with minimum overall 3months

INDEX PATIENT:

SUMMARY:

- Unexplained hypoxemia in presence of normal CXR should raise suspicion of pulmonary embolism
- Close Monitoring of Intermediate High risk patients
- > All PTE patients don't require admission-Hestia Criteria
- Algorithmic approach helpful in guiding management
- > NOACs fast becoming the drug of choice
- Clinical Judgement still of paramount importance