TOPICS TO BE DISCUSSED

- Data types
- Statistical significance p value, alpha value and confidence interval
- Parametric and non parametric test
- Normality testing
- Chi Square of association
- Student T test
- Correlation Pearson's Correlation
- Regression Linear and logistic
- Mann Witney U test
- Kaplein Meier test
- Kappa estimate

DATA TYPES

QUANTITATIVE (takes numerical values)

- Discrete (Whole numbers) eg. Number of children

QUALITATIVE (takes coded numerical values)

Ordinal (ranking order exists)
 eg. Pain severity

Continuous (takes decimal places)
 eg. Height and weight

Nominal (no ranking order)
eg. Race, gender

THE P VALUE

- Null hypothesis (H0) The observed result is due to chance
- Alternate hypothesis (H1) The observed result represents the true situation
- P value < 0.05 -Rejects the null hypothesis
- By convention, P is set at 0.05 which means that one accepts a 5% probability of chance

RATIONALE OF STATISTICAL SIGNIFICANCE

• Researchers can never prove any statement as there are infinite alternatives as to why outcome

may have occurred

- Only solution is disproving null hypothesis
- Researcher cannot be 100% certain of outcome even when disproving hypothesis
- Significance level/Alpha level Probability of researcher willing to be incorrect

RATIONALE OF STATISTICAL SIGNIFICANCE

- p value Probability of null hypothesis being true
- Study is statistically significant if p-value is less than pre specified alpha level

CONFIDENCE INTERVAL

- 95% CI –95% probability that true population parameter will be within that interval
- If 95% CI describing the difference between two values includes one then obviously P > 0.05
- 1.28 (95% CI, 1.2 to 1.4) P < 0.05
- 1.28 (95% CI, 0.9 to 1.4) P > 0.05

CONFIDENCE INTERVAL

• Trial with positive result - Focus on lower boundary of confidence interval and determine if

it is greater than the smallest treatment benefit

• Studies with negative result - Examine upper boundary of confidence interval to determine if

this value is lower than the smallest treatment benefit

if confidence interval overlaps smallest treatment benefit that is important to patients, then

study is not definitive and larger study is needed

2 or more independent groups

COURTESY : Prof. RITESH AGARWAL

2 or more dependent groups

PARAMETRIC AND NON-PARAMETRIC TESTS

- Parametric: If normality and homogeneity of variance assumptions satisfied
- Non-Parametric: If above assumptions not satisfied, then equivalent non-parametric test used

PARAMETRIC	NON PARAMETRIC
1 Sample T-test	Sign test/ Wilcoxon Signed Rank test
Paired T-test	Sign test/Wilcoxon Signed Rank test
2 Sample test	Mann Whitney U test/ Wilcoxon Sum Rank test
ANOVA	Kruskal Wallis test

PARAMETRIC TESTS

• 1 Sample T test – Determines whether mean of single variable differs from specified

constant

- 2 Sample T-test Between group comparison
- Paired T test Within group comparison (before and after)

NON PARAMETRIC TESTS

• Sign test – Magnitude of differences between variable and norm is not taken into

consideration. Uses number of positives and negatives of differences. If equal numbers of positives and negatives, then no statistical significance whatever magnitude of positives/negatives

• Wilcoxon Signed Rank test – Uses magnitude of positives/negatives as ranks in calculation of significance

NORMALITY TESTING

• METHODS FOR CHECKING NORMALITY

- GRAPHS – Histogram and Q-Q plots

- Q-Q plots compares quantiles of data distribution with quantiles of standardized theoretical

distribution from specified family of distributions (in this case normal distribution)

NORMALITY TESTING

• METHODS FOR CHECKING NORMALITY

- If distributional shapes differ points will plot along curve instead of line
- To note central portion of line, severe deviations means non-normality
- Deviations at ends of curve signifies existence of outliers

INTERPRETATION

- Three types of Skewness
- Right skew > 0
- Normal skew -0
- Left skew < 0

Skewness ranges from -3 to 3. Acceptable range -1 to 1

Kurtosis – measures peakness of bell curve

- Acceptable range between -1 to 1

FORMAL TESTING OF NORMALITY

Tests of Normality

	Course	Kolmogorov-Smirnov ^a		nov ^a	Shapiro-Wilk			
		Statistic	df	Sig.	Statistic	df	Sig.	
Time	Beginner	.177	10	.200*	.964	10	.827	
	Intermediate	.166	10	.200*	.969	10	.882	
	Advanced	.151	10	.200*	.965	10	.837	

- Tests of normality The Kolmogorov-Smirnov Test and The Shapiro-Wilk Test
- The Shapiro-Wilk Test more appropriate for small sample sizes (< 50 samples), but can also handle sample sizes as large as 2000
- If Sig. value of the Shapiro-Wilk Test > 0.05 normally distributed data
- If < 0.05 significant deviation from normal distribution

FLOWCHART FOR NORMALITY CHECKING

• Small samples (n < 30) – always assume not normal

• Moderate samples (30-100)

If formal test significant, accept non-normality otherwise double check using graphs, skewness and kurtosis to confirm normality

• Large sample (n>100)

If formal test is not significant, accept normality otherwise Double-check using graphs, skewness and kurtosis to confirm non normality

Y H Chan Singapore Med J 2003 Vol 44

CHI-SQUARE TEST FOR ASSOCIATION

- Only for categorical data nominal preferably
- Also known as Chi Square test of Independence
- Tests if 2 categorical variables are associated or statistically independent

CHI-SQUARE TEST OF ASSOCIATION

- Determines association between 2 nominal variables
- Compare observed frequencies in cells to frequencies expected if no association between 2 nominal variables
- Expected frequencies predicted on basis of no association

CHI-SQUARE TEST OF ASSOCIATION

• Greater difference in observed and expected frequencies, greater association between 2

nominal variables

- Tests overall amount of difference between expected and observed frequencies
- Larger difference, greater association and more likely statistically significant result

ASSUMPTIONS

- Assumption 1 Two categorical variables
- Assumption 2 Independence of observations means no relationship between observations in groups of categorical variables or between groups themselves
- Assumption 3 All cells should have expected counts greater than five

EXAMPLE

• Researcher knows that in general population of active individuals, males tend to engage in

competitive sports whilst females prefer non-competitive sport/exercise

- Researcher would like to investigate whether this is case for males and females that are currently enrolled in Exercise Science degree course
- They asked 25 males and 25 females whether they predominately participate in competitive sport or non-competitive sport/exercise

			comp		
			yes	no	Total
gender	male	Count	18	7	25
		Expected Count	14.0	11.0	25.0
		% within gender	72.0%	28.0%	100.0%
		% within comp	64.3%	31.8%	50.0%
		% of Total	36.0%	14.0%	50.0%
fem	female	Count	10	15	25
		Expected Count	14.0	11.0	25.0
		% within gender	40.0%	60.0%	100.0%
% with		% within comp	35.7%	68.2%	50.0%
		% of Total	20.0%	30.0%	50.0%
Total		Count	28	22	50
		Expected Count	28.0	22.0	50.0
		% within gender	56.0%	44.0%	100.0%
		% within comp	100.0%	100.0%	100.0%
		% of Total	56.0%	44.0%	100.0%

- All expected cells having frequencies greater than 5, Chi Square test can be used
- If any cell having cell frequency less than 5, we need to use Fischer exact test for interpretation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	5.195 ^a	1	.023		
Continuity Correction ^b	3.977	1	.046		
Likelihood Ratio	5.295	1	.021		
Fisher's Exact Test				.045	.023
Linear-by-Linear Association	5.091	1	.024		
N of Valid Cases	50				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 11.00.

b. Computed only for a 2x2 table

2 x 2 crosstabulation (i.e., where both variables are dichotomous - only have two categories), can choose to use result of either chi-square test for association ("Pearson Chi-Square" row) or Fisher's Exact test ("Fisher's Exact Test" row)

If one or both of your variables has more than two categories, Fisher's Exact test cannot be used

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	5.195 ^a	1	.023		
Continuity Correction ^b	3.977	1	.046		
Likelihood Ratio	5.295	1	.021		
Fisher's Exact Test				.045	.023
Linear-by-Linear Association	5.091	1	.024		
N of Valid Cases	50				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 11.00.

b. Computed only for a 2x2 table

When one or more expected cell frequencies less than five, Fisher's Exact test for small sample size

CONCLUSION

- Chi-square test for association conducted between gender and preference for performing competitive sport
- All expected cell frequencies greater than five
- There was statistically significant association between gender and preference for performing

competitive sport p = .023

STUDENT'S T-TEST

• Also known as Independent t-test, Independent measures t-test, Between-subjects t-test,

Unpaired t-test and Student's t test

- To determine if difference exists between means of two independent groups on continuous dependent variable
- Cases are taken from much larger populations and interest is in these populations

STUDENT'S T-TEST

- Independent-samples t-test determines whether difference exists between two group means in
 - population
- Independent-samples t-test tests whether it is likely that the population means of the groups

are different, not just the sample means

ASSUMPTIONS

- Assumption 1 One dependent variable measured at continuous level
- Assumption 2 One independent variable consisting of two categorical, independent groups (i.e., dichotomous variable)
- Assumption 3 Independence of observations

ASSUMPTIONS

- Assumption 4 No significant outliers in two groups of independent variable in terms of dependent variable
- Assumption 5 Dependent variable should be approximately normally distributed for each group of independent variable
- Assumption 6 Homogeneity of variances (i.e., variance of dependent variable is equal in each group of independent variable)

SAMPLE SIZE AND (UN)BALANCED DESIGNS

- Participants in each group ≥ 6
- BALANCED DESIGN same number of participants in each group
- UNBALANCED DESIGN unequal number of participants in each group

STUDY DESIGN

Check data meets Assumption 1, 2, 3

SPSS DESIGN

Set up 2 variables using variable view and data in data view

Using SPSS check Assumption 4 (outliers) and 5 (normality) simultaneously. Boxplot to check whether outliers in independent groups

Shapiro – Wilk test if dependent variable normally distributed for each dependent variable

After analyzing boxplot, (a) need to assess whether any outliers (b) remove or alter any of them (c) proceed anyways

Results from Shapiro-Wilk test for dependent variable, if normally distributed for each group of independent variable

If YES – Run Independent Samples T test

If NO – Mann-Whitney U test

EXAMPLE

- Advertising Agency commissioned to create TV advert to promote new product
- Company wants to know whether way that men and women engage with TV advert is the

same

- TV advert is shown to 20 men and 20 women, who are then asked to fill in questionnaire that measures their engagement with advertisement
- Questionnaire provides overall engagement score

ASSUMPTION 4

• Any data points more than 1.5 box-lengths from edge of their (brown-yellow) box are

classified by SPSS Statistics as outliers - circular dots

- Any data points that are more than 3 box-lengths away from the edge of their box are classified as extreme points (i.e., extreme outliers) asterisk (*)
- Both types of outliers are labelled with their case number row number in the Data View window for easy identification

ASSUMPTION 4

• No significant outliers in two groups of independent variable in terms of dependent variable

ASSUMPTION 6

- HOMOGENEITY OF VARIANCES –
- Means two group's variances equal in population
- Failure to adhere to this assumption increase chance of making Type I error

Descriptives

	gender			Statistic	Std. Error
engagement	Male	Mean		5.5589	.06527
		95% Confidence Interval for Mean	Lower Bound	5.4223	
			Upper Bound	5.6955	
		5% Trimmed Mean		5.5613	
		Median		5.5725	
		Variance		.085	
		Std. Deviation		.29190	
		Minimum		5.00	
		Maximum		6.08	
		Range		1.08	
		Interquartile Range		.46	
		Skewness		.028	.512
		Kurtosis		619	.992
	Female	Mean		5.2999	.08797
		95% Confidence Interval for Mean	Lower Bound	5.1158	
			Upper Bound	5.4840	
		5% Trimmed Mean		5.3060	
		Median		5.3338	
		Variance		.155	
		Std. Deviation		.39339	
		Minimum		4.55	
		Maximum		5.94	
		Range		1.39	
		Interquartile Range		.59	
		Skewness		394	.512
		Kurtosis		719	.992

Check "Sig." column located under "Levene's Test for Equality of Variances" column

If population variance of both groups equal, p-value greater than 0.05 (i.e., p > .05), indicate that assumption of

homogeneity of variances had met

p-value less than 0.05 (p < .05), population variances are unequal and assumption of homogeneity of variances

violated

Independent Samples Test

Levene's Test for Equality of Variances					t-test for Equality	of Means				
							Mean	Std. Error	95% Confidenc Differ	e Interval of the ence
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
engagement	Equal variances assumed	5.555	.024	2.282	38	.028	.23438	.10271	.02644	.44231
	Equal variances not assumed			2.282	31.199	.029	.23438	.10271	.02494	.44381

- Levene's test returns statistically significant result (i.e., p = .024, which is p < .05)
- Assumption of homogeneity of variances is violated
- Referred to as heterogeneity of variances
- In this case need to use modified t-test is often referred to as the Unequal variance t-test, separate

Variances t-test, or the Welch t-test

2				Independe	nt Samples	Test					
		Levene's Test f Varian	or Equality of Ices			2.5		t-test for Equality	ofMeans		
								Mean	Std. Error	95% Confidence Differe	e Interval of the ence
		F	Sig.	t	df	Sig. (2-ta	ailed)	Difference	Difference	Lower	Upper
engagement	Equal variances assumed	1.922	.174	2.365	38		.023	.25900	.10954	.03726	.48074
	Equal variances not assumed			2.365	35.055		.024	.25900	.10954	.03664	.48136
								Use this	row if you have	e met the	

assumption of homogeneity of variances

Independent Samples Test

		Levene's Test Varia	for Equality of nces		t-test for Equality of Means					
							Mean	Std. Error	95% Confidenc Differ	e Interval of the ence
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
engagement	Equal variances assumed	1.922	.174	2.365	38	.023	.25900	.10954	.03726	.48074
	Equal variances not assumed			2.365	35.055	.024	.25900	.10954	.03664	.48136

Information on the mean difference between your two groups including likely ranges of the mean difference

	Part	Meaning	Column in Table
1	t	Indicates that we are comparing to a <i>t</i> -distribution (<i>t</i> -test).	
2	(38)	Indicates the degrees of freedom, which is $N - 2$	df
3	2.365	Indicates the obtained value of the <i>t</i> -statistic (obtained <i>t</i> -value)	t
4	p = .023	Indicates the probability of obtaining the observed <i>t</i> -value if the null hypothesis is correct.	Sig. (2-tailed)

CONCLUSION

• Independent-samples t-test run to determine if there were differences in engagement to an

advertisement between males and females

• Advertisement more engaging to male viewers (5.56 \pm 0.29) than female viewers (5.30 \pm

0.39), statistically significant difference of 0.26 (95% CI, 0.04 to 0.48), p = 0.023

• Advertising company concluded mean difference of 0.26 was of little practical importance

REGRESSION AND CORRELATION

- Correlation and regression are used to describe the relationship between two numerical variables
- Correlation is a measure of association
- Spearman rank order (rho) is a non-parametric version of the Pearson correlation coefficient

- Regression is used for prediction
- $-y = a + bx1 + cx2 + \dots$

PEARSON'S CORRELATION

- To determine strength and direction of linear relationship between two continuous variables
- Pearson correlation coefficient, denoted as r
- High correlation does not give evidence to make cause and effect statement

ASSUMPTIONS

- Assumption 1- Two variables should be measured on continuous scale (i.e., measured at interval or ratio level)
- Assumption 2 Two continuous variables should be paired, each case (e.g., each participant) has two values: one for each variable
- Assumption 3 Needs to be linear relationship between the two variables

Plot scatterplot and visually inspect graph

- Assumption 4 No significant outliers
- Assumption 5 Assumption of bivariate normality

• Assumption 5 Bivariate Normality required for statistical significance of Pearson's

correlation coefficient

- Practically, difficult to assess
- Property of bivariate normality if bivariate normality exists, both variables will be normally distributed
- Does not work in reverse; two normally distributed variables do not mean you have bivariate normality

NEGATIVE INFLUENCE ON VALUE OF CORRELATION COEFFICIENT

OUTLIERS RESULTS IN VALUE OF PEARSON'S CORRELATION COEFFICIENT BEING UNDULY ALTERED, EXERTING

PEARSON'S CORRELATION IS SUSCEPTIBLE TO OUTLIERS

INTERPRETATION

• Pearson's correlation coefficient value (rs or ρ) - measure of strength and direction of

association between variables

• Coefficient of determination - Proportion of variance in one variable that is "explained" by other variable and calculated as square of correlation coefficient (r²)

INTERPRETATION

• Closer correlation coefficient to zero, weaker the association, and closer the correlation

coefficient to +1 or -1, stronger the association

• If p < .05 achieving statistically significant Pearson's correlation means less than 5% chance

that strength of correlation coefficient happened by chance if null hypothesis were true

-		
COTTO	211010	
COLLE	auon	

		time_tv	cholesterol
time_tv	Pearson Correlation	1	.371
	Sig. (2-tailed)		.000
	N	100	100
cholesterol	Pearson Correlation	.371	1
	Sig. (2-tailed)	.000	
	Ν	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Row name	Row meaning
Pearson Correlation	Pearson's correlation coefficient, <i>r</i> .
Sig. <mark>(2-</mark> tailed)	Two-tailed significance value (<i>p</i> -value) of the correlation coefficient.
Ν	Number of paired observations (e.g., participants included in correlation). In other words, the sample size.

Correlation Coefficient value	Strength of linear relationship
At least 0.8	Very strong
0.6 up to 0.8	Moderately strong
0.3 to 0.5	Fair
Less than 0.3	Poor

PEARSON'S PARTIAL CORRLEATION

• Determine strength and direction of linear relationship between two continuous variables,

whilst partialling out one or more continuous variables often called covariates

• Allows us to control for another continuous variable, called covariate, related to other two continuous variables

LINEAR REGRESSION

- Also known as Bivariate linear regression
- Dependent variable outcome, target or criterion variable
- Independent variable predictor, explanatory or regressor variable

LINEAR REGRESSION

- Outcome of interest is a continuous variable
- Numerous (continuous and categorical) variables can be included in the equation
- The specific effect on individual variables on outcome can be adjusted according to the presence of other variables
- Simple linear regression assesses linear relationship between two continuous variables to predict value of dependent variable based on value of independent variable

USE OF LINEAR REGRESSION

- Determine change in dependent variable for a one unit change in independent variable
- Determine how much of variation in dependent variable is explained by independent variable
- Predict new values for dependent variable given independent variable

LINEAR REGRESSION

- Assumption 1 One dependent variable measured at continuous level
- Assumption 2 One independent variable measured at continuous level
- Assumption 3 Linearity

Checked by plotting scatterplot

STUDY DESIGN

Check data meets Assumption 1, 2, 3

Set up 2 variables using variable view and data in data view

Using SPSS check Assumption 3 (linearity)

Assess for Assumption 4 (Independence of observations), Assumption 5 (Outliers), Assumption 6 (Homoscedasticity) Assumption 7 (Normality) (tested with histogram or Normal P-P plot)

Results from case diagnostics for outliers, inspect scatterplot using standardized residuals and assess variances along line of best fit remain similar moving along line – testing assumption of homoscedasticity

If YES – Run analysis

Laerd Statistics (2015). Statistical tutorials and software guides

DEALING WITH OUTLIERS

- OUTLIERS Observed value of dependent variable is very different to its predicted value
- ISSUES:
- Detrimental effect on regression equation and statistical inferences
- large effect on variability of residuals, leading to problems with normality or

homoscedasticity

DEALING WITH OUTLIERS

- Significant effect on line of best fit (regression line)
- Casewise Diagnostics table highlights any cases where that case's standardized residual is

greater than ± 3 standard deviations

Casewise Diagnostics^a

Case Number	Std. Residual	Cholesterol concentration	Predicted Value	Residual
91	4.059	7.98	5.7977	2.18233

a. Dependent Variable: Cholesterol concentration

TESTING FOR HOMOSCEDASTICITY

- Variance of errors (residuals) is constant across all values of independent variable
- Homoscedasticity the residuals (errors of prediction) Equal across standardized predicted

(i.e., fitted) values - Points of plot above will exhibit no pattern and will be approximately

constantly spread across the fitted values

NORMALITY OF RESIDUALS

Checking for normality of residuals – the Histogram and the Normal P-P Plot

TESTING FOR HOMOSCEDASTICITY

• Heteroscedasticity - if residuals are not evenly spread, but differ in height (e.g., a funnel shape)

DETERMINING HOW WELL THE MODEL FITS

- To determine whether linear regression model is good fit for data
- Percentage (or proportion) of variance explained
- Statistical significance of overall model
- Precision of predictions from regression model

PERCENTAGE OF VARIANCE EXPLAINED

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	.359ª	.129	.120	.49100	1.913

b. Dependent Variable: Cholesterol concentration

R- Multiple Correlation Coefficient

In simple linear regression – only one independent variable, so R – Pearson's correlation coefficient Measure of strength of association between two variables

The R^2 value represents proportion of variance in dependent variable that can be explained by independent variable Adjusted R^2 - Percentage of variation explained by model in population

STATISTICAL SIGNIFICANCE OF MODEL

ANOVA^a

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3.470	1	3.470	14.395	.000 ^b
	Residual	23.385	97	.241		
	Total	26.856	98			0

a. Dependent Variable: Cholesterol concentration

b. Predictors: (Constant), Time in minutes spent watching TV

Regression model is statistically

significant, p < .05

Indicating statistically significant linear

relationship

Column name	Column meaning				
F	Indicates that we are comparing to an <i>F</i> -distribution (<i>F</i> -test).				
1 in (1, 97)	Indicates the regression (aka model) degrees of freedom ("df").				
97 in (1, 97)	Indicates the residual (aka error) degrees of freedom ("df").				
14.40	Indicates the obtained value of the F-statistic (obtained F-value).				
p < .0005	Indicates the probability of obtaining the observed <i>F</i> -value if the null hypothesis is true.				

EXAMPLE

• Researcher decided to determine if cholesterol concentration related to time spent watching

TV in otherwise healthy 45 to 65 year old men (at-risk category of people)

- They believed that there would be positive relationship: more time people spent watching TV, greater their cholesterol concentration.
- Researcher also wished to be able to predict cholesterol concentration and to know proportion of cholesterol concentration that time spent watching TV could explain

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for B	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	944	1.677		563	.575	-4.272	2.383
	Time in minutes spent watching TV	.037	.010	.359	3.794	.000	.018	.056

a. Dependent Variable: Cholesterol concentration

$$\mathbf{Y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{X} + \boldsymbol{\varepsilon}$$

 β_0 is intercept (also known as intercept or constant), β_1 is slope parameter (also known as the

slope coefficient), and ε represents the errors

Value of intercept denoted "(**Constant**)" column under the "**B**" column

Its value of dependent variable when the independent variable is zero

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for B	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	944	1.677		563	.575	-4.272	2.383
	Time in minutes spent watching TV	.037	.010	.359	3.794	.000	.018	.056

a. Dependent Variable: Cholesterol concentration

Major point of interest - slope coefficient represents the change in the dependent variable for a

one unit change in the independent variable

95% confidence intervals reported in "Lower Bound" and "Upper Bound" columns found

under "95% Confidence Interval for B" column

If p <. 05, slope coefficient is statistically significant relating to linear relationship in

population

- From above table we generate regression equation, by using intercept and slope
- This scatterplot can be used to plot dependent variable against independent variable, as well as fitting "line of best fit"

RESULTS

• Linear regression established that daily time spent watching TV could statistically

significantly predict cholesterol concentration, p < .0005

- Time spent watching TV accounted for 12.9% of the explained variability in cholesterol concentration
- Regression equation: predicted cholesterol concentration = -0.944 + 0.037 x (time spent watching tv)

TESTS OF STATISTICAL SIGNIFICANCE

KAJAL ARORA

06.08.21

ENROLLMENT

Specimen Name: CASE-12										
	CD64 PE-A									
Population	Min	Max	Mean	Median	SD	%CV				
Monocytes	186	53,259	20,477	19,626	6,282	30.7				
Lymphocytes	-252	35,330	82	66	676	829.2				
📕 Granulocytes	-107	28,549	2,298	1,892	1,757	76.4				

H	চ -	e - 🖇 -	Ŧ		Quantibrite	e curve fitting (1)	- Excel (Produc	ct Activation Fail	ed)					Ā	- 6	7 7	ĸ
File	Hon	ne Insert Page	e Layout Formulas	Data Review View	Acrobat 🕻	Tell me what yo	ou want to do									$\beta_{\!+}$ Share	e
Paste	X Cut È Copy ✓ Forma Clipboard	at Painter	• 11 • A A U • • • & • A • Font 5		Wrap Text	General er • \$ • % • 5 Numbe	€.0 .00 .00 →.0 Fo	onditional Form rmatting ← Tab Styles	nat as Cell ole - Styles -	Insert Delete	Format	∑ AutoSur ↓ Fill - Clear -	m • A Sort & Filter • Editing	P Find & Select ▼			^
14		• : × <	fx														۷
1 2 2	A	В	C	D	E	F G	H		J	K L		M	N	0	Р	Q	
5 Da 5 Da 6 7	ite	Quantibrite Bead Bead Type Low Bead Low-Mid	<mark>I Lot: 60560 PE Mol./Bead (X)</mark> 474 5359	Expiry:29/02/2015 PE Median (Y) 531 6001													-
8 9 10		Mid-High High Bead	23843 62336	26029 72595	80000 70000)				y =	1.1659x -	- 531.3		-			
11 m 12 m 13 c		Date Received fro Slope ('m') Intercept ('c')	om Curve Fitting 1.167 -104.14	1.165947949 -531.30067	50000 40000)					♦ Ser	ries1		80000 70000 60000 50000			
15 y= 16 17 18	m*x+c				30000						— Lin	ear (Series1)	40000 30000 20000 10000	- 6001 531	2602	
19 20 21					10000		20000 300	000 40000	50000 600	00 70000				0	0	20000	•
<	S	Sheet1 Sheet2	Sheet3 +						•							•	<u> </u> •

🔄 *sepsis new.sav [DataSet1] - IBM SPSS Statistics Data Editor

27847.66037735849

File Edit View Data Transform Analyze Direct Marketing Graphs Utilities Add-ons Window

<u>H</u>elp

ABS

- 0 X

😑 🗄 🖨 🛄 🗠 🛥 📓 🎼 🚔 👫	👪 🔛 🔚 🐴 🦳
---------------------	-----------

1: mHLADRABC	
--------------	--

Visible: 12 of 12 Variables

	csno	GRP	Group	Patientname	MFInCD64	MFImHLADR	MFIIyCD64negctI	MFInHLADRn	Outcome	nCD64ABC	mHLADRABC	SepsisIndex	var	var	
								egctl					VGI	VCII	
1	51	1	3	RAVI	583	27392	78	268	1	1039	27848	.0373			4
2	52	1	3	SANDEEP	703	30054	68	219	1	1159	30510	.0380			
3	53	1	3	MUNISH	393	35338	70	248	1	849	35794	.0237			
4	54	1	3	GURJEET	506	33650	68	177	1	962	34106	.0282			
5	55	1	3	ANKIT	1678	35485	69	288	1	2134	35941	.0594			
6	56	1	3	ANKUR	722	46648	69	324	1	1178	47104	.0250			
7	57	1	3	GURPREET	383	28452	63	385	1	839	28908	.0290			
8	58	1	3	NARESH	2013	25734	68	380	1	2469	26190	.0943			
9	59	1	3	SUKHVIR	349	47938	75	447	1	805	48394	.0166			
10	60	1	3	DALJEET	243	17731	79	209	1	699	18187	.0384			
11	61	1	3	SIMRAN	462	17705	68	560	1	918	18161	.0505			
12	62	1	3	SONU	354	12629	79	232	1	810	13085	.0619			
13	63	1	3	JATINDER	437	19661	71	177	1	893	20117	.0444			
14	64	1	3	SUNIL	392	14192	78	177	1	848	14648	.0579			
15	65	1	3	SUKHCHAIN	1360	39777	80	178	1	1816	40233	.0451			
16	66	1	3	GURMUKH	150	22006	63	176	1	606	22462	.0270			
17	67	1	3	DILLA	270	22502	60	170	1	726	22958	.0316			
18	68	1	3	AMANPREET	277	27600	70	369	1	733	28056	.0261			
19	69	1	3	ANKIT	655	28335	67	223	1	1111	28791	.0386			
20	70	1	3	GURPREET	194	26959	83	222	1	650	27415	.0237			-
	4									A DESCRIPTION OF THE PARTY OF T					

Data View Variable View

🤹 sepsis new.sav [DataSet1] - IBM SPSS Statistics Data Editor

_	đ	X

<u>Eile Edit</u>	<u>V</u> iew <u>D</u> ata	Transform	Analyze (Direct <u>M</u> arketi	ing <u>G</u> raphs <u>U</u>	tilities Add- <u>o</u> n	is <u>W</u> indow	Help				
			× 🎬							446		
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role	
1	csno	Numeric	11	0		None	None	11	■ Right	Scale Scale	🔪 Input	4
2	VAR00004	Numeric	11	0	Group	{1, Other Pa	None	18	■ Right	🗞 Nominal	🔪 Input	
3	Group	Numeric	11	0		{1, Septic P	None	18	■ Right	\delta Nominal	🔪 Input	
4	Serial#	String	22	0	Serial #	None	None	22	E Left	🚴 Nominal	🔪 Input	
5	Patientname	String	10	0	Patient name	None	None	10	📰 Left	🚴 Nominal	🔪 Input	
6	MFInCD64	Numeric	11	0	MFI nCD64	None	None	11	■ Right	Scale 🔗	🔪 Input	
7	MFImHLADR	Numeric	11	0	MFI mHLA-DR	None	None	11	🗃 Right	Scale Scale	🔪 Input	
8	MFIlyCD64n	Numeric	11	0	MFI lyCD64(ne	None	None	11	■ Right	🛷 Scale	🔪 Input	
9	MFInHLAD	Numeric	11	0	MFI nHLA-DR (None	None	11	Right	🔗 Scale	🔪 Input	
10	Outcome	Numeric	11	0		{1, Recover	None	9	Right	\delta Nominal	🔪 Input	
11	nCD64ABC	Numeric	8	0		None	None	10	■ Right	Scale 8	🔪 Input	
12	mHLADRABC	Numeric	8	0		None	None	11	🗏 Right	Scale Scale	🔪 Input	
13	SepsisIndex	Numeric	8	4		None	None	13	■ Right	Scale Scale	🔪 Input	
14												
15												
16												
17												
18												
19												
20												
21												
22												-
	1	1										4

🔄 *sepsis new.sav [DataSet1] - IBM SPSS Statistics Data Editor

ile <u>E</u> dit	View Data Trans	nsform	Analyze Direct Marketing Graphs	Utilit	ies Add- <u>o</u> ns <u>W</u> ind	ow <u>H</u> e	llp						
		0 0	Reports			5		20	ABC				
u.			Descriptive Statistics	•	Erequencies		1		v				
15 :			Custom Tables		Descriptives							Visible: 12 of	12 Variables
	csno	GRP	Compare Means	,	A Explore	negctl I	MFInHLADRn eactl	Outcome	nCD64ABC	mHLADRABC	SepsisIndex	var	var
1	51	1		1	🐺 <u>C</u> rosstabs	78	268	1	1039	27848	.0373		4
2	52	1	Generalized Linear Models	1	TURF Analysis	68	219	1	1159	30510	.0380		
3	53	1	MIXed Models		Ratio	70	248	1	849	35794	.0237		
4	54	1	Correlate		P-P Plots	68	177	1	962	34106	.0282		
5	55	1	Regression			69	288	1	2134	35941	.0594		
6	56	1	Loglinear		40040	69	324	1	1178	47104	.0250		
7	57	1	Neural Networks		28452	63	385	1	839	28908	.0290		
8	58	1	Classify		25734	68	380	1	2469	26190	.0943		
9	59	1	Dimension Reduction		47938	75	447	1	805	48394	.0166		
10	60	1	Scale	•	17731	79	209	1	699	18187	.0384		
11	61	1	Nonparametric Tests		17705	68	560	1	918	18161	.0505		
12	62	1	Forecasting	*	12629	79	232	1	810	13085	.0619		
13	63	1	Survival		19661	71	177	1	893	20117	.0444		
14	64	1	Multiple Response	•	14192	78	177	1	848	14648	.0579		
15	65	1	Missing Value Analysis		39777	80	178	1	1816	40233	.0451		
16	66	1	Multiple Imputation		22006	63	176	1	606	22462	.0270		
17	67	1	Complex Samples	•	22502	60	170	1	726	22958	.0316		
18	68	1	Simulation		27600	70	369	1	733	28056	.0261		
19	69	1	Quality Control	•	28335	67	223	1	1111	28791	.0386		
20	70	1	ROC Curve		26959	83	222	1	650	27415	.0237		*
	4	and the second	Contine and Temporal Madeline		Contraction of the				and a second second				
Data View	Variable View		Spauar and Temporal Modeling										
Dute the W			IBM SPSS Amos										

Frequencies...

😫 *sepsis new.sav [DataSet1] - IBM SPSS Statistics Data Editor

<u>Eile</u> Edi	t <u>V</u> iew <u>D</u> ata <u>I</u>	ransform	n <u>A</u> nalyze	Direct Marketing	Graphs	Utilities	Add-ons	Window Help							
			PES -			011	PTT F				E.				
		-	Frequenci	ies						Х	-				
15:							Variable(s);							Visible: 12 of	12 Variables
	csno	GF	🔗 csno 💰 Group [[GRP]			MFI nCl	D64 [MFInCD64] LA-DR [MFImHLADI	ર]	<u>Charts</u>	64ABC	mHLADRABC	SepsisIndex	var	var
1	51	1	💑 Group				nCD64	ABC		Eormat	1039	27848	.0373		4
2	52	2	Patient	name [Patientname]			MHLAD	RABC		Style	1159	30510	.0380		
3	53	3	MEL OLU	D64(neg ctl) [MFIIyCD	64negcti]		Sepsis	ndex		Restation	849	35794	.0237		
4	54	1	A Outcom	LA-DR (neg cii) (MFini ne	LADRIE					Ecotstrap	962	34106	.0282		
5	55	5									2134	35941	.0594		
6	56	5				_					1178	47104	.0250		
7	57	7				*					839	28908	.0290		
8	58	3				_					2469	26190	.0943		
9	59)									805	48394	.0166		
10	60)									699	18187	.0384		
11	61	1									918	18161	.0505		
12	62	2									810	13085	.0619		
13	63	3									893	20117	.0444		
14	64	1									848	14648	.0579		
15	65	5								J.	1816	40233	.0451		
16	66	5	Display f	frequency tables							606	22462	.0270		
17	67	7				Pacta	Reset Ca	ncel Hein			726	22958	.0316		
18	68	3				dote	Teser	incer ineip			733	28056	.0261		
19	69	9	1	3 ANKIT	6	55	28335	67	223	1	1111	28791	.0386		
20	70)	1	3 GURPREET	1	94	26959	83	222	1	650	27415	.0237		-
	4			The second second second											Þ

🔄 *sepsis new.sav [DataSet1] - IBM SPSS Statistics Data Editor

<u>File Edit</u>	<u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> na	lyze Direct Marketing	<u>G</u> raphs <u>U</u> tilities	Add-ons y	Vindow <u>H</u> elp							
		P198 1 IIII	8.8 81		N. PTTT			6				
15	Frequencies: Statistics		×				0				Visible: 12 of 1	12 Variables
	Percentile Values	Central Tend	lency	Variable(s):	[MFInCD64]		Statistics	64ABC	mHLADRABC	SepsisIndex	var	var
1	Cut points for: 10 equ	al groups 📝 Median		MFI mHLA-	DR [MFIMHLADR]		Eormat	1039	27848	0373		
2	Percentile(s):	Mode		MHLADRA	BC		Eonnar	1159	30510	0380		
3		Sum		🔗 SepsisInde	9X		Style	849	35794	.0237		
4							Bootstrap	962	34106	.0282		
5	Gnange							2134	35941	.0594		
6	Remove							1178	47104	.0250		
7								839	28908	.0290		
8		📃 🔲 Vaļues are	group midpoints					2469	26190	.0943		
9	Dispersion	Distribution						805	48394	.0166		
10	Std. deviation 🖌 Minimum	Skewnes	S					699	18187	.0384		
11	📃 Variance 🛛 🗹 Maximum	Kurtosis						918	18161	.0505		
12	Range S.E. mean							810	13085	.0619		
13								893	20117	.0444		
14	Continue	Cancel Help						848	14648	.0579		
15	65							1816	40233	.0451		
16	66 🗹 Disp	lay frequency tables						606	22462	.0270		
17	67		OK Pasta	Pasat Cance	Help			726	22958	.0316		
18	68		Laste	Gance	a) Create			733	28056	.0261		
19	69 1	3 ANKIT	655	28335	67	223	1	1111	28791	.0386		
20	70 1	3 GURPREET	194	26959	83	222	1	650	27415	.0237		
	4		- Hereiter					_				
Data View	Variable View						IBM	SPSS Statist	cs Processor is rea	ady Ur	nicode:ON	
م 🖿	Type here to search	H i	I 🧿 📄	will ki)			🗢 32°C \land l	. 🧑 📼 <i>(</i> i.	(小) 2:48 PM (小) 8/5/202	1 🖏

😫 *sepsis new.sav [DataSet1] - IBM SPSS Statistics Data Editor

<u>Eile</u> Edit	<u>View D</u> ata <u>T</u> r	ransfor	m <u>A</u> nalyze D	Direct <u>M</u> arketing	Graphs	Utilities	Add- <u>o</u> ns <u>V</u>	(indow <u>H</u> elp							
		C	PT-28					N. 1999			6				
		_	Frequencies							X					
15:							Variable(s):			Ototictics				Visible: 12 of	12 Variables
	csno	GF	CSN0	7			MFI nCD64	[MFInCD64] DR [MFImHLAD	RI	<u>Charts</u>	64ABC	mHLADRABC	SepsisIndex	var	var
1	51		💰 Group				nCD64ABC			Eormat	1039	27848	.0373		4
2	52		💑 Patient nam	ne [Patientname]			MHLADRA	BC		Style	1159	30510	.0380		
3	53		MFI lyCD64	(neg ctl) [MFIIyCD	64negcti]		SepsisInde	X		Restation	849	35794	.0237		
4	54		Outcome	rk (neg cu) (MFini	HLADKIIE		Eraquancia	r: Charte	~	Bootstrap	962	34106	.0282		
5	55						riequencie	s. Clidits	^		2134	35941	.0594		
6	56					_	Chart Type				1178	47104	.0250		
7	57					*	O None				839	28908	.0290		
8	58						O Bar char	S			2469	26190	.0943		
9	59						O Pie char	S			805	48394	.0166		
10	60						Itistogra	ms:			699	18187	.0384		
11	61						Show	normal curve o	n histogram		918	18161	.0505		
12	62						01				810	13085	.0619		
13	63						Chart Value	S			893	20117	.0444		
14	64						. Erequen	aes @ Per <u>c</u> ent	ages		848	14648	.0579		
15	65						Continue	Cancel	Help		1816	40233	.0451		
16	66		Display frequ	iency tables							606	22462	.0270		
17	67					acta	Reset Cance	Hein			726	22958	.0316		
18	68					dote	Teser	Theip			733	28056	.0261		
19	69		1 3/	ANKIT	6	55	28335	67	223	1	1111	28791	.0386		
20	70		1 3	GURPREET	1	94	26959	83	222	1	650	27415	.0237		-
	1														P.

Data View Variable View

a

mHLADRABC SepsisIndex

0

Insert Format Analyze Direct Marketing Graphs Utilities Add-ons

3

Help Window

-1

2

T

F

-

4

Edit

Eile

📑 🔁 Output E Frequencies Title Title G Statistics Histogram Title MFI nC

View

Frequencies

5

2

Statistics		
Histogram		_
💼 Title		
MFI nCD64		_
MFI mHLA-DF	N	
nCD64ABC		

Transform

Statistics

P

		MFI nCD64	MFI mHLA- DR	nCD64ABC	mHLADRABC	SepsisIndex
Ν	Valid	99	100	100	100	100
	Missing	1	0	0	0	0
Mean		2135.65	16443.41	2580.05	16899.07	.469848
Median		1025.00	13685.00	1473.16	14140.66	.113462
Std. Deviati	on	3006.577	12128.651	2993.470	12128.651	.9911423
Skewness		4.806	.675	4.830	.675	4.290
Std. Error of	fSkewness	.243	.241	.241	.241	.241
Kurtosis		33.045	518	33.365	518	20.993
Std. Error of	fKurtosis	.481	.478	.478	.478	.478
Range		24713	47126	24713	47126	6.3824
Minimum		150	812	606	1268	.0166
Maximum		24863	47938	25319	48394	6.3990
Percentiles	25	567.00	5795.25	1025.16	6250.91	.044563
	50	1025.00	13685.00	1473.16	14140.66	.113462
	75	2995.00	25734.00	3368.66	26189.66	.481215

Histogram

MFI nCD64

Mean = 2135.65

Correlations								
			MFI nCD64	MFI mHLA- DR	nCD64ABC	mHLADRABC	SepsisIndex	
Spearman's rho	MFI nCD64	Correlation Coefficient	1.000	516**	1.000**	516**	.851**	
		Sig. (2-tailed)		.000		.000	.000	
		Ν	99	99	99	99	99	
	MFI mHLA-	Correlation Coefficient	516**	1.000	516**	1.000**	879**	
	DR	Sig. (2-tailed)	.000		.000		.000	
		Ν	99	100	100	100	100	
	nCD64ABC	Correlation Coefficient	1.000**	516**	1.000	516**	.850**	
		Sig. (2-tailed)		.000		.000	.000	
		Ν	99	100	100	100	100	
	mHLADRABC	Correlation Coefficient	516**	1.000**	516**	1.000	879**	
		Sig. (2-tailed)	.000		.000		.000	
		Ν	99	100	100	100	100	
	SepsisIndex	Correlation Coefficient	.851**	879**	.850**	879**	1.000	
		Sig. (2-tailed)	.000	.000	.000	.000		
		Ν	99	100	100	100	100	

**. Correlation is significant at the 0.01 level (2-tailed).

RELATIVE RISK

RELATIVE RISK

- ASSUMPTION 1:
- One dichotomous dependent variable and one dichotomous independent variable (i.e., they both have two categorical, independent groups)
- Dichotomous variables can be nominal or ordinal
- ASSUMPTION 2:
- Independence of observations
- ASSUMPTION 3:
- Used for specific study designs (prospective and retrospective cohort designs, randomized controlled trials)

RELATIVE RISK

- Relative risk = 1 i.e. risk of getting disease same in both groups
- Relative risk > 1 i.e. exposed group at greater risk of getting disease
- Relative risk < 1 i.e. exposed group at less risk of getting the disease

ODD RATIO

		The O	utcome		
		+	-		
The	+	a	b		
Exposure	-	c	d		
	· · ·	a/c	b/d		
		Odds of Being	Odds of Being		
		Exposed in Cases	Exposed in Controls		
		Odds	Ratio =		
	a/c				
		-			
		l b	o/d		

LOGISTIC REGRESSION

- Outcome of interest is a dichotomous categorical variable
- Numerous variables (continuous and categorical) can be included in the equation
- The specific effect on individual variables on outcome can be adjusted according to the presence of other variables
- Binomial logistic regression attempts to predict probability that observation falls into one of

two categories of dichotomous dependent variable based on one or more independent

variables (continuous or categorical)

ASSUMPTIONS

- Assumption 1 One dependent variable that is dichotomous
- Assumption 2 One or more independent variables measured on either continuous or nominal scale
- Assumption 3 Independence of observations and categories of dichotomous dependent

variable and all nominal independent variables should be mutually exclusive and

exhaustive

ASSUMPTIONS

- ASSUMPTION 4 Bare minimum of 15 cases per independent variable
- ASSUMPTION 5 There should be linear relationship between continuous independent variables and logit transformation of dependent variable
- ASSUMPTION 6 No multicollinearity two or more independent variables highly correlated with each other

Problems with understanding which independent variable contributes to the variance explained in the dependent variable

• ASSUMPTION 7 - No significant outliers

TESTING FOR LINEARITY

• For every one-unit increase in continuous independent variable, value of log odds (logit) of

dependent variable increases by constant amount

- STEP ONE Create natural log transformations of all continuous independent variables
- Box-Tidwell (1962) procedure on SPSS for determining same

					1			95% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	age	2.725	1.103	6.100	1	.014	15.258	1.755	132.650
	weight	.144	.783	.034	1	.854	1.155	.249	5.360
	gender(1)	1.854	.922	4.047	1	.044	6.384	1.049	38.857
	VO2max	1.320	1.823	.524	1	.469	3.745	.105	133.452
	age by In_age	543	.227	5.754	1	.016	.581	.373	.905
	In_weight by weight	027	.146	.033	1	.855	.974	.731	1.297
	VO2max by In_VO2max	301	.382	.620	1	.431	.740	.350	1.566
	Constant	-40.585	21.707	3.496	1	.062	.000		

Variables in the Equation

a. Variable(s) entered on step 1: age, weight, gender, VO2max, age * In_age , In_weight * weight , VO2max * In_VO2max .

• If interaction term is statistically significant, the original continuous independent variable is

not linearly related to logit of dependent variable (i.e., it has failed the assumption of

linearity)

• To apply Bonferroni correction based on all terms (including intercept) in the model when assessing this linearity assumption

• 8 terms in abovementioned model, divide *p*-value at which statistical significance is

accepted – that is, p < 0.05 (i.e., p is less than .05) – by the number of terms in the model

• New level at which statistical significance would be accepted is when p < .00625 (i.e.,

where *p* is less than .00625 since $.05 \div 8 = .00625$)

BONFERRONI CORRECTION

• Adjusted alpha level = Original alpha level ÷ Number of comparisons

# of contrasts	Original alpha (α) level	New alpha (α) level
1	.05	.05
2	.05	.025
3	.05	.016667
4	.05	.0125
5	.05	.01
6	.05	.008333
7	.05	.007143
8	.05	.00625

Table: Bonferroni-corrected alpha (α) levels

Variables in the Equation

								95% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	age	2.725	1.103	6.100	1	.014	15.258	1.755	132.650
	weight	.144	.783	.034	1	.854	1.155	.249	5.360
	gender(1)	1.854	.922	4.047	1	.044	6.384	1.049	38.857
	V02max	1.320	1.823	.524	1	.469	3.745	.105	133.452
	age by In_age	543	.227	5.754	1	.016	.581	.373	.905
	In_weight by weight	027	.146	.033	1	.855	.974	.731	1.297
	VO2max by In_VO2max	301	.382	.620	1	.431	.740	.350	1.566
	Constant	-40.585	21.707	3.496	1	.062	.000		

a. Variable(s) entered on step 1: age, weight, gender, VO2max, age * In_age , In_weight * weight , VO2max * In_VO2max .

Linearity of continuous variables with respect to the logit of the dependent variable was assessed via the Box-Tidwell

(1962) procedure. Bonferroni correction applied using all eight terms in model resulting in statistical significance

being accepted when p < .00625. Based on this assessment, all continuous independent variables were found to be

linearly related to the logit of the dependent variable

Casewise	listb
cuscinise	LISU

	-	Observed			Temporar	y Variable
Case	Selected Status ^a	heart_diseas e	Predicted	Predicted Group	Resid	ZResid
59	S	Y**	.142	N	.858	2.455
70	S	Y**	.082	N	.918	3.349

a. S = Selected, U = Unselected cases, and ** = Misclassified cases.

b. Cases with studentized residuals greater than 2.000 are listed.

If all cases have standardized residuals less than ± 2 , this table will not be produced as part of

SPSS Statistics output

INTERPRETING RESULTS

• DATA CODING

Case Processing Summary

Unweighted Cases ^a		Ν	Percent
Selected Cases	Included in Analysis	<mark>99</mark>	99.0
	Missing Cases	1	1.0
	Total	100	100.0
Unselected Cases		0	.0
Total		100	100.0

a. If weight is in effect, see classification table for the total number of cases.

Table is useful for determining if any cases are missing

INTERPRETING RESULTS

• DATA CODING

Dependent Variable Encoding

Original Value	Internal Value
Recovered	0
Died	1

DEPENDENT VARIABLE CODING - Displays coding that you applied to

dependent variable

BASELINE ANALYSIS

Block 0: Beginning Block

Classification Table^{a,b}

			Predicted			
Observed		Outco	Percentage			
		Recovered	Died	Correct		
Step	Outcome	Recovered	87	0	100.0	
0		Died	12	0	.0	
Overall Percentage					87.9	

a. Constant is included in the model.

b. The cut value is .500

Block 0: Beginning Block"- All relate to situation where no independent variables have been

added to model and model just includes constant

Without any independent variables, 'best guess' is to simply assume that all participants did not

have heart disease. If you assume this, you will overall correctly classify 88% of cases

MODEL FIT

• "Omnibus Tests of Model Coefficients" provides overall statistical significance of model

Block 1: Method = Forward Stepwise (Conditional)

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	19.903	1	.000
	Block	19.903	1	.000
	Model	19.903	1	.000

Model is statistically significant (p < .0005; "Sig." column)

VARIANCE EXPLAINED

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	53.225 ^a	.182	.349

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than .001.

Methods of calculating explained variation - Cox & Snell R Square and Nagelkerke R Square values

Useful to understand how much variation in dependent variable can be explained by mode

Classification Table^a

			Predicted			
		Outcome		Percentage		
Observed		Recovered	Died	Correct		
Step 1	Outcome	Recovered	87	0	100.0	
		Died	12	0	.0	
Overall Percentage				87.9		

a. The cut value is .500

cut value is .500

YES CATEGORY - Probability of case being classified into "yes" category is greater than .500,

NO CATEGORY - If probability less than 0.5

PERCENTAGE ACCURACY IN CLASSIFICATION (PAC) -

Addition of independent variables improves overall prediction of cases into their observed

categories of dependent variable
Variables in the Equation

								95% C.I.fo	or EXP(B)	Τ
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	1
Step 1 ^a	mHLADRABC	.000	.000	7.962	1	.005	1.000	1.000	1.000	1
	Constant	.219	.600	.133	1	.716	1.244			

a. Variable(s) entered on step 1: mHLADRABC.

Model if Term Removed^a

Variable		Model Log Likelihood	Change in -2 Log Likelihood	df	Sig. of the Change	
Step 1	mHLADRABC	-40.811	28.397	1	.000	

a. Based on conditional parameter estimates

Variables not in the Equation^a

			Score	df	Sig.	
Step	Variables	MFInCD64	2.106	1	.147	
1		nCD64ABC	2.106	1	.147	
		SepsisIndex	.077	1	.781	

a. Residual Chi-Squares are not computed because of redundancies.

MEASURES IN LOGISTIC REGRESSION

• SENSITIVITY - Percentage of cases that had observed characteristic which were correctly

predicted by the model (i.e., TRUE POSITIVES)

• SPECIFICITY - Percentage of cases that did not have observed characteristic and were also correctly predicted as not having observed characteristic (i.e., true negatives)

MEASURES IN LOGISTIC REGRESSION

• POSITIVE PREDICTIVE VALUE - Percentage of correctly predicted cases with observed characteristic compared to total number of cases predicted as having characteristic

• NEGATIVE PREDICTIVE VALUE - Percentage of correctly predicted cases without observed characteristic compared to total number of cases predicted as not having characteristic

- Plot of sensitivity versus 1 minus specificity
- Used to calculate overall measure of discrimination
- Ability of binomial logistic regression model to discriminate between those participants with

and without event of interest (i.e., to be able to predict who has, or has not, event of interest)

Case Processing Summary

Group	Valid N (listwise)
Positive ^a	50
Negative	49
Missing	1

Larger values of the test result variable(s) indicate stronger evidence for a positive actual state. a. The positive actual state is Septic Patients. Positive actual state is "1.00 Yes"

Correctly stated event (i.e., event of

interest in this example is having septic

state, which was coded as "1 = Yes")

Further the ROC line is above straight line, better

the discrimination

The area under ROC curve is equivalent to

concordance probability

Area Under the Curve

		Std.	Asymptotic	Asymptotic 95% C	onfidence Interval
Test Result Variable(s)	Area	Error ^a	Sig. ^b	Lower Bound	Upper Bound
MFI nCD64	.901	.031	.000	.840	.962
MFI mHLA-DR	.133	.037	.000	.061	.206
nCD64ABC	.901	.031	.000	.840	.962
mHLADRABC	.133	.037	.000	.061	.206

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

AUC	Classification
0.5	This suggests no discrimination, so we might as well flip a coin.
0.5 < AUC < 0.7	We consider this poor discrimination, not much better than a coin toss.
0.7 ≤ AUC < 0.8	We consider this acceptable discrimination.
0.8 ≤ AUC < 0.9	We consider this excellent discrimination.
$AUC \ge 0.9$	We consider this outstanding discrimination.

Area Under the Curve

		Std.	Asymptotic	Asymptotic 95% Confidence Interval			
Test Result Variable(s)	Area	Errora	Sig. ^b	Lower Bound	Upper Bound		
MFI nCD64	.901	.031	.000	.840	.962		
MFI mHLA-DR	.133	.037	.000	.061	.206		
nCD64ABC	.901	.031	.000	.840	.962		
mHLADRABC	.133	.037	.000	.061	.206		

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

95% confidence interval (CI) for area under ROC curve

Presented in "Lower Bound" and "Upper Bound" columns under the "Asymptotic 95%

Confidence Interval" column in "Area Under the Curve"

RESULT INTERPRETATION

Variables in the Equation

								95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	mHLADRABC	.000	.000	7.962	1	.005	1.000	1.000	1.000
	Constant	.219	.600	.133	1	.716	1.244		

a. Variable(s) entered on step 1: mHLADRABC.

Wald test ("Wald" column) is used to determine statistical significance for each of independent variables

Statistical significance of the test is found in "Sig." column

RESULT INTERPRETATION

- B coefficients ("B" column) Used in equation to predict probability of event occurring, but
- Coefficients show change in log odds that occur for one-unit change in independent variable

when all other independent variables are kept constant

RESULT INTERPRETATION

• Better to comment upon Odds ratios of each of independent variables in "Exp(B)" column

along with their confidence intervals ("95% C.I. for EXP(B)" column)

• Change in odds for each increase in one unit of independent variable

🔄 *sepsis new.sav [DataSet1] - IBM SPSS Statistics Data Editor

Eile	Edit	View	Data	Transform	Analyze	Direct <u>Marketing</u>	Graphs				
P			ĨD.	100	Repo	orts					
				-	D <u>e</u> so	riptive Statistics					
54:8	SepsisIn	dex	.315	91505059702	02 Custom Tables						
		0	sno		Com	pare Means					
					Gene	eral Linear Model					
	43			93	Gene	eralized Linear Mode	ls				
10	44			94	Mixed	1 Models					
	45			95	Corre	alate					
1	46			96	Boar						
	47			97	Regi	ession					
1 20	48			98	Logii	near					
1	49		- S	99	Neur	al Net <u>w</u> orks					
	50	1	1	00	Class	sify					
	51			1	Dime	Dimension Reduction Scale					
	52			2	Scale						
	53			3	Nonp	arametric Tests					
	54			4	Fore	casțing					
	55			5	Survi	val					
	56			6	Multip	ple Response					
	57			7	Missi	ng Value Analysis					
	58			8	Mulți	ple Imputation					
	59			9	Com	plex Samples					
	60			10	🗒 Simu	lation					
	61			11	Quali	ty Control					
	62			12		Current					
		1		a la sub a caracter	RUC	Culve					
Det	View	Variable	View		Spati	al and Temporal Mo	deling				
Data	view	andule	new		IBM S	PSS Amos					
Cros	stabs	ç									

Erequencies		표 1에 ଏ						
						V	/isible: 12 of 12 V	aria
A <u>Explore</u>	DR	MFIIyCD64negctI	MFInHLADRn eactl	Outcome	nCD64ABC	mHLADRABC	SepsisIndex	2
Crosstabs	159	65	285	Recover	1023	6915	.1479	
TURF Analys	sis 235	92	286	Recover	3573	10691	.3342	
Ratio	149	68	300	Recover	918	13905	.0660	
P-P Plots	035	67	139	Recover	1221	40491	.0301	
C-O Plote	997	74	153	Recover	1466	14453	.1014	
	629	159	153	Recover	1268	7085	.1789	
598	17477	79	182	Recover	1054	17933	.0588	
609	7716	61	196	Recover	1065	8172	.1303	
5173	4131	74	399	Recover	5629	4587	1.2272	
2624	18050	93	439	Recover	3080	18506	.1664	
1591	31105	95	384	Recover	2047	31561	.0648	
9155	29966	125	917	Recover	9611	30422	.3159	
1025	19804	108	400	Recover	1481	20260	.0731	
6902	812	90	336	Recover	7358	1268	5.8041	
4253	1456	92	372	Recover	4709	1912	2.4631	
3641	4120	99	379	Died	4097	4576	.8953	
486	13707	98	571	Recover	942	14163	.0665	
824	5142	63	260	Died	1280	5598	.2286	
7271	14441	48	556	Died	7727	14897	.5187	
1892	3982	66	276	Recover	2348	4438	.5290	

IBM SPSS Statistics Processor is ready Cases: 100 Unicode:ON

🔄 *sepsis new.s	Crosstabs				X	Ø	×
<u>File Edit y</u>							
🔁 H	CSN0		1	Row(s):	Exact		
54 : SepsisInde	MFI nCD64 [MFInCD64]			Croup	Cells	12 Varia	ables
	MFI mHLA-DR [MFImHLADR] MFI IyCD64(neg ctl) [MFIIyCD64negctl]				Eormat	ex	V;
43	MFI nHLA-DR (neg cti) [MFInHLADRneg	;ti]			Style	79	4
44	Photos nCD64ABC				Bootstrap	42	
45	MHLADRABC	: Statistics X		Column(s):		60	
46	Chi agua			🕹 Outcome		01	
47						14	
48	- Nominal -	Ordinal				89	
49	Conting	ency coefficient				88	- 1
50	<u>Phi and</u>	Cramer's V Somers' d				03	
51	E Lambda	Kendall's tau-b				72	
52	<u>Uncerta</u>	inty coefficient Kendall's tau- <u>c</u>	- Laver	1 of 1	r l	64	
53	r Nominal by	Interval Kappa				48	
54	Eta	Risk	FIE	Mous		59	
55		McNemar				31	
56						41	
57	Cochr <u>a</u> n	s and Mantel-Haenszel statistics				31	
58	Lest con	imon oods ratio equais. 1				53	
59		ntinue Cancel Help				65	
60						86	
61						87	
62			Dis	play layer variables in table layers		90	*
	Display clustered bar charts						F
Data View Va	Suppress tables						
Data view		OK	Paste	Reset Cancel Help			

🔚 *Output1 [Document1] - IBM SPSS Statistics Viewer

Q

Data Transform Insert Format Analyze Direct Marketing Window Help

Crosstab

Count

Count

Count

% within Group

% within Group

% within Group

% within Outcome

% within Outcome

% within Outcome

Graphs Utilities Add-ons

Total

100.0%

50.0%

100.0%

50.0%

100.0%

100.0%

100

.002

50

50

Died

1

2.0%

8.3%

22.0%

91.7%

12.0%

100.0%

11

12

Outcome

49

98.0%

55.7%

78.0%

44.3%

88.0%

100.0%

39

88

Recovered

Case Processing Summary Dependent Variable Encodin Block 0: Beginning Block Title Title Classification Table Generation Variables in the Equation Variables not in the Equ Block 1: Method = Forward

View

Title Title

ROC Curve

Title

File

Edit

Case Processing Summary

ROC Curve

Area Under the Curve

Coordinates of the Curve

_00

Crosstabs

Title

Title

Group * Outcome

Title

dS		
	Group	Other Patients

Total

Group * Outcome

Septic Patients

C Omnibus Tests of Mode

-			1.57		~	
-	Model	Su	mm	any	1	

Classification Table

Variables in the Equatio

Model if Term Removed

Variables not in the Equ

Group * Outcome

Crosstab

Chi-Square Tests

Cro

ime inte	Linnarh
Crosstab	Associa
Chi-Square Tests	 Associa

Chi-Sq	uare	Tests	

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)		
Pearson Chi-Square	9.470 ^a	1	.002				
Continuity Correction ^b	7.670	1	.006				
Likelihood Ratio	10.890	1	.001				
Fisher's Exact Test			0.519454	.004	.002		
Linear-by-Linear Association	9.375	1	.002				
N of Valid Cases	100						

2

• Binomial logistic regression was performed to ascertain effect of flowcytometric parameters

like MFInCD64, MFImHLA-DR, ABCnCD64, ABCmHLA-DR

• Model explained 35.0% (Nagelkerke R^2) of variance in mortality and correctly classified

88.0% of cases

- ROC curves were calculated using MedcalTM software
- Respective cut-off values for MFI nCD64 and nCD64 ABC of >812 and >1152.16 had

sensitivity of 94% and specificity of 74% for predicting diagnosis of sepsis

• Value of area under curve was 0.90 (95% CI: 0.824-0.951)

• ROC curve for assessing diagnostic utility of MFI mHLA-DR and mHLA-DR ABC yielded

respective cut-off values of ≤ 13765 and ≤ 12262.03

- Both parameters' sensitivity and specificity to detect sepsis were 82 % and 78 %, respectively
- Corresponding value for area under ROC curve was 0.86 (95% CI, 0.783 to 0.926)

MANN-WHITNEY U TEST

- Also known as Wilcoxon-Mann-Whitney test
- Rank-based nonparametric test
- To determine if there are differences between two groups on continuous or ordinal dependent variable
- Nonparametric alternative to independent-samples t-test

• ASSUMPTION 1 - Dependent variable measured at continuous or ordinal level

• ASSUMPTION 2 - One independent variable that consists of two categorical, independent

groups (i.e., dichotomous variable)

• ASSUMPTION 3 - Independence of observations

• ASSUMPTION 4 - Distribution of scores for both groups of independent variable have same

shape or different shape

• Used to interpret differences in "distributions" of two groups or differences in "medians" of

two groups

• Two distributions have a different shape, Mann-Whitney U test is used to determine whether

there are differences in the distributions of mean of two groups

• Two distributions are same shape, Mann-Whitney U test is used to determine whether there

are differences in medians of two groups

By comparing mean ranks of each distribution of scores using this method one can

determine whether values in one group are lower or higher than values in other group

TECHNIQUE

• Firstly, ranking each score of dependent variable, irrespective of group it is in, according to its

size, with smallest rank assigned to smallest value

- MEAN RANKS The ranks obtained for both groups are then averaged
- One group tends to have higher values than other group, that group's scores will have been assigned higher ranks and will have a higher mean rank
- It is this difference in mean rank that is tested by the Mann-Whitney U test for statistical significance

Additional assumption - to compare medians the distribution of engagement scores for males and

females must have the same shape (including dispersion)

SHIFT LOCATION - All scores being shifted to right

If distributions are similarly shaped, use Mann-Whitney U test to make inferences about

differences in medians between two groups

If they look dissimilar, better to use mean ranks

Ranks

	Outcome	Ν	Mean Rank	Sum of Ranks
MFI nCD64	Recovered	87	46.95	4085.00
	Died	12	72.08	865.00
	Total	99		
MFI mHLA-DR	Recovered	88	54.69	4813.00
	Died	12	19.75	237.00
	Total	100		
nCD64ABC	Recovered	88	47.45	4176.00
	Died	12	72.83	874.00
	Total	100		
mHLADRABC	Recovered	88	54.69	4813.00
	Died	12	19.75	237.00
	Total	100		
SepsisIndex	Recovered	88	46.22	4067.00
	Died	12	81.92	983.00
	Total	100		

Test Statistics^a

	MFI nCD64	MFI mHLA-DR	nCD64ABC	mHLADRABC	SepsisIndex
Mann-Whitney U	257.000	159.000	260.000	159.000	151.000
Wilcoxon W	4085.000	237.000	4176.000	237.000	4067.000
Z	-2.841	-3.914	-2.843	-3.914	-3.999
Asymp. Sig. (2-tailed)	.004	.000	.004	.000	.000

a. Grouping Variable: Outcome

"Asymp. Sig. (2-tailed)" and "Exact Sig. [2*(1-tailed Sig.)]" rows representing asymptotic p-value and exact p-value

"Asymptotic" - *p*-value approaches real value as sample size increases

For smaller sample sizes p-value calculated from this method is only approximation to true p-value

For smaller sample sizes, exact *p*-value ("Exact Sig. [2*(1-tailed Sig.)]")

• Mann-Whitney U test was run to determine if there were differences in flowcytometric

parameters between patients who succumbed to illness and those who survived

• Flowcytometric parameters were statistically significant between survivors and non survivors

KAPLEIN MEIER METHOD

- Nonparametric method
- Used to estimate probability of survival past given time points
- ADVANTAGES:
- CENSORED CASES Some of cases observing do not experience event (e.g., death)

before end of study (i.e., end of observation period)

KAPLEIN MEIER METHOD

• For every time point, Kaplan-Meier method will estimate probability of surviving (i.e., not

experiencing event) past that particular time point taking into consideration the presence of censored cases

• Kaplan-Meier method estimates "experience" of survival over period of time

• ASSUMPTION 1 - Event status should consist of two mutually exclusive and collectively

exhaustive states: "censored" or "event"

• ASSUMPTION 2 - Time to event or censorship (known as "survival time") should

be clearly defined and precisely measured

Survival time should be clearly defined (measured in days, weeks, months, years)

- ASSUMPTION 3 Left-censoring should be minimized or avoided
- Time between participant developing disease and diagnosis is unknown and not included in

Kaplan-Meier analysis

- Left censored data Does not reflect observed survival time
- Survival time recorded will be less than (or equal to) observed survival time

• ASSUMPTION 4 - Independence of censoring and the event

Censored data does relate to event, this introduces serious bias to results

• ASSUMPTION 5 - There should be no secular trends (also known as secular changes)

If over follow up period of time, factors have changed that affect likelihood of event then it

may introduce bias

- ASSUMPTION 6 There should be similar amount and pattern of censorship per group
- To detect censoring
- (a) Percentage of censored cases per intervention group
- (b) Pattern of censoring using a scatterplot.
- Censoring should not related to time and pattern of censoring is same in all groups
EXAMPLE

• Researcher wanted to determine relative effectiveness of three types of intervention designed

to help long-term smokers quit: "hypnotherapy programme", wearing "nicotine patches" and use of "e-cigarettes" (electronic cigarettes)

- A successful result would be where smokers did not start smoking again
- Also, longer the length of time it took before participants started smoking again, more effective the intervention

KAPLAN-MEIER SURVIVAL CURVES

			Means and Media	ans for Survival	Time				
			Mean ^a		Median				
			95% Confidence Interval				95% Confide	ence Interval	
intervention	Estimate	Std. Error	Lower Bound	Upper Bound	Estimate	Std. Error	Lower Bound	Upper Bound	
hypnotherapy programme	57.955	5.504	47.167	68.742	69.000	12.162	45.163	92.837	
nicotine patch	26.237	4.666	17.092	35.383	9.000	1.243	6.563	11.437	
e-cigarette	17.601	3.403	10.931	24.271	9.000	.971	7.097	10.903	
Overall	34.947	3.100	28.871	41.024	13.000	3.064	6.995	19.005	

a. Estimation is limited to the largest survival time if it is censored.

Kaplan-Meier survival analysis, mean survival time has far less importance than median

Median values for each group are found under "Estimate" column and 95% confidence intervals

for median under "Lower Bound" and "Upper Bound" columns under "95% Confidence Interval"

column

• Three statistical tests determine whether survival functions are equal - the log rank test,

Breslow test and the Tarone-Ware test

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	25.818	2	.000
Breslow (Generalized Wilcoxon)	20.447	2	.000
Tarone-Ware	24.456	2	.000

Overall Comparisons

Test of equality of survival distributions for the different levels of intervention.

• THE LOG RANK TEST - Weights difference at each time point equally (i.e., all weights are

equal to 1)

- Greater emphasis on differences at later rather than earlier time points

• Log rank test - Testing null hypothesis that there is no difference in overall survival

distributions between the groups (e.g., intervention groups) in population

• Calculates χ 2-statistic (the "Chi-Square" column), which is compared to χ 2-distribution with

two degrees of freedom (the "df" column)

• p < .05 - Statistically significant result

Survival distributions of different types of intervention are not equal in

population

• p > .05 - Statistically insignificant result

Cannot conclude Survival distributions are different in population

PAIRWISE COMPARISONS

			hypnotherapy programme		nicotine patch		e-cigarette	
	intervention	Chi-Square	Sig.	Chi-Square	Sig.	Chi-Square	Sig.	
Log Rank (Mantel-Cox)	hypnotherapy programme			11.035	.001	29.003	.000	
	nicotine patch	11.035	.001			1.541	.214	
	e-cigarette	29.003	.000	1.541	.214			

Pairwise Comparisons

		hypnotherapy programme		nicotine patch		e-cigarette	
	intervention	Chi-Square	Sig.	Chi-Square	Sig.	Chi-Square	Sig.
Log Rank (Mantel-Cox)	hypnotherapy programme			11.035	.001	29.003	.000
	nicotine patch	11.035	.001			1.541	.214
	e-cigarette	29.003	.000	1.541	.214		

Pairwise log rank comparisons conducted to determine which intervention groups had different survival distributions

• Participants randomly assigned to three different interventions in order to quit smoking:

hypnotherapy programme (n = 50), wearing nicotine patches (n = 50) and using e-cigarettes

(n = 50)

• Kaplan-Meier survival analysis conducted to compare three different interventions for their

effectiveness in preventing smoking resumption

- Participants that underwent hypnotherapy programme had median time to smoking resumption of 69.0 (95% CI, 45.2 to 92.8) days
- This was longer than groups receiving nicotine patches or e-cigarettes, which had identical median times to smoking resumption of 9.0 (95% CI, 6.6 to 11.4) days and 9.0 (95% CI, 7.1

to 10.9) days, respectively

• A log rank test was conducted to determine if there were differences in the survival

distributions for the different types of intervention. The survival distributions for the three interventions were statistically significantly different, p < .0005

• Pairwise log rank comparisons were conducted to determine which intervention groups had

different survival distributions

- Bonferroni correction made with statistical significance accepted at the p < .0167 level
- There was statistically significant difference in survival distributions for hypnotherapy vs

nicotine patch intervention p = .001, and hypnotherapy vs e-cigarette intervention,

• p < .0005

• Survival distributions for e-cigarette and nicotine patch interventions were not statistically

significantly different, p = .214

ANOVA

• ONE-WAY ANALYSIS OF VARIANCE (ANOVA) - To determine whether there are any

statistically significant differences between means of two or more independent groups

• TWO-WAY ANOVA - To determine whether there is interaction effect between two

independent variables on continuous dependent variable

• THREE-WAY ANOVA - To determine if there is interaction effect between three

independent variables on continuous dependent variable

To study agreement

• Kappa statistic corrects for chance agreement and tells us how much of possible agreement over and above chance the reviewers have achieved

Calculation of kappa –

<u>observed agreement – agreement expected by chance</u> 100% - agreement expected by chance

QUANTITATIVE CLASSIFICATION OF KAPPA VALUES AS DEGREE OF AGREEMENT BEYOND CHANCE

KAPPA VALUE	DEGREE OF AGREEMENT BEYOND CHANCE
0	NONE
0-0.2	SLIGHT
0.2-0.4	FAIR
0.4-0.6	MODERATE
0.6-0.8	SUBSTANTIAL
0.8-1	ALMOST PERFECT

KAPPA values - range from -1 to +1

NEGATIVE value for weighted kappa (κ_w) - Agreement between two raters was less than the agreement expected by

chance, with -1 indicating that there was no observed agreement

Zero - agreement no better than chance

TAKE HOME MESSAGE

- In terms of selecting statistical test, most important question is "what is the main study hypothesis?"
- Important to decide a priori which hypotheses are confirmatory (testing some presumed relationship) and which are exploratory (are suggested by data)
- Need to determine independency of data