IMMUNE CHECK POINT INHIBITORS IN NSCLC & THEIR TOXICITY

Kodati Rakesh

Immune check point inhibitors

- Introduction
- Role in previously Rxed NSCLC
- Role as first line agent
- Role as combination Rx
- PDL 1 testing
- Toxicity & Management

INTRODUCTION

Anti cancer immunity

- Anti tumour immune response innate and adaptive
- Adaptive immunity offers durable and robust anti cancer immune response
- Immune system is capable of not only inhibiting but also promoting tumor growth through either the selection of tumor cells that are better able to survive in an immunocompetent host

Anti cancer immunity

David P. Carbone et al, J Thorac Oncol. 2015

Cancer immuno editing

David P. Carbone et al, J Thorac Oncol. 2015

Escape of immunity

David P. Carbone et al, J Thorac Oncol. 2015

Immune check points

- Immune checkpoints variety of inhibitory pathways that are crucial in regulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage
- However, these immune checkpoint pathways can be coopted by cancer cells, thus circumventing immune destruction

Immune check points

Nature Reviews | Cancer

Nat Rev Cancer 2012;12:252–264

Immunotherapy

- Aid in the recognition of cancer as foreign by the immune system
- Stimulate immune responsiveness
- Relieve inhibition of the immune system that allows tolerance of tumor growth

Immune check point inhibitors

- Antibodies to PD 1 (IgG4)
 - Nivolumab (BMS-936558; MDX-1106) Pembrolizumab (MK-3475)
- Antibodies to PD L1 (IgG1)
 - Atezolizumab (MPDL3280A)
 - Durvalumab
 - BMS-936559
- Antibodies to CTLA 4
 - Ipilimumab
 - Tremelimumab

IN PREVIOUSLY TREATED NSCLC

NIVOLUMAB

Nivolumab

- 296 patients with melanoma, NSCLC, prostate cancer, renal cancer, or colorectal cancer were treated with doses of 1 mg/kg, 3 mg/kg, or 10 mg/kg every 2 weeks for up to 96 weeks
- 76 pts of NSCLC at 24 weeks
- ORR -18%
- SD -7%
- PFS at 24 weeks 26%
- Better OR was seen with dose of 3 mg/kg
- Grade 3 /4 AEs 14%

Topalian SL, N Eng J Med 2012, 366:2443-54

Checkmate 017 & 057

- Stage IIIB & IV NSCLC
- Progression during or after initial platinum based CT
- ECOG 0 & 1
- Stable and treated brain metastases
- Regardless of PDL 1 expression
- Excluded are patients with autoimmune disease, symptomatic ILD, on systemic immunosuppression, prior therapy with targeted agents

H. Borghaei et al, N Engl J Med 2015;373:1627-39 Julie Brahmer et al, N Engl J Med 2015;373:123-35

Nivolumab vs Docetaxel

	Checkmate 017 (Squamous NSCLC)	Checkmate 057 (Non Squamous NSCLC)	
No of subjects	135 vs 137	292 vs 290	
Dose	Nivolumab 3 mg/kg q 2 weekly vs Docetaxel 75 mg/sq.m q 3 weekly		
OS	9.2 months (95% CI, 7.3 to 13.3) vs 6.0 months (95% CI, 5.1 to 7.3) HR, 0.59 ; (0.44 to 0.79; P<0.001)	12.2 months (95% CI, 9.7 to 15.0) vs 9.4 months (95% CI, 8.1 to 10.7) HR, 0.73; (0.59 to 0.89;P=0.002)	
PFS	3.5 months (95% CI, 7.3 to 13.3) vs 2.8 months (95% CI, 5.1 to 7.3) HR, 0.62 ; (0.47 to 0.81; P<0.001)	2.3 months (95% CI, 2.2 to 3.3) vs 4.2 months (95% CI, 3.5 to 4.9) HR, 0.92; (0.77 to 1.1; P<0.001)	

H. Borghaei et al, N Engl J Med 2015;373:1627-39 Julie Brahmer et al, N Engl J Med 2015;373:123-35

Nivolumab vs Docetaxel

	Checkmate 017 (Squamous NSCLC)	Checkmate 057 (Non Squamous NSCLC)
Overall survival rate at 1 yr	42% (95% CI, 34 to 50) Vs 24% (95% CI, 17 to 31)	51% (95% CI, 45 to 56) Vs 39% (95% CI, 33 to 45)
Objective response rate	20 % vs 9 %	19 % vs 12 %
Time to res	2.2 m vs 2.1 m	2.1 m vs 2.6 m
Duration of res	NR vs 8.4 m	17.2 m vs 5.6 m
AEs 3/4	7 % vs 55 %	10 % vs 54 %

H. Borghaei et al, N Engl J Med 2015;373:1627-39 Julie Brahmer et al, N Engl J Med 2015;373:123-35

Checkmate 017 (Squamous NSCLC)

Overall survival better with Nivolumab

Checkmate 017 (Squamous NSCLC)

Progression free survival better with Nivolumab

Checkmate 017 (PDL1 expression)

PDL1 expression didn't appear to influence the survival benefit

Checkmate 057 (Non Squamous NSCLC)

Overall survival better with Nivolumab

Checkmate 057 (Non Squamous NSCLC)

Progression free survival didn't favour nivolumab over docetaxel

Checkmate 057 (PDL1 expression)

	<i>P</i> -value	High PD-L1 expression Low to no PD-L1 expression DD L1 ext supplifiedle
		I I
0.59 (0.43, 0.82)	•
0.90 (0.66, 1.24) 0.06	
0.43 (0.30, 0.63)	
1.01 (0.77, 1.34) <0.001	
0.40 (0.26, 0.59)	· 1
1.00 (0.76, 1.31)	
0.91 (0.61, 1.35)	
0.70 (0.53, 0.94)	
1.19 (0.88, 1.61) 0.02	
0.54 (0.39, 0.76)	i
1.31 (1.01, 1.71) <0.001	
0.52 (0.37, 0.75)	i
1.24 (0.96, 1.61	(0.001	
1.06 (0.73, 1.56)	
	1.06 (0.73, 1.56	1.06 (0.73, 1.56) 0.25 0.5 Nivolumab

PDL1 expression a/w improved survival with nivolumab

Checkmate 057

Subgroup	No. of Patients	Unstratified Hazard R	Ratio (95% CI)
Overall	582	- -	0.75 (0.62-0.91)
Previous use of maintenance therapy		:	
Yes	233		0.80 (0.58-1.10)
No	349	 ;	0.73 (0.57-0.93)
Line of therapy			
Second line	515	- 1	0.69 (0.56-0.85)
Third line	66		- 1.34 (0.73-2.43)
Age		1	
<65 yr	339		0.81 (0.62-1.04)
≥65 to <75 yr	200		0.63 (0.45-0.89)
≥75 yr	43		0.90 (0.43-1.87)
Sex		1	
Male	319		0.73 (0.56-0.96)
Female	263	_ • +	0.78 (0.58-1.04)
ECOG performance-status score			
0	179		0.64 (0.44-0.93)
1	402		0.80 (0.63-1.00)
Smoking status		1	
Current or former smoker	458	— •— [0.70 (0.56-0.86)
Never smoked	118	•	1.02 (0.64-1.61)
EGFR mutation status			
Positive	82	•	1.18 (0.69-2.00)
Not detected	340	- - - i	0.66 (0.51-0.86)
Not reported	160		0.74 (0.51-1.06)
KRAS mutation status			
Positive	62 -		0.52 (0.29-0.95)
Not detected	123		0.98 (0.66-1.48)
Not reported	397	 i	0.74 (0.58-0.94)
unan mantakén katulanan.	0.25	0.50 1.00 2.0	00 4.00
	-	livolumab Better Docetaxe	el Better

Checkmate 057 (Non Squamous NSCLC)

- Nivolumab doesn't improve survival in specific subgroups like
 - EGFR mutation positive status
 - Never smokers
 - Those with CNS metastases
 - On 3rd line therapy

Nivolumab

- FDA approved for the treatment of patients with advanced NSCLC who experience disease progression on or after standard platinum based chemotherapy
- Dosage 3 mg/kg iv q 2 weekly

PEMBROLIZUMAB

- Phase 1 clinical trial in chemotherapy naive and previously treated locally advanced or metastatic NSCLC
- Pembrolizumab (n=495)
 - -10 mg/kg q 2 wks
 - -10 mg/kg q 3 wks
 - -2 mg/kg q 3 wks
- Efficacy and safety
- Validate PD-L1 expression level that is a/w the likelihood of clinical benefit

Keynote 001

	Previously Rxed (n = 394)	Previously un Rxed (n = 101)	
Over all response rate	19.9 % (16.0 to 23.2)		
	18.0 % (14.4 to 22.2)	24.8 % (16.7 to 34.3)	
Median DOR	12.5 months (range, 1.0 to 23.3)		
	10.4 months (range, 1.0 to 10.4)	23.3 months (range, 1.0 to 23.3)	
Median PFS	3.0 months (95% CI, 2.2 to 4.0)	6.0 months (95% CI, 4.1 to 8.6)	
Median OS	9.3 months (95% CI, 8.4 to 12.4)	16.2 months (95% CI, 16.2 to not reached)	

Edward B. Garon et al, N Engl J Med 2015;372:2018-28

- Treatment-related AEs occurred in 351/495 patients (70.9%)
- Grade 3 or higher in 47 of 495 patients (9.5%)
- No clear difference according to dose or schedule
- Common S/E were fatigue, pruritus and anorexia
- Response rate was independent of the dose and histology of NSCLC
- Higher response rate in TPS > 50 % (45.2%)

PD-L1 expression \geq 50% of tumor cells correlated with improved efficacy of pembrolizumab

Edward B. Garon et al, N Engl J Med 2015;372:2018-28

- Progression after two or more cycles of platinumdoublet chemotherapy as well as an appropriate TKI for those with an EGFR-sensitising mutation or ALK gene rearrangement
- Measurable disease as per investigator-assessed RECIST
- ECOG of 0 or 1
- PD-L1 expression on at least 1% of tumour cells

1034 (PDL $1 \ge 1\%$), 442 (PDL $1 \ge 50\%$)

		Pembrolizumab 2 mg/kg	Pembrolizumab 10 mg/kg	Docetaxel
PDL 1 ≥ 1% (345/ 346/ 343)	OS	10·4 months HR 0·71 95% CI 0·58–0.88	12·7 months HR 0·61 95 % CI 0·49–0·75	8.5 months
	PFS	3·9 months HR 0·88, 95% CI 0·74–1·05	4·0 months HR 0·79, 95% CI 0·66–0·94	4.0 months
PDL 1 ≥ 50 % (139/ 151/ 152)	OS	14.9 months HR 0.54 95% CI 0.38–0.77	17.3 months HR 0·50 95 % CI 0·36–0·70	8.2 months
	PFS	5.0 months HR 0.59 95% CI 0.44–0.78	5.2 months HR 0·59 95% CI 0·45–0·78	4.1 months

	Pembrolizumab 2 mg/kg	Pembrolizumab 10 mg/kg	Docetaxel
ORR in TPS $\geq 1\%$	62 (18%)	64 (18%)	32 (9%)
ORR in TPS ≥ 50 %	42 (30%)	44 (29%)	12 (8%)
Median time to response	9 weeks	9 weeks	9 weeks
Duration of response	NR	NR	8 months (≥50%) 6 months (≥ 1%)

Keynote 010

	Events/patients (n)	Hazard ratio (95% C
Sex		
Male	488/634	0-78 (0-64-0-94)
Female	290/399	- 1·02 (0·78-1·32)
Age (years)		
<65	466/604 -	0.84 (0.69-1.02)
≥65	312/429	0.93 (0.72-1.19)
ECOG performance	status	
0	251/348	
1	522/678	0.76 (0.63-0.91)
PD-L1 tumour prop	ortion score	
≥50%	304/442	0.59 (0.46-0.74)
1 - 49%	474/591	- 1.04 (0.85-1.27)
Tumour sample	_	
Archival	367/455	0.81 (0.65-1.01)
New	411/578	0.86 (0.70-1.07)
Histology		
Squamous	182/222	0.86 (0.62-1.20)
Adenocarcinoma	522/708 -	0-86 (0-71-1-03)
EGFR status		
Mutant	70/86	1.79 (0.94-3.42)
Wild-type	660/875 -	0.83 (0.71-0.98)
Overall	778/1033	0.85 (0.73-0.98)
(01 1	10
		—

Roy S Herbst et al, Lancet 2015

- Greatest improvement in overall survival was in patients with a TPS of \geq 50% for pembrolizumab compared with docetaxel
- Patients with a score of 1–49% also benefited
- Because patients with TPS < 1% were excluded from this study, it is unclear whether such patients would have a different response to pembrolizumab compared with the 1– 49% subgroup
- Equally efficacious doses of 2 mg/kg and 10 mg/kg

Brain metastases

- Typically portend a poor prognosis
- Significant morbidity
- Patients with untreated brain metastases are excluded in most clinical trials
- Only included asymptomatic, treated and documented stable before enrollment
- Pembrolizumab (10 mg/kg q 2wkly) was studied in a phase 2 trial in NSCLC and melanoma patients with brain mets

Untreated progressive brain mets

- 36 patients (18 melanoma and 18 NSCLC)
- 18 NSCLC were positive for PDL1
- Atleast one brain metastasis between 5 mm and 20 mm that was untreated or that was unequivocally progressing after radiation
- Excluded patients with neurological symptoms attributable to brain mets or who required steroids, patients with leptomeningeal disease

Untreated progressive brain mets

- ORR of brain mets was 22% for melanoma and 33% for NSCLC with durable response
- Strong concordance with systemic response
- It is unknown whether pembrolizumab is effective or safe in patients with symptomatic or larger brain metastases
- Immature survival data and small sample size
- Requires further studies for validation

ATEZOLIZUMAB

PDL 1 testing in Atezolizumab trials

PD-L1 tumour cell scoring		PD-L1 tumour-infiltrating immune cell scoring	
Score	Score Percentage of PD-L1-expressing cells		Percentage of PD-L1-expressing cells
TC3	≥50%	IC3	≥10%
TC2	≥5% and <50%	IC2	≥5% and <10%
TC1	≥1% and <5%	IC1	≥1% and <5%
TC0	<1%	ICO	<1%

- Randomised, open-label phase 2 trial
- Previously treated NSCLC
- ECOG 0 or 1
- 287 patients
- Atezolizumab 1200 mg (n= 144) or docetaxel 75 mg/m²(n = 143) once every 3 weeks
- Benefit in overall survival but not in PFS or ORR
- Overall survival improvement was significant in the TC2/3 or IC2/3

Overall survival benefit from atezolizumab increased with increasing PD-L1 expression on tumour cells, tumour infiltrating immune cells, or both

PD-L1 expression is predictive of OS benefit

Louis Fehrenbacher et al, Lancet 2016; 387: 1837–46

- Randomised, open-label, phase 3 trial
- Stage III/IV non-small-cell lung cancer
- One to two previous cytotoxic chemotherapy regimens
- ECOG 0 or 1
- Measurable disease by RECIST
- 850 patients (425 in each group)

- Atezolizumab 1200 mg vs Docetaxel 75 mg/m²
- Over all survival

F	n (%)	Median overall su	urvival (months)		HR (95% CI)
		Atezolizumab	Docetaxel		00080- 00
TC3 or IC3	137 (16)	20.5	8.9		0.41 (0.27-0.64)
TC2/3 or IC2/3	265 (31)	16-3	10.8	_	0.67 (0.49-0.90)
TC1/2/3 or IC1/2/3	463 (54)	15.7	10.3	_ _	0.74 (0.58-0.93)
TCO and ICO	379 (45)	12-6	8.9	_	0.75 (0.59-0.96)
пт	850 (100)	13-8	9.6	- - -	0.73 (0.62-0.87)
				Favours atezolizumab Favours docetaxel	

Achim Rittmeyer et al, Lancet 2017; 389: 255–65

Α	n (%)	Median overall su	rvival (months)		HR (95% CI)
		Atezolizumab	Docetaxel		
Female	330 (39)	16-2	11.2	_	0.64 (0.49-0.85)
Male	520 (61)	12.6	9.2	·	0.79 (0.64-0.97)
<65 years old	453 (53)	13.2	10.5	_	0.80 (0.64-1.00)
≥65 years old	397 (47)	14.1	9.2	— •	0.66 (0.52-0.83)
ECOG PS 0	315 (37)	17.6	15.2		0.78 (0.58-1.04)
ECOG PS 1	535 (63)	10.6	7.6		0.68 (0.56-0.84)
1 previous therapy	640 (75)	12.8	9.1	_	0.71 (0.59-0.86)
2 previous therapies	210 (25)	15·2	12.0		0.80 (0.57-1.12)
Non-squamous	628 (74)	15.6	11.2	_ —	0.73 (0.60-0.89)
Squamous	222 (26)	8.9	7.7	_	0.73 (0.54-0.98)
Never smokers	156 (18)	16.3	12.6		0.71 (0.47-1.08)
Current or previous smokers	694 (82)	13.2	9.3	_	0.74 (0.61-0.88)
CNS metastases	85 (10)	20.1	11.9		0.54 (0.31-0.94)
No CNS metastases	765 (90)	13-0	9-4		0.75 (0.63-0.89)
KRAS mutant	59 (7)	17-2	10.5		0.71 (0.38-1.35)
KRAS wildtype	203 (24)	13.8	11.3	· · · · · · · · · · · · · · · · · · ·	0.83 (0.58-1.18)
EGFR mutant	85 (10)	10.5	16-2		1.24 (0.71-2.18)
EGFR wildtype	628 (74)	15·3	9.5	_	0.69 (0.57-0.83)
пт	850 (100)	13.8	9.6	- •	0.73 (0.62-0.87)
			0-2	Favours atezolizumab	

Achim Rittmeyer et al, Lancet 2017; 389: 255–65

	Atezolizumab (n = 425)	Chemotherapy (n = 425)	HR
Median PFS	2·8 months (2·6–3·0)	4·0 months (3·3–4·2)	0.95 (0·82–1·10)
Objective response rate	58 (14%)	57 (13%)	0.34 (0·21–0·55)
Objective response rate in TC3/IC3	22 /72 (31%)	7 /65 (11%)	
Median duration of response	16.3 months	6.2 months	-

Achim Rittmeyer et al, Lancet 2017; 389: 255–65

- Over all survival benefit irrespective of the histology and PDL-1 expression
- Benefit in all the subgroups except for EGFR mutant NSCLC
- In contrast to other trials of immune check point inhibitors, no benefit on PFS was found

BIRCH - Atezolizumab

- Efficacy of atezolizumab across all the lines of therapy
- Phase II clinical trial in 659 patients
- In PDL -1 expressors $\geq 5\%$ of TC or IC
- Atezolizumab 1,200 mg iv q 3 wkly
- Divided into three cohorts based on line of therapy, C1 (1st line), C2 (2nd line), C3 (3rd line)

BIRCH - Atezolizumab

TC or IC 2/3	ORR	Median PFS (m)	Median OS (m)
Cohort 1 (139)	30 (22 %)	5.4	20.1
Cohort 2 (268)	52 (19 %)	2.8	15.5
Cohort 3 (252)	45 (18%)	2.8	13.2

TC or IC 3	ORR	Median PFS (m)	Median OS (m)
Cohort 1 (65)	20 (31 %)	5.6	NE
Cohort 2 (122)	32 (26 %)	4.0	15.1
Cohort 3 (115)	31 (27 %)	4.1	17.5

Solange Peters et al, J Clin Oncol 35:2781-2789

BIRCH - Atezolizumab

- Clinically meaningful efficacy of atezolizumab across all lines of therapy
- In PD-L1 expressing tumors, response rates were higher with atezolizumab versus historical chemotherapy
- Patients with TC3 or IC3 tumors had higher ORRs versus those with TC2/3 or IC2/3 tumors

DURVALUMAB

- Stage III locally advanced unresectable NSCLC
- With no disease progression after two or more cycles of chemoradiotherapy
- Durvalumab at a dose of 10 mg/kg iv or matching placebo every 2 weeks as a consolidation therapy for up to 12 months
- 709 patients were included
- Optional PDL1 testing of archived samples

Subgroup	Durvalumab	Placebo	Unstratified Hazard Ratio for Disease Progression or I	Death (95% CI)
	no. of pa	ntients		
All patients	476	237		0.55 (0.45-0.68)
Sex				
Male	334	166	⊢ •−1	0.56 (0.44-0.71)
Female	142	71	· · · · · · · · · · · · · · · · · · ·	0.54 (0.37-0.79)
Age at randomization				
<65 yr	261	130		0.43 (0.32-0.57)
≥65 yr	215	107		0.74 (0.54-1.01)
Smoking status				
Smoker	433	216	⊢ •→	0.59 (0.47-0.73)
Nonsmoker	43	21	• · · · · · · · · · · · · · · · · · · ·	0.29 (0.15-0.57)
NSCLC disease stage				
IIIA	252	125		0.53 (0.40-0.71)
IIIB	212	107	· · · · · · ·	0.59 (0.44-0.80)
Tumor histologic type		180		COLOR AND COLOR
Squamous	224	102		0.68 (0.50-0.92)
Nonsquamous	252	135	• • •	0.45 (0.33-0.59)
Best response				
Complete response	9	7		
Partial response	232	111		0.55 (0.41-0.75)
Stable disease	222	114		0.55 (0.41-0.74)
PD-L1 status				
≥25%	115	44	· · · · · · · · · · · · · · · · · · ·	0.41 (0.26-0.65)
<25%	187	105		0.59 (0.43-0.82)
Unknown	174	88	⊢ →	0.59 (0.42-0.83)
EGFR mutation				
Positive	29	14	· · · · · · · · · · · · · · · · · · ·	0.76 (0.35-1.64)
Negative	315	165		0.47 (0.36-0.60)
Unknown	132	58		0.79 (0.52-1.20)
				х. — У
			0.25 0.50 1.00 2	
			Durvalumab Better Placebo Better	

	Durvalumab (N = 443)	Placebo (N =213)	HR
Median PFS	16.8 months (13.0–18.1)	5.6 months (4.6–7.8)	0.52 (0·42–0.65)
12-month PFS rate	55.9% (51.0 to 60.4)	35.3% (29.0 to 41.7)	-
18-month PFS rate	44.2% (37.7 to 50.5)	27.0% (19.9 to 34.5)	-
ORR	28.4%	16.0% P<0.001	

Difference b/n PFS & OS

- Standard radiographic endpoints might underestimate treatment benefit with ICPis
 - initial increase in tumour volume from increased immune infiltration
- Delayed anticancer immune effects after RECISTdefined progression
- Anti tumour immune activation beyond progression that might be sustained by continued treatment

Summary of phase III trials

	OS	PFS	ORR	Benefit in PDL 1
Nivolumab Checkmate 017	✓	✓	✓	Independent of PDL1
Nivolumab Checkmate 057	✓	×	\checkmark	Predictive association
Pembrolizumab Key note 010	✓	×	\checkmark	More OS / PFS benefit in PDL $1 \ge 50 \%$
Atezolizumab OAK	✓	×	×	Independent of PDL1
Durvalumab PACIFIC	✓	\checkmark	\checkmark	Independent of PDL1

AS FIRST LINE THERAPY NSCLC

Untreated NSCLC

Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer

 Martin Reck, M.D., Ph.D., Delvys Rodríguez-Abreu, M.D., Andrew G. Robinson, M.D., Rina Hui, M.B., B.S., Ph.D., Tibor Csőszi, M.D., Andrea Fülöp, M.D., Maya Gottfried, M.D., Nir Peled, M.D., Ph.D., Ali Tafreshi, M.D.,
Sinead Cuffe, M.D., Mary O'Brien, M.D., Suman Rao, M.D., Katsuyuki Hotta, M.D., Ph.D., Melanie A. Leiby, Ph.D., Gregory M. Lubiniecki, M.D., Yue Shentu, Ph.D., Reshma Rangwala, M.D., Ph.D., and Julie R. Brahmer, M.D., for the KEYNOTE-024 Investigators*

KEYNOTE 024, NEJM November 2016

First-Line Nivolumab in Stage IV or Recurrent Non–Small-Cell Lung Cancer

D.P. Carbone, M. Reck, L. Paz-Ares, B. Creelan, L. Horn, M. Steins, E. Felip, M.M. van den Heuvel, T.-E. Ciuleanu, F. Badin, N. Ready, T.J.N. Hiltermann, S. Nair, R. Juergens, S. Peters, E. Minenza, J.M. Wrangle, D. Rodriguez-Abreu, H. Borghaei, G.R. Blumenschein, Jr., L.C. Villaruz, L. Havel, J. Krejci, J. Corral Jaime, H. Chang, W.J. Geese, P. Bhagavatheeswaran, A.C. Chen, and M.A. Socinski, for the CheckMate 026 Investigators*

CHECKMATE 026, NEJM June 2017

- Untreated stage IV NSCLC with no sensitizing EGFR mutation / ALK translocation
- PD-L1 tumor-expression level of 50 % or more
- ECOG 0 or 1
- Measurable disease according to RECIST
- No previous systemic anticancer therapy as primary therapy for advanced or metastatic disease

	Pembrolizumab (n = 154) 200 mg q3 wkly	Platinum based Chemotherapy (n= 151)	HR
Median PFS	10.3 months (6.7 to NR)	<mark>6 months</mark> (4.2 to 6.2)	0.50 (0.37 – 0.68)
Rate of OS at 6 months	80.2 %	72.4 %	0.60 (0.41 - 0.89)
Rate of OS at 12 months	70%	54%	
Median duration of response	Not reached	6.3 months	-
Objective response rates	44.8 %	27.8 %	-
AEs/ Gr 3,4 AEs	73 %/27 %	90 %/53 %	

Subgroup	No. of Patients	Hazard Ratio for Disease Progre	ssion or Death (95% CI)
Overall	189/305		0.50 (0.37-0.68)
Age			
<65 yr	91/141		0.61 (0.40-0.92)
≥65 yr	98/164		0.45 (0.29-0.70)
Sex			
Male	116/187		0.39 (0.26-0.58)
Female	73/118		0.75 (0.46-1.21)
Region of enrollment			
East Asia	21/40		0.35 (0.14-0.91)
Non-East Asia	168/265		0.52 (0.38-0.72)
ECOG performance-status score			
0	59/107	· · · · · · · · · · · · · · · · · · ·	0.45 (0.26-0.77)
1	129/197		0.51 (0.35-0.73)
Histologic type			
Squamous	37/56		0.35 (0.17-0.71)
Nonsquamous	152/249		0.55 (0.39-0.76)
Smoking status			
Current	44/65		0.68 (0.36-1.31)
Former	133/216		0.47 (0.33-0.67)
Never	12/24 -		0.90 (0.11-7.59)
Brain metastases at baseline			
Yes	17/28		0.55 (0.20-1.56)
No	172/277		0.50 (0.36-0.68)
Platinum-based chemotherapy reg	gimen		
Included pemetrexed	120/199		0.63 (0.44-0.91)
Did not include pemetrexed	69/106		0.29 (0.17-0.50)
	0,1	1	10
	-	Pembrolizumab Better Chemo	► therapy Better

- Longer progression-free and overall survival in patients with previously untreated advanced NSCLC and a PD-L1 ≥ 50% or greater
- Fixed dosage of pembrolizumab 200 mg q 3weeks

<u>Pembrolizumab has survival benefit over chemotherapy</u> <u>in untreated NSCLC in high PDL 1 expressors</u>

Untreated stage IV or recurrent NSCLC

- PD-L1 tumor-expression level of 1% or more
- ECOG 0 or 1
- Measurable disease according to RECIST
- No previous systemic anticancer therapy as primary therapy for advanced or metastatic disease

	Nivolumab (n = 211)	Chemotherapy (n= 212)	HR
Median PFS	4.2 months (3.0 to 5.6)	5.9 months (5.4 to 6.9)	1.15 (0.91 – 1.45)
Median OS	14.4 months (11.7 to 17.4)	13.2 months (10.7 to 17.1)	1.02 (0.80 -1.30)
Median duration of response	12.1 months	5.7 months	-
Objective response rates	26 %	33 %	-
AEs / Gr3, 4 AEs	71 % /18 %	92 % / 51 %	

PFS and OS was similar in both the groups (in PDL1 \geq 5 %)

A Progression-free St	urvival				Unstratifie	d Hazard Ratio	B Overall Survival					Unstratified	Hazard Ratio
Subgroup	Nive	Nivolumab		Chemotherapy		5% CI)	Subgroup	Nivolumab		Chemotherapy		(95% CI)	
199999 - 277 4 9	No. of Patients	Median Progression- free Survival mo	No. of Patients	Median Progression- free Survival mo	6 7005			No. of Patients	Median Overall Survival <i>mo</i>	No. of Patients	Median Overall Survival mo		
Overall	271	4.2	270	5.8	i+-	1.19 (0.97-1.46)	Overall	271	13.7	270	13.8	+	1.08 (0.87-1.34)
Age					1	11 10 10 10 10 10 10 10 10 10 10 10 10 1	Age					1	
≥65 yr	123	4.2	137	5.4	÷.	1.21 (0.91-1.62)	≥65 yr	123	13.3	137	11.0	+	1.04 (0.77-1.41)
<65 yr	148	4.5	133	6.8		1.17 (0.88-1.56)	<65 yr	148	14.1	133	16.7		1.13 (0.83-1.54)
Sex					1		Sex					1	
Male	184	5.1	148	5.5	+	1.05 (0.81-1.37)	Male	184	13.1	148	10.8	+	0.97 (0.74-1.26)
Female	87	3.6	122	6.6		1.36 (0.98-1.90)	Female	87	16.6	122	17.3		1.15 (0.79-1.66)
ECOG performance- status score							ECOG performance- status score						
0	85	5.4	93	7.2		1.69 (1.18-2.42)	0	85	16.6	93	18.0		1.11 (0.74-1.66)
≥l	185	4.0	177	5.4	+	1.01 (0.79-1.30)	≥l	185	12.7	177	11.0	+	1.02 (0.79-1.32)
Tumor histologic findir	igs				1		Tumor histologic findir	ngs					
Squamous	65	5.1	64	4.6 -		0.83 (0.54-1.26)	Squamous	65	10.5	64	10.2		0.82 (0.54-1.24)
Nonsquamous	206	4.2	206	6.8		1.29 (1.02-1.63)	Nonsquamous	206	14.5	206	16.7		1.17 (0.91-1.52)
Smoking status					1		Smoking status						
Never smoked	30	2.8	29	6.8		- 2.51 (1.31-4.83)	Never smoked	30	13.7	29	12.5	\rightarrow	1.02 (0.54-1.93)
Former smoker	186	4.2	182	5.7	÷	1.14 (0.89-1.47)	Former smoker	186	14.1	182	13.3	-	1.09 (0.84-1.42)
Current smoker	52	5.4	55	6.8	+	1.03 (0.66-1.62)	Current smoker	52	14.3	55	17.1		1.05 (0.63-1.74)
≥50% PD-L1 expression level	n <u>8</u> 8	5.4	126	5.8 0.5		1.07 (0.77–1.49) 4	≥50% PD-L1 expression level	n 88	15.9	126	13.9	0.5 1 2	0.90 (0.63–1.29)
Nivolumab Better Chemotherapy Better							Nivolumab Better Chemotherapy Better					otherapy Better	

- No definite benefit of survival was found even in any of the subgroups (histology or PDL1 ≥ 50 %)
- Chemotherapy group has less tumor burden and less liver mets
- High frequency of subsequent nivolumab therapy (58 % cross over) may have contributed to favourable OS in chemotherapy group

Nivolumab has no benefit over chemotherapy in untreated NSCLC
Differences in both the trials

- Although the precise reasons for the divergent outcomes of the KEYNOTE 024 trial and the CHECK MATE 026 trial remain unclear
- Cannot be attributed to a single factor
- Subtle differences are present which may be contributing factors

Differences in both the trials

	KEYNOTE 024 (Pembrolizumab)	CHECKMATE 026 (Nivolumab)
PD L1 cut off	$\geq 50\%$	≥ 5%
High PDL $1 \ge 50\%$ expression	No difference in both the groups	Higher proportion in the control arm compared to the nivolumab arm (126 vs 88) *Analysis was not prespecified
Assay for PDL 1 expression	Anti–PD-L1 antibody (22 C3 antibody)	Anti–PD-L1 antibody (28-8 antibody)
	Sensitivity of the relevant clones used to define PD-L1 status is potentially different	
Tumor sample for testing	Tissue resected at the time the metastatic disease was diagnosed	Fresh or archival tumor-biopsy specimens obtained within 6 months

Remon J et al, BMC Medicine (2017) 15:55

Differences in both the trials

	KEYNOTE 024 (Pembrolizumab)	CHECKMATE 026 (Nivolumab)
% never smokers in study group	3 %	11 %
	Never smokers have low mutational load Efficacy of immune checkpoint inhibitors is lower among never smokers	
% RT before enrollment	Previous RT within 6 months is an exclusion criteria	37.6%
	Previous RT can have major consequences on the tumor microenvironment and potentially lead to decreased activity of inhibitors in previously irradiated areas	
Systemic GC Rx	Ineligible	Concomitant GC Rx was allowed

Remon J et al, BMC Medicine (2017) 15:55

First line Rx

- Pembrolizumab received FDA approval in October 2016
- Only ICPi approved alone as a first line therapy in metastatic NSCLC with TPS ≥ 50 % with no EGFR or ALK genomic tumour aberrations

IN COMBINATION WITH CHEMOTHERAPY

As a combination 1st line

Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study

Corey J Langer, Shirish M Gadgeel, Hossein Borghaei, Vassiliki A Papadimitrakopoulou, Amita Patnaik, Steven F Powell, Ryan D Gentzler, Renato G Martins, James P Stevenson, Shadia I Jalal, Amit Panwalkar, James Chih-Hsin Yang, Matthew Gubens, Lecia V Sequist, Mark M Awad, Joseph Fiore, Yang Ge, Harry Raftopoulos, Leena Gandhi, for the KEYNOTE-021 investigators*

KEYNOTE 021, Lancet Oncol 2016

Synergy with chemotherapy

Immunologic effects of chemotherapy

- Induction of PD-L1 expression on tumour cells
- Reducing the regulatory T cell activity
- Killing the tumour cells
 - improves the T cell to tumour ratio
 - reduces barriers to T-cell migration into the tumour
 - diminishes immunosuppressive substances release

- Addition of pembrolizumab to platinum-doublet chemotherapy improves efficacy in patients with advanced non-squamous NSCLC
- Randomised, open-label, phase 2 trial
- Chemotherapy-naive, stage IIIB or IV, non-squamous NSCLC without targetable EGFR or ALK genetic aberrations

	Pembrolizumab + Carboplatin/pemetrexed (n = 60)	Carboplatin/pemetrexed (n= 63)	HR
Objective response	33 (55%) 95 % CI 42–68	18 (29%) 95 % CI 18–41 p 0.0016	
Median PFS	13·0 months (95% CI 8·3 to NR)	8·9 months (95% CI 4·4–10·3)	0.53 (0.31 – 0.91)
Rate of deaths at data cut off	13 (22%)	14 (22%)	0.90 (0.42 -1.91)
Median time to response	1.5 (1.4-2.8)	2.7 (1.4-2.8)	
Response PD L1 <1 % 1- 49% ≥ 50 %	57 % 26 % <u>80 %</u>	13 % 39 % 35 %	

Corey J Langer et al, Lancet Oncol 2016

Corey J Langer et al, Lancet Oncol 2016

- Benefit in progression free survival but no difference in overall survival
- Objective response was similar in patients with a PD-L1 TPS < 1% and those with a score of \geq 1%
- Possibly higher proportion of responses in patients with a tumour proportion score of 50% or greater

- Small sample sizes of the individual subgroups relationship between PD-L1 expression and efficacy in patients treated with pembrolizumab plus chemotherapy inconclusive
- FDA approval in May 2017 as a first line therapy in combination with chemotherapy in non squamous NSCLC regardless of the PDL 1 expression with no EGFR or ALK genomic tumour aberrations

PDL -1 TESTING

Does PDL-1 testing really needed?

- Potential predictive biomarker for efficacy from anti–PD-1 and PD-L 1 targeted agents
- Improved response rates in PDL-1 expressors
- But efficacy also seen in patients with PD-L1– negative tumors, albeit at a lower rate

	PDL-1 testing	Results
Check mate 017 (Squamous NSCLC)	Retrospective in archival samples (83 %) Clone 28-8	No difference in OS, PFS, ORR in all the prespecified PDL 1 subgroup analyses
Checkmate 057 (Non squamous NSCLC)	Retrospective in archival samples (78 %) Clone 28-8	PDL 1 expressors has better OS, PFS and ORR with Nivolumab than docetaxel at all prespecified PDL -1 levels ($\geq 1 \%$, $\geq 5\%$, $\geq 10 \%$) PDL 1 non expressors have equal ORR, PFS and OS b/n docetaxel and nivolumab
Checkmate 026 (NSCLC) 1 st line Rx	Fresh or archival tumor- biopsy Clone 28-8 Only PDL $1 \ge 5 \%$	No definite association was seen with PDL-1 expression and efficacy

*Previously treated Squamous NSCLC – independent of PDL1 *Previously treated Non squamous NSCLC – better in PDL1 expressors, but in non expressors equivalent to chemotherapy

	PDL-1 testing	Results
KEYNOTE 001 (phase I) PD-L1 $\geq 1\%$	Contemporaneous sample anti–PD-L1 antibody clone 22C3	PDL1 ≥ 50 % had better median OS and PFS But no comparator group prevents the assessment of the prognostic implications of PD-L1 expression
KEYNOTE 010 PD-L1 $\geq 1\%$	Archival/new sample antibody clone 22C3	PDL1 \geq 50 % had better PFS than over all OS and ORR no difference
KEYNOTE 024 PD-L1 \geq 50 %	Fresh sample antibody clone 22C3	Better PFS, OS and ORR But all patients were PDL1 \geq 50 %
KEYNOTE 021 Combi with CT	Had response in all the subgroups and on PDL 1 expressors as a first line in combination with chemo Rx	

*Trials of Pembrolizumab didnt include non PDL expressors & the benefit of it in them is not known
*But it has shown benefit in combination with chemotherapy as 1st line

	PDL-1 testing	Results
POPLAR Phase II	VENTANA SP142 PD-L1 IHC assay	OS benefit increased with increasing PD-L1 expression on tumour cells, tumour infiltrating immune cells, or both PD-L1 expression is predictive of OS benefit
OAK trial Phase III		OS benefit is independent of PDL 1expression But better response rates in high PDL1 expressors (TC 3/IC 3)

*Previously treated NSCLC – different in both the trials

Companion diagnostic assays comparison

Agent	Nivolumab	Pembrolizumab	Atezolizumab	Durvalumab
Primary antibody clone used in the assay system	28-8 (Dako)	22C3 (Dako)	SP142 (Ventana)	SP263 (Ventana)
Interpretive scoring	Tumor cell membrane	Tumor cell membrane	Tumor cell membrane Infiltrating immune cells	Tumor cell membrane
Instrument and detection systems required	EnVision Flex on AutostainerLink 48	EnVision Flex on AutostainerLink 48	OptiView detection and amplification on Benchmark ULTRA	OptiView detection on Benchmark ULTRA
Therapeutic developer	Bristol-Myers Squibb	Merck	Genente <mark>ch</mark>	AstraZeneca

Different definition of PD-L1 positivity

Different antibody & different techniques

All PD-L1 IHC assays are aligned with regard to PD-L1 expression on TCs except for Ventana, SP 142

Greater variability among the immune cell staining

Interchanging assays and cut offs would lead to "misclassification" of PD-L1 status for some patients

Fred R. Hirsch, et al, Journal of Thoracic Oncology 2017

- Lack of uniform assay
- Dynamic nature of PD-L1 expression
- "PD-L1 positivity may predict those more likely to respond, it does not capture all of those who benefit from treatment"

TOXICITY OF ICPI

Toxicities (ICPis)

- Infusion reactions
- Immune-related adverse events (irAEs) or adverse events of special interest (AEoSI)

irAE

- Block the negative regulators of immunity that are normally important for maintaining immunologic homeostasis
- Distinct both in mechanism and management from adverse effects commonly associated with chemotherapy
- Majority of data documenting irAEs come from large published trials, mostly in patients with advanced melanoma, NSCLC, and renal cell carcinoma

Toxicities (ICPis)

	AEs	Grade 3,4 AEs
anti-CTLA4	60 % - 85 %	10 % - 25 %
Nivolumab		
Squamous NSCLC	58 %	7 %
Non squamous NSCLC	69 %	10 %
Pembrolizumab		
2 mg/kg	63 %	13 %
10 mg/kg	66 %	16 %
200 mg	73.4 %	26.6 %
Combination Rx	95 %	55 %

More severe and early onset in combination Rx

Toxicities (ICPis)

Alternate immunosuppression – Infliximab, Cyclophosphamide, MMF, Tacrolimus

Celine Boutros et al; Nat Rev Clin Oncol vol 13, 2016

Fatigue

- Most common side effect
- PD-1 & anti-PD-1 ligand agents 16 to 24 %
- Ipilimumab 40 %
- Generally mild, and severe fatigue is rare
- Exclude thyroid, pituitary, and other endocrine disorders

Skin irAE

- CTLA4 (ipilimumab) 43% 45%
- PD-1 (nivolumab and pembrolizumab) $\sim 34\%$
- Develop early in the course of treatment
- Rash, pruritus and vitiligo
- Serious skin AEs (SJS, TEN, DRESS) are rare
- Rule out any other aetiology of the skin
- Evaluation of the severity of the disease

Skin irAE

Endocrine irAE

- Unlike others, they are permanent
- Require permanent hormone replacement Rx
- Hypophysitis & pituitary dysfunction
- Hypo > hyperthyroidism
- Potential for permanent HPG axis dysfunction, should be counselled appropriately future fertility
- Adrenal crisis most severe
- Type 1 diabetes mellitus

Thyroid dysfunction

TSH

Pituitary dysfunction

Endocrine irAE

- Thyroid dysfunction is found by routine blood tests (TSH and FT4)
- TFTs every cycle for first 3 months, every second cycle thereafter
- Cortisol as indicated by symptoms/falling TSH
- Comprehensive metabolic profile including glucose for the first 12 weeks of therapy

Hepatotoxicity

- Most episodes are asymptomatic
- Radiology may show mild hepatomegaly, peri-portal edema, or periportal lymphadenopathy
- Biopsy severe panlobular hepatitis with prominent perivenular infiltrate with endothelitis
- Infliximab should not be given to patients with elevated AST/ALT since it carries a risk of hepatotoxicity

Hepatotoxicity

Diarrhoea/colitis

- 27 54 % in ipilimumab recipients
- Less common with PD 1 and PDL 1 agents
- A/w abdominal pain, hematochezia, weight loss, fever & vomiting
- Stool analyses for enteropathogens
- Confirmed by flexible sigmoidoscopy or colonoscopy with biopsies if grade 2 or higher

Diarrhoea/colitis

Diarrhoea/colitis

- 5% of patients treated with anti-PD-1/PD-L1 mAbs
- 1 % grade 3 and higher pneumonitis
- Single case series of 43 patients of PD/ PDL-1 pneumonitis
- 72 % (31 of 43) of cases were grade 1 to 2
- Median of 2.8 months (9 days 19 months) of Rx
- $1/3^{rd}$ identified incidentally by imaging.
- 1/4th cases CXR did not detect a new abnormality

Naidoo J eta l, J Clin Oncol 2016

- 37 of 43 (86 %) improved by simply withholding ICPi or treating with immunosuppression
- Worse in current/former smokers
- 12 (all with grade 1 to 2) underwent re challenge and recurrent pneumonitis occurred in three (25%)
- Diagnosis of exclusion and requires consideration of competing diagnoses, including infection and malignant lung infiltration
- Diagnostic bronchoscopy with lung biopsy play an important role

Naidoo J eta l, J Clin Oncol 2016

Radiologic Subtypes	Representative Image	Description
Cryptogenic organizing pneumonia-like (n = 5, 19%)		Discrete patchy or confluent consolidation with or without air bronchograms Predominantly peripheral or subpleural distribution
Ground glass opacities (n = 10, 37%)		Discrete focal areas of increased attenuation Preserved bronchovascular markings
Interstitial (n = 6, 22%)		Increased interstitial markings, interlobular septal thickening Peribronchovascular infiltration, subpleural reticulation Honeycomb pattern in severe patient cases
Hypersensitivity (n = 2, 7%)		Centrilobular nodules Bronchiolitis-like appearance Tree-in-bud micronodularity
Pneumonitis not otherwise specified (n = 4, 15%)		Mixture of nodular and other subtypes Not clearly fitting into other subtype classifications

CPI should be delayed until the daily dose of steroids ≤ 10 mg of oral prednisone/day in Grade 1 and 2 pneumonitis Naidoo J eta l, J Clin Oncol 2016

Rare irAEs

- Neurologic toxicity -polyneuropathy, facial nerve palsy, demyelination, myasthenia gravis, LGBS, posterior reversible leuko- encephalopathy, transverse myelitis, enteric neuropathy, encephalitis and aseptic meningitis
- Rheumatologic toxicity mild or moderate myalgias and arthralgia
- Cardiac toxicity -myocarditis, pericarditis, arrhythmias, cardiomyopathy and impaired ventricular function

ESMO clinical practice guidelines, Annals of Oncology 2017 Celine Boutros et al; Nat Rev Clin Oncol vol 13, 2016

Rare irAEs

- Ocular toxicity keratitis, uveitis, orbital inflammation, including thyroid- opthalmopathy and idiopathic orbital inflammation and retinal and choroidal disease (choroidal neovascularisation and melanoma associated retinopathy)
- Renal toxicity
- Hematologic toxicity rare

ESMO clinical practice guidelines, Annals of Oncology 2017 Celine Boutros et al; Nat Rev Clin Oncol vol 13, 2016

Take home message

ICPIs act by enhancing tumour immunity PDL 1 is predictor of responsiveness to ICPis Immune related adverse events – requires stoppage/ withholding Rx and immunosuppression

Agent	FDA approval	
Nivolumab	Previously treated NSCLC irrespective of PDL 1 expression	
Pembrolizumab	Previously treated NSCLC (PDL1 \geq 1%) As a first line agent in NSCLC (PDL 1 \geq 50%) As combination with chemotherapy in nonsquamous NSCLC irrespective of PDL1 expression	
Atezolizumab	Previously treated NSCLC irrespective of PDL 1 expression	

THANK YOU