Sepsis – newer therapies in management

Raghava Rao G SR,Dept of pulmonology & critical care

Topics of discussion

- Sepsis pathophysiology
- Newer biomarkers
- Newer treatment options
 - Immunomodulators
 - Ivig/GM CSF/Steroids/PD-1,PD-L1/Heparin/TLR 4 inhibitors/Mw
 - Cytokine and endotoxin removal
 - PBFC/Cytosorb/CPFA/Haemofiltration
 - Misc
 - Beta blockers
 - VitC/Hydrocortisone/Thiamine
 - Naloxone

- In last 3 decades more than 200 different compounds were tested for sepsis
- Still no specific therapies have emerged
- Rely on source control, antibiotics and organ support

Sepsis definition

Þ

2015 Definition	Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection	Septic shock is a subset of sepsis in which underlying circulatory and cellular/metabolic abnormalities are profound enough to substantially increase mortality
2015 Clinical criteria	Suspected or documented infection and an acute increase of ≥2 SOFA points (a proxy for organ dysfunction)	Sepsis ^a and vasopressor therapy needed to elevate MAP ≥65 mm Hg and lactate >2 mmol/L (18 mg/dL) despite adequate fluid resuscitation ¹³

Singer et al, JAMA. 2016 Feb 23; 315(8): 801-810

Sepsis – pathogenesis

Increased apoptosis of dendritic cells and lymphocytes

Decreased expression of APC – HLA-DR

Increased expression of negative costimulatory molecules (PD1/PDL1/CTLA4/BTLA)

Regulatory T cells and MDSC are increased \rightarrow shift from Th1 to Th2

Sepsis – lab markers

- Lactate
- CRP
- D-dimer
- Procalcitonin
- Proadrenomedullin
- Cytokines

- Multimarker approach
- miRNA
- Omics based

Blood cultures are positive in 30-40% of sepsis cases

Biomarkers

- Identifying sepsis
- Differentiate between infective and non infective
- In infective \rightarrow bacterial vs viral
- Prognostication

"OMICS"

Omics is the characterization and quantification of molecules that translate into the structure, function, and dynamics of an organism

Differentiate between infectious and non infectious causes

RNA biomarkers

- SeptiCyte LAB
 - US FDA Approved
 - 4 genes (CEACAM4, LAMP1, PLA2G7 and PLAC8)
 - ROC AUC 0.89 (95% CI, 0.85-0.93)

Sepsis MetaScore

- II gene biomarker
- AUC 0.87(range 0.70-0.98)
- Newer mRNA expression profiling
 - 3 upregulagted transcripts(TLR 5,protectin,clusterin)
 - 4 downregulated transcripts(fibrinogenlike2,IL7r, mHLA II, carboxypeptidase,vitellogeniclike)

van Engelen et al, Crit Care Clin 34 (2018) 139–152

To classify cause of illness

Host gene expression profiling

- Peripheral whole blood gene expression from 273 subjects
- Acute RTI into bacterial/viral/non infectious
- Overall accuracy was 87%
 - Procalcitonin 78% accuracy for bacterial Vs non bacterial

van Engelen et al, Crit Care Clin 34 (2018) 139–152

May help prognosticate

- Prospective cohort study of ICU patients with sepsis caused by CAP
- N=256
- Trnascriptomics defined 2 sepsis responsive signatures
 - SRS I- Immunosuppressive phenotype
 - Features of endotoxin tolerance, T-cell exhaustion and downregulation of HLA class II
 - ► Had higher 14 day mortality; HR 2 ·4, 95% CI 1 ·3-4 ·5, p=0 ·005

Davenport EE et al, Lancet Respir Med. 2016 Apr; 4(4): 259–271

Newer modalities – treatment

- Reversing sepsis induced immunosuppression
- Removal of harmful mediators from blood by extracorporeal methods
- Protecting or restoring endothelial cell function

Intravenous immuno globulin

These are blood products

- Specifically pooled sera derived from donor blood
- Polyclonal
- Monoclonal

Intravenous immuno globulin

Included 43 trials	
Polyclonal IVIG vs placebo or no treatment	25
Standard IVIG, adults - 10	
IgM-enriched, adults - 7	
Standard IVIG, neonates - 5	
IgM-enriched, neonates - 3	
Anti-endotoxins vs placebo	8
Anti-cytokines vs placebo	9
Monoclonal antibody to Enterobacteriaceae	1

Dose of ivig

Adults

- > 250 mg/kg over 2 days
- 400 mg/kg/day for 3 days
- I g/kg on first day f/b 500 mg/kg on D2 and D3
- IgM enriched ivIG → 1300
 ml over 3 days

Neonates

- 500 mg/kg over 2 hours
- I g/kg for 3 days
- IgM enriched ivIG
 - 5 ml/kg/day for three days

All ivig studies - adults

Study or subgroup	Treatment	Control	Risk Ratio M-	Weight	Risk Ratio M-
2	n/N	n/N	D D		C
I Polyclonal IVIG, adults					
Behre 1995	9/30	10/22	-+	4.9 %	0.66 [0.32, 1.35]
Burns 1991	4/25	3/13		1.7 %	0.69 [0.18, 2.64]
Darenberg 2003	1/10	4/11		0.8 %	0.28 [0.04, 2.07]
De Simone 1988	7/12	9/12		67%	0.78 [0.44, 1.39]
Dominioni 1996	21/59	38/58	-	10.5 %	0.54 [0.37, 0.80]
Grundmann 1988	15/24	19/22	-	11.6 %	0.72 [0.51, 1.03]
Hentrich 2006	27/103	29/103	+	9.1 %	0.93 [0.60, 1.46]
just 1986	6/13	9/16		4.8 %	0.82 [0.40, 1.70]
Karatzas 2002	8/34	14/34		4.8 %	0.57 [0.28, 1.18]
Lindquist 1981	1/31	0/28		0.3 %	2.72 [0.12, 64.14]
Masaoka 2000	32/230	46/202	-	10.0 %	0.61 [0.41, 0.92]
Rodriguez 2005	8/29	13/27		5.0 %	0.57 [0.28, 1.16]
Schedel 1991	2/34	11/35	×	1.5 %	0.19 [0.04, 0.78]
Tugrul 2002	5/21	7/21		3.0 %	0.71 [0.27, 1.89]
Werdan 2007	126/321	113/303	+	16.4 %	1.05 [0.86, 1.29]
Wesoly 1990	8/18	13/17	-	66%	0.58 [0.33, 1.04]
Yakut 1998	3/21	9719		2.2 %	0.30 [0.10, 0.95]
Subtotal (95% CI)	1015	943	•	100.0 %	0.70 [0.58, 0.84]
Total avents: 283 (Treatment)	347 (Control)				

Heterogeneity: Tau² = 0.04; Chi² = 24.94, df = 16 (P = 0.07); I² = 36%

Test for overall effect: Z = 3.90 (P = 0.000098)

D

Adults – polyclonal ivig

D

Study or subgroup	Treatment	Control	Risk Ratio	Weight	Risk Ratio	
Q 1675	n/N	n/N	M-HUFboad,95% CI		M-H,Fored,95% CI	
I Standard polyclonal IVIG, ad	lults					
Burns 1991	4/25	3/13		1.1 %	0.69 [0.18, 2.64]	
Darenberg 2003	1/10	4/11	·	1.1 %	0.28 [0.04, 2.07]	
De Simone 1988	7/12	9/12		2.5 %	0.78 [0.44, 1.39]	
Dominioni 1996	21/59	38/58		10.7 %	0.54 [0.37, 0.80]	
Grundmann 1988	15/24	19/22		5.5 %	0.72 [0.51, 1.03]	
just 1986	6/13	9/16		2.3 %	0.82 [0.40, 1.70]	
Lindquist 1981	1/31	0/28		0.1 %	2.72 [0.12, 64.14]	
Masaoka 2000	32/230	46/202		13.7 %	0.61 [0.41, 0.92]	
Werdan 2007	126/321	113/303	1 + 1	32.5 %	1.05 [0.86, 1.29]	
Yakut 1998	3/21	9/19	· · · · · ·	2.6 %	0.30 [0.10, 0.95]	
Subtotal (95% CI)	746	684	•	72.2 %	0.81 [0.70, 0.93]	
Total events: 216 (Treatment),	, 250 (Control)					
Heterogeneity: Chi ² = 17.42,	$df = 9 (P = 0.04); I^2 =$	48%				
Test for overall effect: Z = 2.9	(P = 0.0038)					

Adults – IgM enriched

			Favours Treatment Favours Contro	4	
			0.1 0.2 0.5 1 2 5 10)	
lest for subgroup differences: C	hi² = 1.97, df = 1 (P	= 0.16), F =49%			
Test for overall effect: $Z = 4.16$	(P = 0.000032)	010 B 100			
Heterogeneity: Chi ² = 24.94, df	= 16 (P = 0.07); I ² =	-36%			
Total events: 283 (Treatment), 3	147 (Control)				
Total (95% CI)	1015	943	•	100.0 %	0.77 [0.68, 0.87]
Test for overall effect: Z = 3.21	(P = 0.0013)				
Heterogeneity: Chi ² = 5.78, df =	= 6 (P = 0.45); P = 0.	0%			
Total events: 67 (Treatment), 97	(Control)				
Subtotal (95% CI)	269	259	•	27.8 %	0.66 [0.51, 0.85]
Wesoly 1990	8/18	13/17		17%	0,58 [0,33, 1,04]
Tugrul 2002	5/21	7/21	· · · · · ·	2.0 %	0.71 [0.27, 1.89]
Schedel 1991	2/34	11/35		30%	0.19 [0.04, 0.78]
Rodriguez 2005	8/29	13/27		3.8 %	0.57 [0.28, 1.16]
Karatzas 2002	8/34	14/34		39%	0,57 [0,28, 1,18]
Hentrich 2006	27/103	29/103	-	81%	0.93 [0.60, 1.46]
Behre 1995	9/30	10/22		32%	0.66 [0.32, 1.35]
2 IgM-enriched polyclonal IMG,	aduits	/650338	25		

Etucks or Eukarous	MG	Total	Contr	ol	Moint	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	101.01	weight	M-H, Hxed, 95% CI	M-H, HXed, 95% CI
2.9.1 Standard IVIG, adu	ms			110	121212		
Burns 1991	4	25	3	13	3.2%	0.69 [0.18, 2.64]	
Darenberg 2003	1	10	4	11	3.1%	0.28 [0.04, 2.07]	
Werdan 2007	126	321	113	303	93.7%	1.05 [0.86, 1.29]	
Subtotal (95% CI)	0.5277	356	0.223	327	100.0%	1.02 [0.84, 1.24]	•
Total events	131		120				
Heterogeneity: Chi# = 2.0	04, df = 2 (P = 0.31	6); I* = 29	6			
Test for overall effect: Z =	= 0.17 (P =	0.86)					
2.9.2 IgM enriched IVIG,	adults						
Hentrich 2006	27	103	29	103	68.3%	0.93 [0.60, 1.46]	-
Rodriguez 2005	8	29	13	27	31.7%	0.57 [0.28, 1.16]	
Subtotal (95% CI)		132		130	100.0%	0.82 [0.56, 1.19]	•
Total events	35		42				
Heterogeneity: Chi ² = 1.3	29, df = 1 (i	P = 0.2	6); I* = 23	%			
Test for overall effect: Z =	= 1.05 (P =	0.29)					
2.9.3 Standard IVIG, neo	onates						
Brocklehurst 2011	686	1759	677	1734	99.0%	1.00 [0.92, 1.09]	
Mancilla-Ramirez 1992	2	19	2	18	0.3%	0.95 [0.15, 6.03]	_
Weisman 1992	2	14	5	17	0.7%	0.49 [0.11, 2.13]	
Subtotal (95% CI)		1792		1769	100.0%	1.00 [0.92, 1.08]	•
Total events	690		684				
Heterogeneity: Chi ² = 0.9	91, df = 2 (P = 0.6	3); I [#] = 09	6			
Test for overall effect Z	= 0.11 (P =	0.91)					
							0.01 0.1 1 10 100

Figure 4. Polyclonal IVIG versus placebo or no intervention, outcome: all-cause mortality by type of polyclonal IVIG, sensitivity analysis tow risk of bias trials.

Result

- Neonates
 - No benefit

Monoclonal antibodies to Enterobacteriacea

- No benefit
- Anti endotoxins
- Anti cytokines

Anti endotoxins

Study or subgroup	Treatment	Control	Risk Ratio M- H.Random,95%	Weight	Risk Ratio M HLRandom/955 C1
1 ES vs. placebo, all- cause mo	rtality				
Angus 2000	210/546	219/544	+	22.7 %	0.96 [0.82, 1.11]
Bone 1995	117/264	109/266	+	19.3 %	1.08 [0.89, 1.32]
Greenberg 1992	9/26	6/13		32%	0.75 [0.34, 1.65]
Greenman 1991	40/164	41/152		10.2 %	0.90 [0.62, 1.32]
Subtotal (95% CI)	1000	975	+	55.4 %	0.98 [0.88, 1.10]
Total events: 376 (Treatment),	375 (Control)				
Heterogeneity: $Tau^2 = 0.0$; Ch	i ² = 1.68, df = 3 (P =	0.64); P = 0.0%			
Test for overall effect: Z = 0.2	8 (P = 0.78)	10010404000			
2 HA-1A vs. placebo, all-cause	mortality				
Derkx 1999	24/131	38/138		79%	0.67 [0.42, 1.05]
McCloskey 1994	427/1113	387/1086		25.3 %	1.08 [0.97, 1.20]
≥Ziegler 1991	32/105	45/95		10.8 %	0.64 [0.45, 0.92]
Subtotal (95% CI)	1349	1319	-	44.0 %	0.80 [0.54, 1.20]
Total events: 483 (Treatment),	470 (Control)				
Heterogeneity: $lau^2 = 0.10$; C	$h^2 = 10.69, df = 2 (P$	= 0.005); P =81%			
Test for overall effect: Z = 1.0	8 (P = 0.28)	an an an an <u>an an an an an an</u>			
3 Anti-LPS vs placebo, all-caus	e mortality				
Lachman 1984	1/14	9/19		06%	0.15 [0.02, 1.06]
Subtotal (95% CI)	14	19		0.6 %	0.15 [0.02, 1.06]
Total events: 1 (Treatment), 9	(Control)				
Heterogeneity: not applicable					
Test for overall effect: Z = 1.9	0 (P = 0.057)				
Total (95% Cl)	2363	2313	+	100.0 %	0.92 [0.79, 1.06]
Total events: 860 (Treatment),	854 (Control)				
Heterogeneity: Tau ² = 0.02; C	$h^2 = 16.12, df = 7 (P$	= 0.07); l ² =57%			
Test for overall effect: Z = 1.1-	4 (P = 0.25)				
lest for subgroup differences:	$Chi^2 = 4.43, df = 2 (l)$	P = 0.11), 1 ² =55%			

0.1 0.2 0.5 1 2 5 10

Favours Treatment Favours Control

Anti cytokines – mortality

Study or subgroup	Treatment n/N	Control n/N	Risk Ratio MI-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% Cl
I Anti-TNF-alpha vs. placebo,	all-cause mortality				
Abraham 1995	196/645	108/326	*	10.1 %	0.92 [0.76, 1.11]
Abraham 1998	382/948	398/930	-	28.4 %	0.94 [0.85, 1.05]
Cohen 1996	144/386	66/167	-	65%	0.94 [0.75, 1.19]
Dhainaut 1995	20/32	6/10		0.6 %	1.04 [0.59, 1.85]
Panacek 2004	421/1305	477/1329		33.4 %	090 [0.81, 1.00]
Reinhart 1996	44/93	12/29		1.3 %	1.14 [0.71, 1.85]
Subtotal (95% CI) Total events: 1207 (Treatment Heterogeneity: $Ch^2 = 1.33$, d Test for ownall effect: $Z = 2.3$	3409), 1067 (Control) (= 5 (P = 0,93); P = 0 (P = 0,021)	2791		80.3 %	0.92 [0.87, 0.99]
2 Human interleukin-frecepto	r antagonist vs. placel	oo, all-cause mortality			
Fisher 1994a	18/79	11/25		1.2 %	0.52 [0.28, 0.94]
Fisher 1994b	177/591	102/302	-	95%	0.89 [0.73, 1.08]
Opal 1997	116/350	176/346		8.9 %	0,91 [0,74, 1.12]
Subtotal (95% CI) Total events: 311 (Treatment), Heterogeneity: Chi ² = 3.09, d Test for overall effect: Z = 1.8	1020 239 (Control) (= 2 (P = 0,21); P = 8 (P = 0.060)	673 35%		19.7 %	0.88 [0.76, 1.01]
Total (95% CI) Total events: 1518 (Treatment	4429), 1306 (Control)	3464	·	100.0 %	0.92 [0.86, 0.97]
Heterogeneity: $Ch^2 = 5.02$, d Test for overall effect: $Z = 2.9$	f = 8 (P = 0.76); F = 0 (P = 0.0037)				

Favours Treatment Favours Control

Role of ivig

At present no strong evidence to support its role

Larger RCT on IgM enriched ivIG is needed

GM CSF

- How does it help ??
- In state of immunoparalysis
 - Increase HLA DR expression

		Populn	Dose	Benefits	Comments
Presnei II JJ et al ¹	RCT, n= 18	≥2 SIRS and paO2 < 60 mmHg at room air or p/F < 287	3mcg/k g iv X 5 days	p/f ratio improved over 5 days	No decrease in 30 day mortality /Duration of ICU stay
Orozc o H et al ²	RCT, n= 58	Generalized peritonitis post surgery and positive peritoneal cultures	3mcg/k g sc X 4 days	Reduced length of stay (9 Vs 13) Duration of antibiotic therapy(9 Vs 13) No of infectious complications(6 Vs 16) All p<0.05	No decrease in mortality
Meisel C et al ³	RCT, n=38	severe sepsis or septic shock and sepsis induced immunosuppression (mHLA-DR < 8,000 /(mAb)/cell X 2)	4mcg/k g sc X 8 days (8mcg/ day)	Shorter duration of MV (148 Vs 207 hours) Shorter hospital stay (59 Vs 69 days) Shorter ICU stay (41 Vs 52 days)	No differcence in mortality/ RRT/ noradr requirement Had increased HLA-DR and TLR cytokines
		I - Presneil 2- Orozco	l JJ et al,A H et al,A	m J Respir Crit Care Med. 2 rch Surg. 2006:141(2):150	2002;166(2):138

3- Meisel C et al, Am J Respir Crit Care Med. 2009;180(7):640

GM CSF

All of these are small studies

Larger clinical trials are required

- Multicenter phase III trial is ongoing on patients of sepsis or septic shock (NCT02361528)
- Cannot be recommended at present

- Sepsis is characterized by initial phase of cytokine storm followed by immune paralysis
- LPS combines with TLR4 receptor
- This initiates two antagonizing pathways
 - ▶ MyD88 \rightarrow proinflammatory
 - TRIF \rightarrow antiinflammatory
- Mw acts as an immunomodulator acting via TLR4 pathway by involvement of MyD88

In initial study of 50 patients

Table 3

Þ

Primary and secondary outcomes of the study

	Mw	Control	Total	Р
Primary outcome				
Mortality, no. (%)	7 (28)	8 (32)	15 (30)	.505
Secondary outcomes				
Days on ventilator	6 (3-7)	9 (5-14)	7 (4-10)	.025
Days on vasopressor drugs	2 (2-3)	3 (2-4)	3 (2-4)	.075
\rightarrow Delta SOFA	0 (0-4)	4 (0.5-4.5)		.027
→ ICU length of stay, d	7 (5-10)	12 (9-17)	9 (5-14)	.006
Hospital length of stay, d	10 (7-12)	16 (10-20)	12 (8-18)	.007
\rightarrow Secondary infection, no. (%)	5 (20)	14 (56)	19 (38)	.009
VAP, no. (%)	5(20)	12 (48)	25 (50)	.037
CRBSI, no. (%)	2 (8)	6 (24)	8 (16)	.123

Sehgal IS, et al, JCritCare(2014) . jcrc.2014.08.012

In next study, Mw(31) & control (29)

Outcomes	Mw (%)	Control (%)	P value
Mortality, n (%)	2 (6)	7 (24)	0.055
Days on mechanical ventilation	6.6 (6.4)	5 (4.6)	0.260
Days on vasopressor drugs	3.4 (4.8)	3.2 (3.9)	0.853
Delta SOFA	1.09 (2.10)	1.1 (1.54)	0.989
ICU length of stay	5 (5.4)	5.4 (4.66)	0.746
Hospital length of stay	15.7 (7.7)	13.4 (6.7)	0.223
Secondary infection	8 (26)	6 (21)	0.558

TLR 4 inhibition

Study	Туре	Included pts	Dose	Result	Comments
Opal et al ¹	Multicen ter RCT (197 ICU) N=1961	Severe sepsis within 12 hrs of first organ dysfunction	Eritoran 105 mg vs placebo	No differences in 28 day mortality I year mortality	No benefit
Rice et al ²	Multicen ter RCT (93 ICU) N= 274	Severe sepsis and shock or respiratory failure	Placebo 200 mg loading f/b I.2mg/kg/d 2.4 mg/kg/d	No change in IL6 level 28 day mortality 24% VS 22% Vs 17% (p=0.26)	Mortality was low with high dose group but was not significant statistically AE – Methhaemoglobin emia (30.1%)

1-Opal SM et al, JAMA. 2013 Mar;309(11):1154-62 2 -Rice TW et al, Crit Care Med. 2010;38(8):1685

PD-1 and PD-L1

Negatively regulate immnue system

- Patients with septic shock had increased expression Vs trauma and healthy volunteers
 - In CD4T cells and monocytes
- Associated with
 - reduced survival
 - greater incidence of secondary nosocomial infections

- In prospective observational study of 29 healthy controls,
 59 patients with sepsis and 76 septic shock patients
- Blood samples obtained on D3-4 of sepsis and analysed
 PD1 and PD-L1 expression

Baseline Characteristics

D

Parameters	Control	Sepsis	Septic shock	P value
Number	29	59	76	-
Age (years)	68 (66-75)	71 (66-78)	71 (61-78)	0.497
Male, n (%)	18 (62.1 %)	32 (54.2 %)	37 (48.7 %)	0.458
WBC (×10 ⁹ /L)	6.9 (5.6-7.9)	13.3 (10.9-17.8)	14.9 (11.8-17.2)	< 0.001
Lymphocyte (×10 ⁹ /L)	28 (24-3.1)	1.06 (0.73-1.63)	0.76 (0.54-1.07)	< 0.001
SOFA score	0	5 (3-7)	11 (9-14)	<0.001
SAPS II	12 (12-15)	26 (24-32)	53 (46-60)	< 0.001
Percentage of PD-1*/CD4* T cells (%)	26.2 (23.2-29.9)	34.1 (28.4-44.4)	38.2 (29.2-47.7)	< 0.001
MFI of PD-1 on CD4 ⁺ T cells	6.3 (5.8-6.8)	7.1 (5.2-9.2)	7.5 (6.0-9.4)	0.008
Percentage of PD-1*/CD8* T cells (%)	22.6 (18.7-28.2)	31.6 (23.9-46.6)	36.5 (27.3-51.3)	< 0.001
MFI of PD-1 on CD8 ⁺ T cells	5.9 (4.8-6.6)	6.4 (4.2-7.5)	6.6 (4.9-8.4)	0.181
Percentage of PD-L1*/CD4* T cells (%)	18.2 (12.3-22.6)	21.5 (16.5-30.5)	21.0 (9.3-30.6)	0.021
MFI of PD-L1 on CD4 ⁺ T cells	18 (1.6-2.2)	1.8 (1.6-2.6)	1.8 (1.5-2.0)	0.230
Percentage of PD-L1*/CD8* T cells (%)	22.6 (17.1-26.2)	18.8 (14.9-37.6)	19.5 (10.3-37.4)	0.645
MFI of PD-L1 on CD8 ⁺ T cells	1.5 (1.4-1.7)	1.6 (1.2-2.1)	1.5 (1.4-1.8)	0.596
Percentage of monocytes expressing PD-L1 (%)	12.9 (10.4-15.3)	29.2 (12.1-43.9)	35.9 (20.4-54.7)	< 0.001
MFI of PD-L1 on monocytes	3.4 (3.0-3.9)	45 (22-75)	83 (7.7-9.7)	< 0.001

May help in prognosticating

Table 3 Area under the curve of various parameters for predicting 28-day mortality in patients with septic shock

Variable	AUC	P value	95 % Confidence interval	
			Lower limit	Upper limit
Percentage of monocytes expressing PD-L1	0.729	0.001	0.607	0.852
MFI of PD-L1 on monocytes	0.681	0.009	0.548	0.813
SAPS II	0.768	< 0.001	0.653	0.883
SOFA score	0.736	0.001	0.610	0.863
Percentage of PD-L1 on monocytes + SAP5 II	0.891	<0.001	0.807	0.976
MFI of PD-L1 on monocytes + SAPS II	0.881	< 0.001	0.797	0.965
Percentage of PD-L1 on monocytes + SOFA score	0.829	<0.001	0.713	0.944
MFI of PD-L1 on monocytes + SOFA score	0.799	<0.001	0.682	0.917

AUC area under the curve, MFI mean of fluorescence intensities, PD-L1 programmed cell death receptor ligand-1, SAPS II simplified acute physiology score II, SOFA sepsis-related organ failure assessment

Further ...

- Anti PD-1 and anti PD-L1 antibodies have shown to benefit in mouse sepsis model^{1,2}
 - Improve immune function
 - Survival
- RCTs are being done in patients of sepsis according to biomarker identified subgroups
 - Phase I &II (NCT02576457,NCT02960854)

I-Shindo Y et al, J Surg Res. 2017 Feb;208:33-39 2-Zhang Y et al, Crit Care. 2010;14(6):R220

Other Immunostimulants

	ΜΟΑ	Previous evidence	Ongoing trials (phase II)	
IFN gamma	Secreted by Th and NK cells Reduced in sepsis	In series of invasive fungal infections, adjunctive IFN restored immune function	Ongoing trial to determine its effects on sepsis related immunoparalysis (NCT01649921)	Previous trial in unselected patients \rightarrow there was no benefit
IL 7, IL 15	Activate T cells,NK cells, dendritic cells	Previous trials in animal model improved survival	NCT 02797431 NCT02640807	

Vincent JL et al, Crit Care Clin 34 (2018) 161–173
Role of corticosteroids in sepsis

	Population	Intervention	Result
Annane ¹ (2002)	299 patients with septic shock (< 3 hours) and MV	Hydrocortisone 50 mg q 6 hourly + Fludrocortisone 50 microgram tablet for 7 days	Mortality benefit seen at day 28 Reduced inotropic requirement, reduced ICU stay, reduced hospital stay
CORTICUS TRIAL ² (2008)	499 patients with septic shock < 72 hours	Hydrocortisone 50mg q 6 hourly for 5 days, then 12 hourly from 6 to day 8 , then 24 hourly from day 9 to day 11	No mortality benefit at day 28 Reduced inotropic requirement seen

I-Annane D et al,JAMA. 2002 Aug 21;288(7):862-71 2-Toma A et al, CJEM. 2011 Jul;13(4):273-6

	Population	Intervention	Result
HYPRESS TRIAL ¹ (2016)	353 sepsis patients (SIRS > 2) lasting < 48 hours and not yet progressed to shock	Hydrocortisone infusion 200 mg /day for 5 days	No significant difference between placebo and steroids in preventing progression to septic shock No mortality benefit at day 28 No benefit in length of stay
ADRENAL ² (2018)	3658 patients with septic shock requiring MV < 24 hours (SIRS > 2 + evidence of infection used to define sepsis)	Hydrocortisone infusion 200 mg/day for 7 days	No mortality benefit at day 90 Reduced duration of shock, increased ventilator free days, reduced ICU stay
APROCCHSS ³ (2018)	1241 patients ≤ 7 days with septic shock ≤ 24 hours, with ≥ 1 infections, with ≥ 2 organ failures (SOFA score ≥ 3)	Hydrocortisone 50 mg iv Q6H + fludrocortisone as 50 µg tab OD for 7 days	Mortality benefit at 90 day (ARR 6%,NNT 15) Early weaning from vasopressors, MV, resolution of organ failure

I-Keh D et al, JAMA. 2016 Nov 1;316(17):1775-1785 2-Venkatesh B et al, N Engl J Med. 2018 Mar 1;378(9):797-808 3-Annane D et al, N Engl J Med 2018; 378:809-818

Steroid in sepsis – RICU

- Continue with existing policy to use in double inotrope requiring shock
- But to use combined hydrocortisone and fludrocortisone as per APROCCHSS trial

Cytokine & Endotoxin Removal

- Hemoperfusion through adsorptive materials
- Plasma or whole blood exchange
- Coupled plasma filtration adsorption (CPFA)
- Haemofiltration

Cytokine And Endotoxin Removal

- Perfusion of blood through adsorptive membranes or sorbent containing cartridges can remove harmful circulating cytokines and endotoxin
 - PBFC
 - CytoSorb

Cytokine Adsorbing Columns

- Contain porous, adsorbent polymer beads that target molecules up to 50,000 Da
- ▶ IL-1, IL-6, TNF, and IL-10
- Polymer beads are slightly larger than a grain of salt and are compatible with blood

CytoSorb

- Have enormous surface (8,500 m2) when compared with that of classical CRRT membranes (1.5 m2)
- CytoSorb cartridge contains 10 g of polystyrene divinylbenzene copolymer beads with a biocompatible polyvinylpyrrolidone coating
- Each bed is 300–800 μm in size
- Each gram of material has a surface of 850 m2

CytoSorb-Animal study

- Rats were subjected to cecal ligation and puncture (CLP)
- This protocol is associated with a control group mortality of 70–90% at 48 hrs
- 20 hrs later were randomized to receive either hemoadsorption (n= 17) or sham treatment(n= 16)

CytoSorb

- After 3 hours \rightarrow treatment was stopped
- Observed for 9 hours
- Surviving animals were killed at 9 hours

Effect on cytokines

Level of cytokines had decreased after I hour of treatment

At 9 hours level of cytokines had increased compared to at 3 hours

P<0.05

Peng ZY et al, Crit Care Med. 2008 May;36(5):1573-7

Effect on MAP

- MAP gradually decreased in the sham group
- 3 hours : MAP (71.40 vs. 52.00 mmHg)
- 9 hours : MAP (65.25 vs. 36.50 mmHg)
- ▶ P<0.05

Peng ZY et al, Crit Care Med. 2008 May;36(5):1573-7

Effect on survival

Mean survival time : 720 vs. 381 mins, p = 0.02

Overall survival : 11/17 vs. 2/16;HR: 2.87 [95% Cl,1.19 to 7.26], p < .01

Peng ZY et al, Crit Care Med. 2008 May;36(5):1573-7

Pilot study in humans

Multicenter RCT of 43 patients

- I8 treated; 25 controls
- Included subjects : Severe sepsis and ALI
- Haemoperfusion by Cytosorbents at flow rate of 200 300 ml/ min for 6 hours/day for 7 days

Schadler D et al , Am J Respr Crit Care Med , 2013, pp.A5241

Pilot study in humans

	Treatment	Control	P value
Septic shock	94%	100%	0.42
ARDS	67%	56%	0.33
Renal Failure	39%	24%	0.54

Schadler D et al Am J Respr Crit Care Med , 2013, pp.A5241

CytoSorb-Cytokines

	Decreased by	P value
IL6	- 49.1%	0.01
MCP - I	- 49.5 %	0.002
IL-Ira	- 36.5 %	.001
IL 8	- 30.2%	.002

28 day mortality : 28 % vs 24 % ,p= 0.84 60 day mortality : 39 % vs 32 % , p=0.75

D

Schadler D et al Am J Respr Crit Care Med , 2013, pp.A5241

Role of cytosorb ?

- May reduce cytokine levels
- But mortality benefit has to be assessed in large scale studies

- Polymyxin B strong affinity to endotoxin
- Clinically applied adsorbent column (Toraymyxin 20-R)
- 5 -7 mg of polymyxin B/gram of polystyrene fiber
- Containing 53 g of polysterene fiber bound covalently to 370 mg of PMX

		Population	Intervention	Result (PBFCVs Control)
Cruz DN et al	Multicenter RCT n= 64 patients	Severe sepsis or septic shock due to intra abdominal infection (post surgery)	For 2 X 2 hours, 24 hours apart, within 24 hrs of Sx	28 day mortality 32% Vs 53% (HR, 0.36; 95% Cl, 0.160.80; P=.01) Early improvement in SOFA score/,inotrope and p/F ratio
lwagami M et al	Propensity matched reteospectiv e analysis N= 1180	nontraumatic perforation of the lower GIT,following surgery and requiring inotropic support	Who underwent PBFC on day 0,1 (maximum of 2 sessions)	No difference in 28 day mortality No difference in noradrenaline requirement, organ dysfunction

1-Cruz DN et al, JAMA. 2009;301(23):2445 2-Iwagami M et al, Crit Care Med. 2014;42(5):1187

PBFC

- Larger trial EUPHRATES (NCT01046669)
- 50 ICUs in USA & Canada
- Enrolled 650 patients
- Included patients of septic shock with endotoxin level
 >0.60
- In interim analysis of 450 patients there was no difference in 28 day mortality

- In multicenter RCT in 18 ICUs
- I92 patients with septic shock were randomized
- CPFA was performed for atleast 5 days, lasting 10 hours/day

Livigni S et al, BMJ Open. 2014 Jan 8;4(1):e003536

Result

- No difference in primary outcome
 - hospital mortality (47.3% controls Vs 45.1% CPFA, p =0.76)

No difference in

- Occurrence of new organ failures
- ICU free days
- 90 day mortality

Livigni S et al, BMJ Open. 2014 Jan 8;4(1):e003536

CPFA- Subgroup

Variable	OR	95% CI	p Value
Volume of electron tracted () Available		77.17.71	
volume or plasma treated (L/kg/day)			(2011-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
CPFA, ≤0.18 (1° and 2° tertiles) vs controls	1.52	0.73 to 3.17	0.033
CPFA, >0.18 (3° tertile) vs controls	0.36	0.13 to 0.99	
Age (decades)	1.57	1.19 to 2.07	0.001
Source of admission			
Other ICU vs medical ward	0.28	0.04 to 1.89	
Emergency room vs medical ward	0.27	0.11 to 0.67	0.021
Surgical ward vs medical ward	0.34	0.15 to 0.77	
Renal failure at admission	4.08	1.47 to 11.32	0.007
Cholecystitis or cholangitis on admission	0.18	0.04 to 0.75	0.018

44 of 91 randomized could not be treated for predefined duration

Livigni S et al, BMJ Open. 2014 Jan 8;4(1):e003536

Haemofiltration

Review of 4 RCTs involving 200 patients

- Compared high volume haemofiltration Vs standard haemofiltration
- Inclusion criteria Septic shock or severe sepsis
- High volume haemofiltration
 - >35ml/kg/hr

Borthwick EM et al, Cochrane Database Syst Rev. 2017 Jan 31;1:CD008075

Results

Mortality outcome

No difference in length of ICU stay (75 days Vs 74 days, intervention Vs control)

Borthwick EM et al, Cochrane Database Syst Rev. 2017 Jan 31;1:CD008075

Vitamin C/Hydrocortisone/Thiamine

- Vitamin C and hdrocortisone act synergistically
- Inhibit NF-κB
- Downregulate proinflammatory mediators
- Vit C also acts as antioxidant

Vitamin C/Hydrocortisone/Thiamine -Setting

- Propensity matched retrospective study
- Intervention group Jan 2016 to July 2016
- Control group June 2015 to Dec 2015
- 47 patients in each group
- All patients of sepsis or septic shock and procalcitonin ≥ 2 ng/ml

Dosing Used

- Vit C iv 1.5 gm Q6H X 4 days or ICU discharge over 30 – 60 min
- Hydrocortisone 50 mg Q6H X 7 days or ICU discharge, tapered over 3 days
- Thiamine iv 200 mg Q12H X 4 days or ICU discharge

Results

Þ

TABLE 2] Outcome and Treatment Variables

Variable	Treated (n = 47)	Control (n = 47)
Hospital mortality, No. (%)	4 (8.5)	19 (40.4) ^a
ICU LOS, median and IQR, d	4 (3-5)	4 (4-10)
Duration of vasopressors, mean \pm SD, h	18.3 ± 9.8	54.9 ± 28.4 ª
RRT for AKI, No. (%)	3 of 31 (10%)	11 of 30 (33%) ^b
ΔSOFA, 72 h	4.8 ± 2.4	0.9 ± 2.7°
Procalcitonin clearance, median % and IQR, 72 h	86.4 (80.1-90.8)	33.9 (-62.4 to 64.3) ^a

Mortality

Norepinephrine requirement

In treatment group there were 4 deaths

 Authors claim they died of advanced disease (advanced HF, COPD, cirrhosis, dementia)

"were given comfort care in hospital floor"

None died of sepsis

Drawbacks

- Single centre retrospective study
- Need adequately powered RCT before recommended

Anti coagulants

Heparin has anti thrombotic and immunomodulating effects

Early intravenous unfractionated heparin and mortality in septic shock

Retrospective multicenter propensity matched study

- Time interval : 1989 to 2005
- > 2365 patients were diagnosed with septic shock and 722 received iv therapeutic dose of heparin
- Excluded patients who died in first 48 hours

Zarychanski R et al Crit Care Med. 2008;36(11):2973

On manual review of 25% of charts

- ACS as concomitant with septic shock \rightarrow 71.3%
- Possible PTE or DVT \rightarrow 9.6%
- Chronic AF \rightarrow 5.2%
- ▶ Possible ischemic bowel \rightarrow 5.2%
- Other reasons \rightarrow 3.6%
Mean duration of heparin therapy was 4.7 days (±2.9)

 Low dose prophylactic heparin was administered to 73.7% patients in the control group within 48 hrs of shock

Primary outcome

Table 3. Mortality over 28 days

		Mortality Ra Status, No. Do Patier	te by Heparin eaths/Total No. ats (%)			
Cohort	Sample Size, n	Heparin	Control	(95% Confidence Interval)	р	
28-day mortality Adjusted for propensity score	1390	279/695 (40.1)	307/695 (44.2)	0.85 (0.73-1.00)	0.05	
Stratified 28-day me	ortality analy:	sis in matched co	hort (APACHE I	guartile)		
5-18	333	41/166 (24.7)	36/167 (21.6)	1.11 (0.70-1.73)	0.65	
19-23	381	63/186 (33.9)	68/195 (34.9)	0.93 (0.66-1.342	0.70	
24-28	324	81/175 (46.3)	76/149 (51.0)	0.86(0.63 - 1.18)	0.34	
29-53	352	94/168 (56.0)	127/184 (69.0)	0.70 (0.54-0.92)	0.01	

APACHE, Acute Physiology and Chronic Health Evaluation.

Zarychanski R et al, I Crit Care Med. 2008;36(11):2973

Other effects

Þ

	Heparin Vs Control	OR	Ρ
Liberation from MV	62.5% vs. 54%	1.42 CI 95% 1.12– 1.79	0.003
Discontinuation from inotrope	74.7%Vs 68.8%	1.34 CI 95% 1.06–1.70	0.01
Median length of hospital stay	19 days (IQR 8–36) vs. 14 days (IQR 5– 31)		<0.001

Zarychanski R et al Crit Care Med. 2008;36(11):2973

D

Table 4. Acquired" rates of clinically significant bleeding complications and need for transfusion

	Heparin (n $= 695$)	Control ($n = 695$)	р
GI hemorrhage, n (%)	36 (5.2)	26 (3.7)	0.19
CNS hemorrhage, n (%)	7 (1.0)	7 (1.0)	1.00
Number of patients transfused PRBC units, n (%)	364 (52.4)	384 (55.3)	0.28
PRBC (units/patient) mean (sp)	5.0 (5.8)	4.7 (5.2)	0.52
Platelets (units/patient) mean (sp)	5.7 (5.5)	6.6 (6.8)	0.19
FFP (units/patient) mean (sp)	16.9 (17.8)	18.4 (19.5)	0.58

GI, gastrointestinal; CNS, central nervous system; PRBC, packed red blood cell; FFP, fresh frozen plasma (approximately 250 mL per donor unit).

"Diagnoses and interventions recorded >24 hrs after intensive care unit admission.

HETRASE Study

- Single centre RCT of 319 patients
- Iv UFH 500 units/hr for 7 days Vs placebo

Inclusion criteria

Atleast one of each variables in 24 hours of emergency admission

Appendix B Inclusion criteria					
Modified Centers for Disease Control Definitions for Infection General Variables Inflammatory Variables					
1) Pneumonia	1) Temperature (oral or axillary) $>$ 38°C or $<$ 36°C	1) White blood cells >12,000 μ L ⁻¹ or <4,000 μ L ⁻¹ or with >10%			
 Bloodstream infection Clinical sepsis Symptomatic urinary tract infection and other infections of urinary tract Intra-abdominal infections 	 Heart rate >90 beats/min Respiratory rate >20 breaths/min Altered mental status determined by Glasgow Coma Scale <15 Systolic blood pressure <90 mm Hg or a decrease >40 mm Hg 	2) Plasma C-reactive protein >5 mg/dl.			
 6) Skin infections 7) Soft tissue infections 8) Superficial and deep surgical site infections 9) Joint or bursa infections 	accidat 240 min mg				

Jaimes F et al Crit Care Med. 2009;37(4):1185

Results

Þ

	Heparin	Placebo	р
Median length of stay (days)	I 2 (IQR 8- I 9.5)	12.5 (IQR8-20)	0.976
MOD Score (decline/ day)	0.11	0.13	0.240
28 day mortality	14%	16%	0.652

Meta analysis

9 trials of 2637 patients

Patients with sepsis, severe sepsis, septic shock or DIC

Zarychanski R et al, Crit Care Med. 2015 Mar;43(3):511-8

Heparin --- mortality benefit

	Нера	rin	Placebo/ Usua	al Care		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI
Placebo								
Levi 2007	275	1004	305	990	88.2%	0.89 [0.77, 1.02]	2007	
Jaimes 2009	22	159	25	160	5.9%	0.89 [0.52, 1.50]	2009	
Liu 2014	7	22	6	15	2.2%	0.80 [0.33, 1.90]	2014	
Subtotal (95% CI)		1185		1165	96.3%	0.89 [0.78, 1.01]		•
Total events	304		336					
Heterogeneity: Tau ² =	0.00; Chi2	= 0.06	, df = 2 (P = 0.9)	7); l² = 0%	6			
Test for overall effect:	Z = 1.80 (P = 0.0	7)					
Usual Care								
Haneberg 1983	2	11	2	15	0.5%	1.36 [0.23, 8.24]	1983	·
Zhang 2006	3	11	3	11	0.9%	1.00 [0.26, 3.91]	2006	
Zhao 2009	6	37	14	42	2.3%	0.49 [0.21, 1.14]	2009	
Subtotal (95% CI)		59		68	3.7%	0.67 [0.34, 1.30]		
Total events	11		19					
Heterogeneity: Tau ² =	0.00; Chi2	= 1.48	, df = 2 (P = 0.4)	8); l² = 0%	6			
Test for overall effect:	Z = 1.19 (P = 0.2	4)					
Total (95% Cl)		1244		1233	100.0%	0.88 [0.77, 1.00]		•
Total events	315		355					
Heterogeneity: Tau ² =	0.00; Chi2	= 2.21	, df = 5 (P = 0.8)	2); l ² = 0%	6			
Test for overall effect:	Z = 1.99 (P = 0.0	5)					U.2 U.3 1 2 5 Henarin Placebol Isual
Test for subgroup diffe	erences: C	hi² = 0.	67, df = 1 (P = 0	.41), l² =	0%			Hepanni Placeborosual

Figure 3. Mortality in patients randomized to heparin versus placebo or usual care. Boxes and horizontal lines represent point estimates, varying in size according to the weight in the analysis and 95% Cls. M-H = Mantel-Haenszel.

Zarychanski R et al, Crit Care Med. 2015 Mar;43(3):511-8

Heparin Vs other anticoagulants

No difference

	Hepa	in	Other Anticoag	ulants		Risk Ratio	Risk Ratio
Study	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Year	M-H, Random, 95% Cl
Vinazzer 1989	1	6	1	4	4.4%	0.67 [0.06, 7.85] 1989	
Ghanem 1996	6	24	3	24	16.6%	2.00 [0.56, 7.09] 1996	
Saito 2007	18	52	14	50	79.0%	1.24 [0.69, 2.21] 2007	
Total (95% Cl)		82		78	100.0%	1.30 [0.78, 2.18]	•
Total events	25		18				
Heterogeneity: Tau ^z	= 0.00; Chi ²	= 0.76	df = 2 (P = 0.68)	² = 0%			
Test for overall effect	t: Z = 1.01 (P = 0.3	1)				Heparin Other Anticoagulants

Figure 4. Mortality in patients randomized to heparin versus other anticoagulants. Boxes and horizontal lines represent point estimates, varying in size according to the weight in the analysis and 95% Cls. M-H = Mantel-Haenszel.

Zarychanski R et al, Crit Care Med. 2015 Mar;43(3):511-8

Meta analysis of anti coagulants

- Meta analyses of RCT for anticoagulant therapy in 3 different populations
 - overall population with sepsis
 - population with sepsis induced coagulopathy
 - population with sepsis induced DIC
- 24 trials enrolling 14,767 patients

Defined as

- Sepsis induced coagulopathy → presence of a single coagulation related parameter change, such as
 - decreased platelet count
 - prolonged PT
 - decreased AT III activity
 - elevated levels of D-dimer

Defined as

Sepsis induced DIC

- ISTH overt DIC criteria
- ISTH non overt DIC criteria
- JMHW DIC criteria
- JAAM DIC criteria

Population groups

> 24 studies for overall sepsis population

- 5 studies for sepsis induced coagulopathy
- 7 studies for sepsis induced DIC

Results

Outcomes	Illustrative con Assumed risk Control	nparative risks [95% CI] Corresponding risk Anticoagulant	Risk ratio M-H, Random, 95% Cl	No. of participants [No. of studies]	NNT or NNH [95% CI]		M-H,	Risk rational Risk rational Risk rational Risk Rational Regional Regional Regional Regional Regional Risk Rational	o 95% Cl	
Overall population of sep	sis									
All-cause mortality	337 per 1000	327 per 1000 [310, 344]	0.97 [0.92, 1.02]	14767 [24 studies]	not calculated					
Bleeding complications	57 per 1000	76 per 1000 [64, 89]	1.33 [1.12, 1.57]	14359 [20 studies]	44 [24, 222]					
Population of sepsis-indu	ced coagulopathy	,								
All-cause mortality	387 per 1000	375 per 1000 [348, 411]	0.97 [0.88, 1.08]	2629 [5 studies]	not calculated			-		
Bleeding complications	155 per 1000	195 per 1000 [164, 232]	1.26 [1.06, 1.50]	1854 [2 studies]	22 [11, ∞]			-	-5	
Population of sepsis-indu	ced DIC									
All-cause mortality	400 per 1000	288 per 1000 [248, 340]	0.72 [0.62, 0.85]	1603 [7 studies]	13 [8, 27]	3				
Bleeding complications	61 per 1000	77 per 1000 [52, 113]	1.26 [0.86, 1.85]	1566 [6 studies]	not calculated			-		_
						H				
						0.5	0.7	1	1.5	2.0

Umemura Y et al JThromb Haemost. 2016 Mar;14(3):518-30

But ...

Table 2 Characteristics of the 12 trials evaluating mortality in populations with coagulation disorders or with DIC

	Criteria	Sample size, n		
Author (trials)	Sepsis-induced coagulopathy	Sepsis-induced DIC	Treatment	Control
Antithrombin				0
F. Fourrier 1993 [16]		Original criteria*	14	18
F. Baudo 1998 [18]	AT III activity < 70%		49	51
B. L. Warren 2001 [21] (KyberSept)		ISTH overt, non-overt DIC, or both	114	115
S. Gando 2013 [23]		JAAM DIC	30	30
Recombinant human activate	ed protein C			
G. R. Bernard 2001 [24] (PROWESS)		ISTH overt DIC	233	221
V. M. Ranieri 2012 [27] (PROWESS-SHOCK)	Platelet count $\leq 100~000/\mu L$		208	181
Tissue factor pathway inhibit	or			
E. Abraham 2001 [29]	$INR \ge 1.2$		98	48
E. Abraham 2003 [30] (OPTIMIST)	$INR \ge 1.2$		880	874
Unfractionated heparin				
F. Jaimes 2009 [34] (HETRASE)	D-dimer > 500 ng/mL		123	117
X. L. Liu 2014 [35]		Original criteria [†]	22	15
Recombinant human thromb	omodulin			
J. L. Vincent 2013 [37]		Modified ISTH overt DIC	371	370
Gabexate mesilate				
J. T. Hsu 2004 [38]		JMHW DIC	25	25

Umemura Y et al JThromb Haemost. 2016 Mar;14(3):518-30

Should heparin be used ?

Higher and different doses of heparin is being evaluated
 NCT01234285

Larger study for patients with DIC induced septic shock is needed

Beta blockers

Severe sepsis is characterized by

- Cardio circulatory abnormalities
- Sympathetic overactivity
- Meta analysis of 5 RCT's was done
 - > 3 studies reported survival rate, MAP, CVP and HR
 - > 2 studies reported ScvO2
 - > 2 studies reported Tnl

Liu P et al, Am J Emerg Med. 2018 Mar;36(3):470-474

- Different in all 5 studies
- From as low as 0.05mcg/kg/min to 0.5 mcg/kg/min
- In 2 of the studies it was titrated to maintain controlled heart rate

Liu P et al, Am J Emerg Med. 2018 Mar; 36(3): 470-474

Outcomes

• Primary outcome \rightarrow survival rate

• Secondary outcome \rightarrow

- MAP
- CVP
- HR
- ScvO2
- Tnl

MAP / CVP / ScvO2

Figure. 3

HR & TpI

Liu P et al, Am J Emerg Med. 2018 Mar; 36(3): 470-474

SURVIVAL RATE

Liu P et al, Am J Emerg Med. 2018 Mar; 36(3): 470-474

- All are small studies with less than 100 patients
- Meta analysis showed marked improvement in survival
- Need an adequately powered RCT before can be recommended

Naloxone

In cochrane review of 6 CRTs

No statistically significant benefit

- Death rate
- Reduction of dose of vasoactive drug
- Heart rate
- Statistically significant benefit was seen in MAP
 - mean difference: +9.33 mmHg; 95%CI 7.07-11.59

Boeuf B et al, Cochrane Database Syst Rev. 2003;(4):CD004443

Clinical implication

- Cannot be recommended
- Based on conchrane review authors recommend study of atleast 340 patients
 - To demonstrate difference of mortality for power of 80%

Take home message

 Again none of the studies still show convincing evidence for sepsis

Reason for these failed trials

- Lack of clear patient inclusion criteria
- Heterogeneous population

Need to better characterize sepsis

- Better characterize in terms of immune status
- Biomarkers to identify these groups
- Targeted new interventions

▶ Sepsis \rightarrow personalized treatment approach

- To identify causative agent
- Response elicited by person
- Specific therapies

Sepsis – PIRO concept

Table 2

The predisposition, insult, response, organ dysfunction model

Domain	Present	Future	Rationale
Predisposition	Premorbid illness with reduced probability of short-term survival. Cultural or religious beliefs, age, gender.	Genetic polymorphisms in components of inflammatory response (eg, TIR, TNF, IL-1, CD14); enhanced understanding of specific interactions between pathogens and host diseases.	In the present, premorbid factors impact on the potential attributable morbidity and mortality of an acute insult; deleterious consequences of insult heavily dependent on genetic predisposition (future).
Insult infection	Culture and sensitivity of infecting pathogens; detection of disease amenable to source control.	Assay of microbial products (LPS, mannan, bacterial DNA); gene transcript profiles.	Specific therapies directed against inciting insult require demonstration and characterization of that insult.
Response	SIRS, other signs of sepsis, shock, CRP.	Nonspecific markers of activated inflammation (eg, PCT or IL-6) or impaired host responsiveness (eg, HLA-DR); specific detection of target of therapy (eg, protein C, TNF, PAF).	Both mortality risk and potential to respond to therapy vary with nonspecific measures of disease severity (eg, shock); specific mediator- targeted therapy is predicated on presence and activity of mediator.
Organ dysfunction	Organ dysfunction as number of failing organs or composite score (eg, MODS, SOFA, LOD system, PEMOD, PELOD).	Dynamic measures of cellular response to insult—apoptosis, cytopathic hypoxia, cell stress.	Response to pre-emptive therapy (eg, targeting microorganism or early mediator) not possible if damage already present; therapies targeting the injurious cellular process require that it be present.

Marshall JC et al, Crit Care Clin 34 (2018) 1–14