Nutrition in critically ill –recent update

Arindam Mukherjee SR, Pulmonary Medicine PGIMER

Route

• EN vs PN – summary of evidences

• No benefit in mortality.

- Significant increase in number of infectious complication with use of PN.
- EN associated with significant reduction in ICU days compared to PN.
- But no difference in hospital length of stay or ventilator days
- \odot EN associated with increased vomiting.

CANADIAN CLINICAL PRACTICE GUIDELINE 2015

EN vs PN mortality

Canadian clinical practice guideline 2015

Infectious complication EN vs PN

Figure 3. Studies comparing EN vs PN: Infectious complications

Canadian clinical practice guideline 2015

CALORIES trial – [largest RCT on EN vs PN]

- Hypothesis "parenteral route is superior to the enteral route for the delivery of early nutritional support in adults who had an unplanned admission to an intensive care unit (ICU) and who could be fed through either route."
- Study design- pragmatic, open, multicenter, parallel-group, randomized, controlled trial.
- Method- patients who could be fed through either the parenteral or the enteral route were assigned to a delivery route, with nutritional support initiated within 36 hours after admission and continued for up to 5 days.
- Primary outcome- all cause mortality at day 30.
- Result -no significant difference in 30-day mortality associated with the route of delivery of early nutritional support in critically ill adults was found.

NEJM october 30, 2014

Outcome Parenteral Group (N=1191) Enteral Group (N=1197) Absolute Difference between Groups (95% C1) Relative RI (95% C1) Primary outcome: death within 30 days — no, fotal no. (%) 393/1188 (33.1) 409/1195 (34.2) 1.15 (-2.65 to 4.94)† 0.97 (0.86 to 1 (95% C1) Secondary outcomes					es.*	Table 3. Primary and Secondary Outcome
Primary outcome: death within 30 days — no. /total no. (%) 393/1188 (33.1) 409/1195 (34.2) 1.15 (-2.65 to 4.94)↑ 0.97 (0.86 to 1 no./total no. (%) Secondary outcomes No. of days alive and free of specified organ support up to 30 days¶ 14.3±12.1 14.3±12.2 0.04 (-0.94 to 1.01) Free of advanced cardiovascular support 18.9±13.5 18.5±13.6 0.41 (-0.63 to 1.53) Free of renal support 19.1±13.9 18.8±14.0 0.26 (-0.85 to 1.47) Free of neurologic support 19.2±13.8 18.9±14.0 0.34 (-0.81 to 1.36) Free of fastrointestinal support 19.2±0.60 0.21±0.56 0.01 (-0.04 to 0.06) No. of treated infectious complications — no./total no. (%) 0.22±0.60 0.21±0.56 0.01 (-0.04 to 0.06) Episodes of hypoglycemia 44/1191 (3.7)** 74/1197 (6.2)↑↑ 2.49 (0.75 to 4.22)↑ Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)↑ Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)↑ Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)↑ New or substantially worsened pressure ulcers 181/1190 (15.2) 19/1197 (15.0) -0.23 (-3.10 to 2.64)↑ </th <th>k P Value</th> <th>Relative Risk (95% CI)</th> <th>Absolute Difference between Groups (95% CI)</th> <th>Enteral Group (N = 1197)</th> <th>Parenteral Group (N=1191)</th> <th>Outcome</th>	k P Value	Relative Risk (95% CI)	Absolute Difference between Groups (95% CI)	Enteral Group (N = 1197)	Parenteral Group (N=1191)	Outcome
Secondary outcomes No. of days alive and free of specified organ support up to 30 days Free of advanced respiratory support 14.3±12.1 14.3±12.2 0.04 (-0.94 to 1.01) Free of advanced cardiovascular support 18.9±13.5 18.5±13.6 0.41 (-0.63 to 1.53) Free of renal support 19.1±13.9 18.8±14.0 0.26 (-0.85 to 1.47) Free of neurologic support 19.2±13.8 18.9±14.0 0.34 (-0.81 to 1.36) Free of advanced infectious complica- tions per patient] 0.22±0.60 0.21±0.56 0.01 (-0.04 to 0.06) No.niffectious complications no./total no. (%) 0.21±0.56 0.01 (-0.04 to 0.06) 10.12) ⁺ Noninfectious complications no./total no. (%) 12/1191 (17.8) 179/1197 (6.2) ⁺ (* 2.49 (0.75 to 4.22) ⁺ Elevated liver enzymes 212/1191 (17.8) 179/1197 (15.0) -2.85 (-5.81 to 0.12) ⁺ Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 3.22) ⁺ Nominal distention 78/1191 (6.5) 99/1197 (8.3) 1.72 (-0.38 to 3.82) ⁺ Vorniting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43) ⁺ New or substantially worsened pressure ucl	08)‡ 0.57§	0.97 (0.86 to 1.08)‡	1.15 (-2.65 to 4.94)†	409/1195 (34.2)	393/1188 (33.1)	Primary outcome: death within 30 days — no./total no. (%)
No. of days alive and free of specified organ support up to 30 days¶ Free of advanced respiratory support 14.3±12.1 14.3±12.2 0.04 (-0.94 to 1.01) Free of advanced cardiovascular support 18.9±13.5 18.5±13.6 0.41 (-0.63 to 1.53) Free of renal support 19.1±13.9 18.8±14.0 0.26 (-0.85 to 1.47) Free of neurologic support 19.2±13.8 18.9±14.0 0.34 (-0.81 to 1.36) Free of gastrointestinal support 13.0±11.7 13.2±11.8 -0.12 (-1.05 to 0.80) No. of treated infectious complications — no./total no. (%) 0.22±0.60 0.21±0.56 0.01 (-0.04 to 0.06) Noninfectious complications — no./total no. (%) 12/1191 (3.7)** 74/1197 (6.2)↑↑ 2.49 (0.75 to 4.22)↑ Elevated liver enzymes 212/1191 (17.8) 179/1197 (15.0) -2.85 (-5.81 to 0.12)↑ Nausea requiring treatment 44/1191 (3.7) ** 74/1197 (6.2)↑↑ 2.49 (0.75 to 4.22)↑ Ielevated liver enzymes 212/1191 (17.8) 179/1197 (15.0) -2.85 (-5.81 to 0.12)↑ Nausea requiring treatment 44/1191 (3.7) ** 74/1197 (6.2)↑↑ 2.49 (0.75 to 4.32)↑ 14.4000/1191 (8.4) 194/1197 (15.2) 7.81 (5.20 to 10.43)↑ New or substantially worsened presure ulcers 181/1190 (15.2) 179/1195						Secondary outcomes
Free of advanced respiratory support 14.3±12.1 14.3±12.2 0.04 (-0.94 to 1.01) Free of advanced cardiovascular support 18.9±13.5 18.5±13.6 0.41 (-0.63 to 1.53) Free of renal support 19.1±13.9 18.8±14.0 0.26 (-0.85 to 1.47) Free of neurologic support 19.2±13.8 18.9±14.0 0.34 (-0.81 to 1.36) Free of gastrointestinal support 13.0±11.7 13.2±11.8 -0.12 (-1.05 to 0.80) No. of treated infectious complications — no./total no. (%) 0.22±0.60 0.21±0.56 0.01 (-0.04 to 0.06) Episodes of hypoglycemia 44/1191 (3.7)** 74/1197 (6.2)↑↑ 2.49 (0.75 to 4.22)↑ Elevated liver enzymes 212/1191 (17.8) 179/1197 (15.0) -2.85 (-5.81 to 0.12)↑ Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)↑ Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)↑ Nedian no. of days in testical 18.1 (4.0-15.8) 99/1197 (8.3) 1.72 (-0.38 to 3.82)↑ Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43)↑ Needian no. of days in acute care hospital ((QR))\$\$ 17 (8-34) 16 (8-33) 1.72 (-0.38 to 3.82)↑						No. of days alive and free of specified organ support up to 30 days¶
Free of advanced cardiovascular support. 18.9±13.5 18.5±13.6 0.41 (-0.63 to 1.53) Free of renal support 19.1±13.9 18.8±14.0 0.26 (-0.85 to 1.47) Free of neurologic support 19.2±13.8 18.9±14.0 0.34 (-0.81 to 1.36) Free of gastrointestinal support 13.0±11.7 13.2±11.8 -0.12 (-1.05 to 0.80) No. of treated infectious complica- tions per patient[0.22±0.60 0.21±0.56 0.01 (-0.04 to 0.06) Noninfectious complications — no./total no. (%) Episodes of hypoglycemia 44/1191 (3.7)** 74/1197 (6.2)↑↑ 2.49 (0.75 to 4.22)↑ Elevated liver enzymes 212/1191 (17.8) 179/1197 (15.0) -2.85 (-5.81 to 0.12)↑ Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)↑ New or substantially worsened pressure ulcers 181/1190 (15.2) 179/1197 (16.2) 7.81 (5.20 to 10.43)↑ Needian no. of days in the ICU (IQR)\$‡‡ 8.1 (4.0-15.8) 7.3 (3.9-14.3) Median no. of days in acute care hospital (IQR)\$\$ 17 (8-34) 16 (8-33) 16 (8-33) Death — no./total no. (%) ¶¶ 17 (8-34) 16 (8-33)	0.94		0.04 (-0.94 to 1.01)	14.3±12.2	14.3±12.1	Free of advanced respiratory support
Free of renal support 19.1±13.9 18.8±14.0 0.26 (-0.85 to 1.47) Free of neurologic support 19.2±13.8 18.9±14.0 0.34 (-0.81 to 1.36) Free of gastrointestinal support 13.0±11.7 13.2±11.8 -0.12 (-1.05 to 0.80) No. of treated infectious complications — no./total no. (%) 0.22±0.60 0.21±0.56 0.01 (-0.04 to 0.06) Episodes of hypoglycemia 44/1191 (3.7)** 74/1197 (6.2)↑↑ 2.49 (0.75 to 4.22)↑ Elevated liver enzymes 212/1191 (17.8) 179/1197 (15.0) -2.85 (-5.81 to 0.12)↑ Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)↑ New or substantially worsened 181/1190 (15.2) 99/1197 (8.3) 1.72 (-0.38 to 3.82)↑ Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43)↑ New or substantially worsened 181/1190 (15.2) 179/1195 (15.0) -0.02 (-3.10 to 2.64)↑ Median no. of days in acute care hospital (IQR)∬ 17 (8-34) 16 (8-33) 10 to 2.64)↑ Death — no./total no. (%)¶¶ 19 16 (8-33) 10 to 2.64)↑	0.44		0.41 (-0.63 to 1.53)	18.5±13.6	18.9±13.5	Free of advanced cardiovascular support
Free of neurologic support 19.2±13.8 18.9±14.0 0.34 (-0.81 to 1.36) Free of gastrointestinal support 13.0±11.7 13.2±11.8 -0.12 (-1.05 to 0.80) No. of treated infectious complications per patient 0.22±0.60 0.21±0.56 0.01 (-0.04 to 0.06) Noninfectious complications — no./total no. (%) Episodes of hypoglycemia 44/1191 (3.7) ** 74/1197 (6.2) ↑↑ 2.49 (0.75 to 4.22) ↑ Elevated liver enzymes 212/1191 (17.8) 179/1197 (15.0) -2.85 (-5.81 to 0.12) ↑ Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32) ↑ Nausea requiring treatment 44/1191 (6.5) 99/1197 (8.3) 1.72 (-0.38 to 3.82) ↑ Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43) ↑ New or substantially worsened 181/1190 (15.2) 179/1195 (15.0) -0.23 (-3.10 to 2.64) ↑ Median no. of days in the ICU (IQR) ‡‡ 8.1 (4.0-15.8) 7.3 (3.9-14.3) 16 (8-33) Death — no./total no. (%) ¶ 17 (8-34) 16 (8-33) Death — no./total no. (%) ¶	0.66		0.26 (-0.85 to 1.47)	18.8±14.0	19.1±13.9	Free of renal support
Free of gastrointestinal support 13.0±11.7 13.2±11.8 -0.12 (-1.05 to 0.80) No. of treated infectious complications per patient 0.22±0.60 0.21±0.56 0.01 (-0.04 to 0.06) Noninfectious complications — no./total no. (%) Episodes of hypoglycemia 44/1191 (3.7)** 74/1197 (6.2)†† 2.49 (0.75 to 4.22)† Episodes of hypoglycemia 44/1191 (3.7)** 74/1197 (15.0) -2.85 (-5.81 to 0.12)† Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)† Nausea requiring treatment 44/1191 (6.5) 99/1197 (8.3) 1.72 (-0.38 to 3.82)† Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43)† New or substantially worsened 181/1190 (15.2) 179/1195 (15.0) -0.23 (-3.10 to 2.64)† Median no. of days in the ICU (IQR)±± 8.1 (4.0–15.8) 7.3 (3.9–14.3) 16 (8–33) Death — no./total no. (%)¶¶ 16 (8–33) 16 (8–33) 16 (8–33)	0.57		0.34 (-0.81 to 1.36)	18.9±14.0	19.2±13.8	Free of neurologic support
No. of treated infectious complications per patient] 0.22±0.60 0.21±0.56 0.01 (-0.04 to 0.06) Noninfectious complications — no./total no. (%) pisodes of hypoglycemia 44/1191 (3.7)** 74/1197 (6.2)†† 2.49 (0.75 to 4.22)† Episodes of hypoglycemia 44/1191 (3.7)** 74/1197 (15.0) -2.85 (-5.81 to 0.12)† Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)† Nausea requiring treatment 44/1191 (6.5) 99/1197 (8.3) 1.72 (-0.38 to 3.82)† Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43)† New or substantially worsened pressure ulcers 181/1190 (15.2) 179/1195 (15.0) -0.23 (-3.10 to 2.64)† Median no. of days in the ICU (IQR)\$\$ 8.1 (4.0–15.8) 7.3 (3.9–14.3) 16 (8–33) Death — no./total no. (%)¶¶ 17 (8–34) 16 (8–33) 16 (8–33)	0.81		-0.12 (-1.05 to 0.80)	13.2±11.8	13.0±11.7	Free of gastrointestinal support
no./total no. (%) Episodes of hypoglycemia 44/1191 (3.7)** 74/1197 (6.2)↑↑ 2.49 (0.75 to 4.22)↑ Elevated liver enzymes 212/1191 (17.8) 179/1197 (15.0) -2.85 (-5.81 to 0.12)↑ Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)↑ Abdominal distention 78/1191 (6.5) 99/1197 (8.3) 1.72 (-0.38 to 3.82)↑ Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43)↑ New or substantially worsened pressure ulcers 181/1190 (15.2) 179/1195 (15.0) -0.23 (-3.10 to 2.64)↑ Median no. of days in the ICU (IQR)‡‡ 8.1 (4.0–15.8) 7.3 (3.9–14.3) 16 (8–33) Death — no./total no. (%)¶¶ Upent — no./total no. (%)¶¶ 16 (8–33) 16 (8–33)	0.72		0.01 (-0.04 to 0.06)	0.21±0.56	0.22±0.60	No. of treated infectious complica- tions per patient
Episodes of hypoglycemia 44/1191 (3.7)** 74/1197 (6.2)†† 2.49 (0.75 to 4.22)† Elevated liver enzymes 212/1191 (17.8) 179/1197 (15.0) -2.85 (-5.81 to 0.12)† Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)† Abdominal distention 78/1191 (6.5) 99/1197 (8.3) 1.72 (-0.38 to 3.82)† Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43)† New or substantially worsened pressure ulcers 181/1190 (15.2) 179/1195 (15.0) -0.23 (-3.10 to 2.64)† Median no. of days in the ICU (IQR)‡‡ 8.1 (4.0–15.8) 7.3 (3.9–14.3) 7.3 (3.9–14.3) Death — no./total no. (%)¶¶ 17 (8–34) 16 (8–33) 16 (8–33)						no./total no. (%)
Elevated liver enzymes 212/1191 (17.8) 179/1197 (15.0) -2.85 (-5.81 to 0.12)† Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32)† Abdominal distention 78/1191 (6.5) 99/1197 (8.3) 1.72 (-0.38 to 3.82)† Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43)† New or substantially worsened pressure ulcers 181/1190 (15.2) 179/1195 (15.0) -0.23 (-3.10 to 2.64)† Median no. of days in the ICU (IQR)‡‡ 8.1 (4.0–15.8) 7.3 (3.9–14.3) 7.3 (3.9–14.3) Median no. of days in acute care hospital (IQR)§§ 17 (8–34) 16 (8–33) 16 (8–33) Death — no./total no. (%)¶¶ 17 (8–34) 16 (8–33) 16 (8–33)	0.006§		2.49 (0.75 to 4.22)†	74/1197 (6.2)††	44/1191 (3.7)**	Episodes of hypoglycemia
Nausea requiring treatment 44/1191 (3.7) 53/1197 (4.4) 0.73 (-0.85 to 2.32) † Abdominal distention 78/1191 (6.5) 99/1197 (8.3) 1.72 (-0.38 to 3.82) † Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43) † New or substantially worsened pressure ulcers 181/1190 (15.2) 179/1195 (15.0) -0.23 (-3.10 to 2.64) † Median no. of days in the ICU (IQR) \$\$ 8.1 (4.0–15.8) 7.3 (3.9–14.3) -0.23 (-3.10 to 2.64) † Median no. of days in acute care hospital (IQR) \$\$ 17 (8–34) 16 (8–33) -0.23 (-3.10 to 2.64) †	0.075		-2.85 (-5.81 to 0.12)†	179/1197 (15.0)	212/1191 (17.8)	Elevated liver enzymes
Abdominal distention 78/1191 (6.5) 99/1197 (8.3) 1.72 (-0.38 to 3.82)↑ Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43)↑ New or substantially worsened pressure ulcers 181/1190 (15.2) 179/1195 (15.0) -0.23 (-3.10 to 2.64)↑ Median no. of days in the ICU (IQR)‡‡ 8.1 (4.0–15.8) 7.3 (3.9–14.3) 16 (8–33) Median no. of days in acute care hospital (IQR)∭ 17 (8–34) 16 (8–33) Death — no./total no. (%)¶¶ 17 (8–34) 16 (8–33)	0.41§		0.73 (-0.85 to 2.32)†	53/1197 (4.4)	44/1191 (3.7)	Nausea requiring treatment
Vomiting 100/1191 (8.4) 194/1197 (16.2) 7.81 (5.20 to 10.43)↑ New or substantially worsened pressure ulcers 181/1190 (15.2) 179/1195 (15.0) -0.23 (-3.10 to 2.64)↑ Median no. of days in the ICU (IQR)‡‡ 8.1 (4.0–15.8) 7.3 (3.9–14.3) -0.23 (-3.10 to 2.64)↑ Median no. of days in acute care hospital (IQR)∭ 17 (8–34) 16 (8–33) -0.24 (-3.10 to 2.64)↑	0.12§		1.72 (-0.38 to 3.82)†	99/1197 (8.3)	78/1191 (6.5)	Abdominal distention
New or substantially worsened pressure ulcers 181/1190 (15.2) 179/1195 (15.0) -0.23 (-3.10 to 2.64) † Median no. of days in the ICU (IQR) \$\$ 8.1 (4.0–15.8) 7.3 (3.9–14.3) Median no. of days in acute care hospital (IQR)\$\$ 17 (8–34) 16 (8–33) Death — no./total no. (%) ¶¶ V V	<0.001§		7.81 (5.20 to 10.43)†	194/1197 (16.2)	100/1191 (8.4)	Vomiting
Median no. of days in the ICU 8.1 (4.0–15.8) 7.3 (3.9–14.3) (IQR)‡‡ Median no. of days in acute care hospital (IQR)∭ 17 (8–34) 16 (8–33) Death — no./total no. (%)¶¶	0.91§		-0.23 (-3.10 to 2.64)†	179/1195 (15.0)	181/1190 (15.2)	New or substantially worsened pressure ulcers
Median no. of days in acute care 17 (8-34) 16 (8-33) hospital (IQR)∭ Death — no./total no. (%)¶¶ 16 (8-33)	0.15			7.3 (3.9–14.3)	8.1 (4.0–15.8)	Median no. of days in the ICU (IQR)‡‡
Death — no./total no. (%)¶¶	0.32			16 (8-33)	17 (8–34)	Median no. of days in acute care hospital (IQR)∭
						Death — no./total no. (%)¶¶
In the ICU 317/1190 (26.6) 352/1197 (29.4) 0.91 (0.80 to 1	03) 0.13§	0.91 (0.80 to 1.03)		352/1197 (29.4)	317/1190 (26.6)	In the ICU
In acute care hospital 431/1185 (36.4) 450/1186 (37.9) 0.96 (0.86 to 1	06) 0.44§	0.96 (0.86 to 1.06)		450/1186 (37.9)	431/1185 (36.4)	In acute care hospital
By 90 days 442/1184 (37.3) 464/1188 (39.1) 0.96 (0.86 to 1	06) 0.40§	0.96 (0.86 to 1.06)		464/1188 (39.1)	442/1184 (37.3)	By 90 days

NUTRIREA 2- ongoing RCT

- This is a multicenter, open-label, parallel-group, randomized controlled trial comparing early PN versus early EN in critically ill patients requiring IMV for an expected duration of at least 48 hours, combined with vasoactive drugs, for shock.
- It has completed recruitment but results are not published.

NCT01802099

Timing

- Early Enteral Nutrition when compared to delayed Enteral Nutrition:
 - no effect on mortality
 - no effect on ICU or hospital length of stay.
 - But improves overall nutritional intake
 - And associated with a significant reduction in infectious complications.

Canadian clinical practice guideline 2015

	Early	EN	Delayed	/None		Risk Ratio		Risk	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Ran	dom, 95% CI
1.1.1 EN vs IV Fluids/N	IO EN								
Moore	1	32	2	31	2.5%	0.48 [0.05, 5.07]	1986	·	
Chuntrasakul	1	21	3	17	2.9%	0.27 [0.03, 2.37]	1996	•	
Singh	4	21	4	22	8.7%	1.05 [0.30, 3.66]	1998		-
Pupelis 2000	1	11	5	18	3.4%	0.33 [0.04, 2.45]	2000	+	
Pupelis 2001	1	30	7	30	3.3%	0.14 [0.02, 1.09]	2001	••	+
Malhotra	12	100	16	100	28.2%	0.75 [0.37, 1.50]	2004		
Subtotal (95% CI)		215	1222	210	49.070	0.02 [0.57, 1.05]			1
Total events	20		37						
teterogeneity: Tau ^a =	0.00; Chr	= 4.10	, df = 5 (P	= 0.54);	1* = 0%				1
Test for overall effect:	Z = 1.78 (P = 0.0	8)						
1.1.2 EN vs Delayed E	N								
Chiarelli	0	10	0	10		Not estimable	1990		
Ever	2	19	2	19	4.0%	1.00 [0.16, 6.38]	1993	8	
Compan 1999	0	14	1	14	1.4%	0.33 [0.01, 7.55]	1999	• • •	
Minard	1	12	4	15	3.2%	0.31 [0.04, 2.44]	2000	· ·	
Kompan 2004	0	27	1	25	1.4%	0.31 [0.01, 7.26]	2004	· ·	-
Ovorak	0	7	0	10		Not estimable	2004		
Peck	4	14	5	13	11.8%	0.74 [0.25, 2.18]	2004		
Vguyen 2008	6	14	6	14	18.7%	1.00 [0.43, 2.35]	2008	-	•
Moses	3	29	3	30	5.9%	1.03 [0.23, 4.71]	2009		-
Chourdakis	3	34	2	25	4.7%	1.10 [0.20, 6.12]	2012	-	
Subtotal (95% CI)		180		175	51.0%	0.83 [0.49, 1.39]		-	
Total events	19		24						
Heterogeneity: Tau ² =	0.00; Chi ^a	= 2.07	, df = 7 (P	= 0.96);	1º = 0%				
Test for overall effect.	Z = 0.72 (P = 0.4	7)	- 3					
Fotal (95% CI)		395		393	100.0%	0.72 [0.50, 1.04]		-	-
Total events	39		61						
Heterogeneity: Tau ² =	0.00; Chi ^a	= 6.83	df = 13 (F	= 0.91	: I* = 0%			to the state	1 1 1
lest for overall effect:	Z = 1.76 (P=00	8)					0.1 0.2 0.5	1 2 5
Feet for esibaroun diffe	rences C	$hi^2 = 0$	58 df = 1	P = 0.4	 1² = 0% 			Favours Early EN	Favours Delayed/

Figure 1. Studies comparing early EN vs delayed nutrient intake: Mortality

Figure 2. Studies comparing early EN vs delayed nutrient intake: Infectious complications

Initiation of enteral feeding

- Trophic vs full feeding -
 - $\,\circ\,$ had no effect on mortality in critically ill patient.
 - \circ had no effect on the incidence of VAP.
 - may be associated with significant underfeeding but better gastrointestinal tolerance.
 - may be associated with poorer functional outcome at 12 months

Canadian clinical practice guideline 2015

Study	Population	Methods (score)	Intervention	Mortality	/ # (%)†	Infection	s # (%)‡
Study	ropulation	(score)	Intervention	Trophic Feeds	Full Feeds	Trophic Feeds	Full Feeds
1) Rice 2011	Mechanically ventilated with acute respiratory failure N=200	C.Random: Yes ITT: Yes Blinding: No (10)	Underfed: 10ml/hr for first 5 days vs. full feed: increased by 25 mls q6h, received 74.8% target. Non isocaloric, non- isonitrogenous	Hospital 22/98 (22)	Hospital 20/102 (17)	30/98 (31) VAP 14/98 (14)	33/102 (32) VAP 18/102 (18)
2) Rice 2012**:	Acute Lung Injury patients from 44 ICUs N=1000	C.Random: Yes ITT: Yes Blinding: No (12)	Underfed 10ml/hr ~400kcal/day x 6 days vs. Full feed: ~1300kcal/day, 90% reached goal in 1.3 days; 25ml/hr advanced q6h Non isocaloric, non isonitrogenous	60 Day 118/508 (23)	60 Day 109/492 (27)	VAP 37/508 (7)	VAP 33/492 (7)

Table 1. Randomized studies evaluating trophic vs full feeding in critically ill patients

CANADIAN CLINICAL PRACTICE GUIDELINE 2015

EDEN study -2012

- **Objective** To determine if initial lower-volume trophic enteral feeding would increase ventilator-free days and decrease gastrointestinal intolerances compared with initial full enteral feeding in patients with ALI
- **Design -**randomized, open-label, multicenter trial conducted from January 2, 2008, through April 12, 2011
- **Participants** were adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition
- Interventions Participants were randomized to receive either trophic or full enteral feeding for the first 6 days. After day 6, the care of all patients who were still receiving mechanical ventilation was managed according to the full feeding protocol.
- Main Outcome Measures Ventilator-free days to study day 28.
- **Conclusion** In patients with acute lung injury, compared with full enteral feeding, a strategy of initial trophic enteral feeding for up to 6 days did not improve ventilator free days, 60-day mortality, or infectious complications but was associated with less gastrointestinal intolerance.

JAMA. 2012;307(8):795-803

Tuble Li Cillica Outcomes	Tabl	e 2	. Cl	inica	0	utcomes
---------------------------	------	-----	------	-------	---	---------

Outcome	Trophic Feeding (n = 508)	Full Feeding (n = 492)	<i>P</i> Value
Ventilator-free days, No. (95% Cl)	14.9 (13.9-15.8)	15.0 (14.1-15.9)	.89
Failure-free days, No. (95% Cl) Cardiovascular	19.1 (18.2-20.0)	18.9 (18.1-19.8)	.75
Renal	20.0 (19.0-20/9)	19.4 (18.4-20.5)	.43
Hepatic	22.0 (21.2-22.9)	22.6 (21.8-23.5)	.37
Coagulation	22.3 (21.4-23.1)	23.1 (22.3-23.9)	.16
ICU-free days, No. (95% CI)	14.4 (13.5-15.3)	14.7 (13.8-15.6)	.67
60-d mortality, No. (%) [95% CI]	118 (23.2) [19.6-26.9]	109 (22.2) [18.5-25.8]	.77
Development of infections, No. (%) [95% CI] VAP	37 (7.3) [5.0-9.5]	33 (6.7) [4.5-8.9]	.72
Clostridium difficile colitis	15 (3.0) [1.5-4.4]	13 (2.6) [1.2-4.1]	.77
Bacteremia, No. (%)	59 (11.6) [8.8-14.4]	46 (9.3) [6.8-11.9]	.24

Abbreviations: ICU, intensive care unit; VAP, ventilator-associated pneumonia.

• Hypocaloric enteral nutrition:

- Hypocaloric enteral nutrition vs full feeds not associated with any significant difference in mortality, ICU LOS, Hospital LOS
- $\,\circ\,$ but associated with significantly less days on ventilator.

CANADIAN CLINICAL PRACTICE GUIDELINE 2015

		Methods		Mortalit	y # (%)†	Infections	s # (%)‡
Study	Population	(score)	Intervention	Hypocaloric Feeds	Full Feeds	HypocaloricFeeds	Full Feeds
1) Arabi 2011•	ICU patients ~30% brain trauma 40% Type 2 diabetes N=240 BMI (kg/m²) Trophic feeds pts: 28.5±7.4 Full feeds pts: 28.5±8.4 Age Trophic feeds pts: 50.3±21.3 Full feeds pts: 51.9±22.1	C.Random: Yes ITT: Yes Blinding: No (9)	Underfed: 60-70% goal + protein supplements vs.90-100% goal Calories actually received 59.0% vs.71.4% Protein actually received 65.2% vs.63.7% Isonitrogenous, non- isocaloric	ICU 21/120 (18) 28 Day 22/120 (18) Hospital 36/120 (30) 180 Day 38/120 (32)	ICU 26/120 (22) 28 Day 28/120 (23) Hospital 51/120 (43) 180 Day 52/120 (43)	All Infections/1000 days 54.7 VAP/1000 vent days 14 Sepsis 53/120 (44)	All infections/1000 days 53.6 VAP/1000 vent days 10 Sepsis 56/120 (47)
2) Charles 2014	Adults admitted to surgical ICU, included operative and non-operative trauma pts, abdominal vascular liver transplant, and ortho non-trauma surgical pts. N=83	C.Random: Yes ITT: Yes Blinding: single (11)	50% of caloric goal (12.5-15 kcal/kg/d) and protein 1.5 g/kg/d vs 100% of goal calories and protein 1.5 g/kg/d. Calories received 12.3 vs 17.2 kcal/kg/d, protein 1.1 vs 1.1 g/kg/d. Isonitrogenous, non- isocaloric	Hospital 3/41 (7.3)	Hospital 4/42 (9.5)	Pts w ICU acquired 23/41 (56.1) Pneumonia 18/41 (43.9) Bloodstream 10/41 (24.4) Central Line 2/41 (24.4) Central Line 2/41 (4.9) UTI 6/41 (14.6) Wound 5/41 (12.2)	Pts w ICU acquired 24/42 (57.1) Pneumonia 20/42 (47.6) Bloodstream 8/42 (19.1) Central Line 2/42 (14.8) UTI 6/42 (14.3) Wound 3/42 (7.1)
3) Petros 2014	ICU patient population, with sepsis, acute cardiovascular dysfunction, acute respiratory insufficiency N=100	C.Random: Yes ITT: Yes Blinding: no (10)	50% of caloric and protein goal initiated within 24 hns of ICU admission to increase to goal hypo feeds by day 3, vs 100% of goal calories and protein initiated within 24 hns of ICU admission to increase to goal by day 3. Calories received: 42.2% vs	ICU 10/46 (21.7) Hospital 17/46 (37.0) 28-day 18/46 (39.1)	ICU 12/54 (22.2) Hospital 17/54 (31.5) 28-day 18/54 (33.3)	Infections 12/46 (26.1)	Infections 6/54 (11.1)

Table 1. Randomized studies evaluating I	hypocaloric vs. full feeding in critically i	Il patients
--	--	-------------

			19.7 kcal/kgld Non-isocaloric, non- isonitrogenous.	1.0074			
4) Arabi (unpublished)	Muticenter. ICU adult patients with LOS ≥72 hrs, requiring EN. N=894	C.Random: Yes (TT: no Bilinding: no (8)	40-60% of calorie goals x 14 days and 1.2-1.5 g/kg/d protein achieved with EN and protein supplements vs 70-100% of calorie goals and 1.2-1.5 g/kg/d protein x 14 days. Calories received: 46.2% vs 72% adequacy. No difference in protein. Non- legrablic legritmenances	ICU 72/448 (16.1) Hospital 108/447 (24.2) 28 day 93/447 (20.8) 90 day 121/445 (27.2) 180 day 131/438 (29.9)	ICU 85446 (19.1) Hospital 123445 (27.6) 28 day 97/444 (21.8) 90 day 127/440 (28.9) 180 day 140436 (32.1)	Infections 161/448 (35.9) VAP 81/448 (18.1)	Infections 169/446 (37.9) VAP 90/446 (20.2)

Figure 7 Ventilator Days

PermiT trial – Arabi 2015

- **Hypothesis** : permissive-underfeeding strategy that restricts nonprotein calories but preserves protein intake, as compared with a standard feeding strategy, would reduce 90-day mortality among critically ill adults.
- **Study design** -The Permissive Underfeeding versus Target Enteral Feeding in Adult Critically III Patients(PermiT) trial was an unblinded, pragmatic, randomized, controlled trial conducted at seven tertiary care centers in Saudi Arabia and Canada between November 2009 and September 2014.
- Method: At seven centers, 894 critically ill adults with a medical, surgical, or trauma admission category were randomly assigned to permissive underfeeding (40 to 60% of calculated caloric requirements) or standard enteral feeding (70 to 100%) for upto 14 days while maintaining a similar protein intake in the two groups.
- The primary outcome was 90-day mortality.
- **RESULTS** Enteral feeding to deliver a moderate amount of nonprotein calories to critically ill adults was not associated with lower mortality than that associated with planned delivery of a full amount of nonprotein calories.

N Engl J Med June 18, 2015 DOI: 10.1056/NEJMoa1502826

- Early enhanced nutrition compared to slower rate of advancement of EN :
 - $\circ~$ has no effect on mortality in the critically ill patient
 - $\circ\,$ has no effect on ICU LOS but is associated with a significant increase in hospital lengths of stay in the critically ill patient
 - $\,\circ\,$ associated with a significant reduction in the infection
 - results in a significantly higher calorie and protein intake/lower calorie deficit in head injured patients and other critically ill patients.

CANADIAN CLINICAL PRACTICE GUIDELINE 2015

Table 1. Randomized studies evaluating target dose of enteral nutrition in critically ill pa	atients
--	---------

Study	Population	Methods (score)	Intervention	Mortal	ity # (%)	Infectio	ns # (%)‡	LOS	days	Other outcomes
1) Taylor 1999	Head injured ventilated > 10 yrs n = 82	C.Random: not sure ITT: yes Blinding: no (10)	EN at Goal rate on Day 1 vs. 15 ml/hr day 1 and gradual increase. Both on standard formula	Goal rate 6 months 5/41(12.2)	Standard 6 months 6/41 (14.5)	Goal rate 25/41 (61) Pneumonia 18/41 (44)	Standard 35/41 (85) Pneumonia 26/41 (63)	Goal rate	Standard NR*	Goal rate Standard % Energy needs met (mean) 59.2 36.8 Nitrogen needs met (mean) 68.7 37.9 Major complications 37.% 61% Better neurological outcome at 3 mo 61% 61% 39% Better neurological outcome at 6 mo 61% 61%
2)Martin 2004	Cluster RCT of 14 mixed ICU's N = 492	C.Random: no ITT: no Blinding:no (NA)**	Nutrition algorithms with prokinetics+post pyloric feeding+ supplemental parenteral nutrition to meet at least 80% caloric goal vs. none	Algorithms 72/269 (27)	No ne 82/223 (37)	Algorithms NR	No ne NR	Algorithms Hospital 25 ICU 10.9	None Hospital 35 ICU 11.8	Algorithms None Days from ICU admit to start of EN 1.61 2.16 Days to 80% goal rate of EN 4.80 5.10 Calorie intake per patient day (cals) 1269 1002
3) Desachy 2008	Patients from two mixed ICUs N =100	C.Random: not sure ITT: yes Blinding: no (8)	Goal rate EN on day 1 vs. 25 mil/hr day 1 and gradual increase. Both on standard formula, goal rate 25 kcal/kg	Hospital 14/50 (28) ICU 6/50 (12)	Hospital 11/50 (22) ICU 8/50 (16)	NR	NR	ICU 15 ± 11 Hospital 56 ± 59	ICU 15 ± 11 Hospital 51 ± 75	Energy Intake (mean) 1715 ± 331 1297 ± 331 p < 0.001 Cumulative calorie Deficit 406 ±729 2310 ± 1340 p < 0.0001 % Energy needs met (mean) 95 76
4) Doig 2008	Cluster RCT of 27 ICUs. Patients expected to remain in ICU >2 days N = 1118	C.Random: No ITT: yes Blinding: no (NA)**	Guideline development and practice change strategy of 18 guideline interventions vs. standard	Hospital 172/561 (28.9) ICU 137/561 (24.5)	Hospital 153/557 (27.4) ICU 121/561 (21.5)	NR	NR	ICU 9.1 (8.2 - 10.1) Hospital 24.2 (22.2 - 26.8)	ICU 9.9 (8.9 - 11.1) Hospital 24.3 (22.3 - 26.4)	Time (days) from ICU admission to EN or PN (mean) 0.75 (0.64 - 0.87) 1.37 (1.17 - 1.60) Energy (kcal) intake (mean) 1241 (1121 - 1374) 1065 (961 - 1179) Protein (g) intake (mean) 50.1 (45.4 - 55.3) 44.2 (40.0 - 48.9) 100% Goal of kcal intake (days)

						5		92 S		6.1 (5.6 - 6.65) 5.02 (4.61 - 5.48)
Braunschweig 2014	Acute lung injury, single center ICU N= 78	C. Random: yes ITT: yes Binding: No (7)	Intensive Medical Nutrition Therapy >75% of energy and protein goal (continuous feed), vs standard nutrition support (bolus, intermittent or continuous feed). Goal 30 kcatkg/d, 1.5g/kg/d protein	Hospital 1640 (40)	Hospital 6/38 (15.8)	5/40 (12)	8/38 (21)	ICU 15.5 ± 12.8 Hospital 27.2 ± 18.2	ICU 16.1 ± 11.5' Hospital 22.8 ± 14.3	Ventilator days (mean) 6 (4-10) 7 (3-14) p<0.25 Caloric adequacy 84.7 ± 22 55.4 ± 19 Protein adequacy 76.1 ± 18 54.4 ± 21
6) Peake 2014	Emergency operative and non-operative and elective operative admissions N=112	C Random: yes ITT: yes Blinding: yes (9)	Fresubin 2250 Complete 1.5kcal/ml vs Fresubin 1000 Complete 1.0kcal/ml. Goal rate of 1 mil/kg IBW/br to a max of 100ml/hour to be achieved within 48 hours of feeding start in both groups. Comparable protein between formulas.	ICU 6/57 (11) Hospital 10/57 (19) 28 day 11/57 (20) 90 day 11/57 (20)	ICU 9/55 (16) Hospital 14/55 (27) 28 day 18/55 (33) 90 day 20/55 (27)	NR	NR	ICU 12.8 ± 11.3 Hospital 33.3 ± 25.3	ICU 12.2 <u>±</u> 8.3 Hospital 24 <u>±</u> 17.6	% Energy adequacy 110.8 ± 26.8 83.2 ± 29 % Protein adequacy 82 ± 23.6 88.2 ± 39.1 Ventilator days 8.6 ± 8.5 6.8 ± 6

Figure 1: ICU Mortality

	Early Enhanc	ed EN	Standar	d EN		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
Desachy 2008	6	50	8	50	49.0%	0.75 (0.28, 2.00)	2008	
Peake 2014	6	57	9	55	51.0%	0.64 [0.25, 1.69]	2014	
Total (95% CI)		107		105	100.0%	0.69 [0.35, 1.38]		
Total events	12		17					
Heterogeneity: Tau ^a =	$0.00; Chi^2 = 0.0$	05, df = 1	(P=0.83); i² = 0	%		h.	
Test for overall effect:	Z = 1.04 (P = 0.	.30)					0.	Early Enhanced EN Standard EN

Figure 2: Hospital Mortality

	Early Enhance	Standard EN			Risk Ratio		Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Rand	iom, 95% Cl		
Desachy 2008	14	50	11	50	35.3%	1,27 [0.64, 2.53]	2008)			
Peake 2014	10	57	14	55	34.1%	0.69 (0.33, 1.42)	2014				
Braunschweig 2014	16	40	6	38	30.7%	2.53 [1.11, 5.79]	2014				
Total (95% CI)		147		143	100.0%	1.28 [0.63, 2.58]		1.00			
Total events	40		31						100		
Heterogeneity: Tau ² =	0.25; Chi ² = 5.4	2, df = 2	(P=0.07)); P= 63	96			01 02 05	1 1	-	10
Test for overall effect .	Z = 0.68 (P = 0	50)						Early Enhanced EN	Standard E	N	10

Figure 3: Infectious complications

Early Enhanced EN			Standar	d EN		Risk Ratio		Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Randor	m, 95% Cl		-	
Taylor 1999	25	41	35	41	93.3%	0.71 [0.54, 0.94]	1999				_	
Braunschweig 2014	5	40	8	38	6.7%	0.59 [0.21, 1.66]	2014					
Total (95% CI)		81		79	100.0%	0.71 [0.54, 0.92]		•				
Total events	30		43					1000				
Heterogeneity: Tau ² =	0.00; Chi ^a = 0.	14, df = 1	(P = 0.71)); l² = 09	\$				-	1 1	5	
Test for overall effect:	Z = 2.57 (P = 0	.01)						Early Enhanced EN	Standard EN	° (10	

Figure 4 ICU LOS

	Early Enhanced EN Standard EN					Mean Difference				Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV. I	Random,	95% CI	
Taylor 1999	4	3.6	41	5.8	5.6	41	59.7%	-1.80 [-3.84, 0.24]	1999		-			
Desachy 2008	15	11	50	15	11	50	13.3%	0.00 [-4.31, 4.31]	2008			-		
Peake 2014	12.8	11.3	57	12.2	8.3	55	18.5%	0.60 [-3.06, 4.26]	2014		-			
Braunschweig 2014	15.5	12.8	40	16.1	11.5	38	8.5%	-8.60 [-5.99, 4.79]	2014		2	-	36	
Total (95% CI)			188			184	100.0%	-1.01 [-2.59, 0.56]			3	•		
Heterogeneity: Tau ² =	0.00; Chř	= 1.55,	df = 3 (F	= 0.67	$); l^2 = 0$	95				10	1	1	1	40
Test for overall effect: 2	Z = 1.26 (F	° = 0.21)								Ea	rly Enhance	dEN St	andard EN	10

Figure 5 Hospital LOS

	Early Enhanced EN Standard EN						Mean Difference				Mean Difference				
Study or Subgroup	Mean SD Total		Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV, Rando	om, 95% Cl	1			
Taylor 1999	56.3	59.5	41	60.8	55.7	41	4.3%	-4.50 [-29.45, 20.45]	1999	50		-			
Desachy 2008	56	59	50	51	75	50	3.8%	5.00 [-21.45, 31.45]	2008						
Peake 2014	33.3	25.3	57	24	17.6	55	41.1%	9.30 [1.25, 17.35]	2014			-8-			
Braunschweig 2014	27.2	18.2	40	22.8	14.3	38	50.8%	4.40 [-2.84, 11.64]	2014						
Total (95% CI)			188			184	100.0%	6.06 [0.90, 11.22]				•			
Heterogeneity: Tau? =	0.00; Chi*	= 1.52,	df = 3 (F	e 0.68); P = 0	196				-	1.		1		
Test for overall effect:	Z = 2.30 (F	P = 0.02)	(O							-100 Ea	-50 rly Enhanced EN	U Standard	1EN	100	

Figure 6 Ventilator Days

	Early Enhanced EN			Standard EN			Mean Difference			Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Taylor 1999	3.8	2.4	41	5.2	3.8	41	57.0%	-1.40 [-2.78, -0.02]	1999	
Peake 2014	8.6	8.5	57	6.8	6	55	43.0%	1.80 [-0.92, 4.52]	2014	
Total (95% CI)			98			96	100.0%	-0.02 [-3.13, 3.08]		-
Heterogeneity: Tau?=	3.91; Chi ²	= 4.24,	df=1 (P = 0.04); 1==	76%				
Test for overall effect:	Z=0.01 (P = 0.99	0							Early Enhanced EN Standard EN

ACCEPT trial –Martin 2004

- Hypothesis -evidence-based algorithm for nutritional support in critically ill patients, accompanied by a multifaceted implementation strategy, would improve the provision of nutritional support and patient outcomes.
- Study design -prospective, cluster-randomized clinical trial.
- Method -Hospital ICUs were stratified by hospital type and randomized to the intervention or control arm. Patients at least 16 years of age with an expected ICU stay of at least 48 hours were enrolled in the study (n = 499). Evidence-based recommendations were introduced in the 7 intervention hospitals by means of inservice education sessions, reminders (local dietitian, posters) and academic detailing that stressed early institution of nutritional support, preferably enteral.
- Result -Two hospitals crossed over and were excluded from the primary analysis. Compared with the patients in the control hospitals (n = 214), the patients in the intervention hospitals (n = 248) received significantly more days of enteral nutrition (6.7 v. 5.4 per 10 patient-days; p = 0.042), had a significantly shorter mean stay in hospital (25 v. 35 days; p = 0.003) and showed a trend toward reduced mortality (27% v. 37%; p = 0.058). The mean stay in the ICU did not differ between the control and intervention groups (10.9 v. 11.8 days; p = 0.7).

CMAJ • JAN. 20, 2004; 170(2)

Table 4: Primary outcomes in the randomized phase

		Appropriately	randomize						
	Actu	al values		Desig	n effect*	All 14 hospitals; actual values			
Outcome	Control	Intervention	p value	C,	C2	Control	Intervention	<i>p</i> value	
Hospital mortality rate, %	37	27	0.058	1.79	1.65	37	24	0.047	
Mean hospital stay, d	35	25	0.003	20.33	63.29	34.3	25.4	0.006	
Mean ICU stay, d	11.8	10.9	0.7	9.16	86.63	11.7	10.8	0.65	

*The design effect is the ratio of the total number of subjects required with cluster randomization to the number required with simple randomization. For example, if 100 patients were required per group to obtain statistical significance in a mortality-rate difference in a simple randomized trial, 179 and 165 patients per group would be required in a cluster-randomized trial. The design effects for hospital and ICU stay were obtained with the method of Rao and Scott²² for the appropriately randomized hospitals.

INTACT trial – Braunschweig 2015

- **Hypothesis:** patients randomized to receive the intensive medical nutrition intervention (IMNT) would have fewer infections, shorter hospital and ICU lengths of stay (LOS) and lower mortality than those randomized to standard care (SC).
- Method A prospective randomized trial was conducted evaluate the impact on outcomes of intensive medical nutrition therapy (IMNT; provision of >75% of estimated energy and protein needs per day via EN and adequate oral diet) from diagnosis of acute lung injury (ALI) to hospital discharge compared with standard nutrition support care (SNSC; standard EN and ad lib feeding). The primary outcome was infections; secondary outcomes included number of days on mechanical ventilation, in the ICU, and in the hospital and mortality.
- **RESULTS:** Overall, 78 patients (40 IMNT and 38 SNSC) were recruited. No significant differences between groups for age, body mass index, disease severity, white blood cell count, glucose, C-reactive protein, energy or protein needs occurred. The IMNT group received significantly higher percentage of estimated energy (84.7% vs 55.4%, P < .0001) and protein needs (76.1 vs 54.4%, P < .0001) per day compared with SNSC. No differences occurred in length of mechanical ventilation, hospital or ICU stay, or infections. The trial was stopped early because of significantly greater hospital mortality in IMNT vs SNSC (40% vs 16%, P = .02). Cox proportional hazards models indicated the hazard of death in the IMNT group was 5.67 times higher (P = .001) than in the SNSC group.
- **CONCLUSIONS:** Provision of IMNT from ALI diagnosis to hospital discharge increases mortality.

JPEN J Parenter Enteral Nutr. 2015 January ;. doi:10.1177/0148607114528541.

I able J

Clinical Outcomes in IMNT vs SNSC Participants (N = 78).

Variable	IMNT (n = 40)	SNSC (n= 38)	P Value
Hospital LOS, d	27.2 (18.2)	22.8 (14.3)	.33
ICU LOS, d	15.5 (12.8)	16.1 (11.5)	.83
Number of days between hospital admission and enrollment	8.8 (8.7)	6.4 (6.6)	.17
Days on ventilator (median, IQR)	6 (4-10)	7 (3-14)	.85
Number of infections, n (%)	5 (12)	8 (21)	.29
Any hyperglycemic event, n (%) ^{a}	30 (73)	26 (68)	.64
Number of days with hyperglycemia	2.2 (3.0)	2.4 (4.0)	.85
Any hypoglycemic event, n (%) ^{d}	12 (29.3)	11 (28. <mark>9</mark>)	.98
Number of days with hypoglycemia	0.3 (0.6)	0.9 (0.7)	.08
Insulin received per day, U	23.6 (47.6)	14 (23.6)	.25
Insulin received per day on days insulin was received in participants who were given insulin, U	77.7 (70.4)	35.9 (27.9)	.03
Died	16 (40.0)	6(15.8)	.017

All values are mean (SD) unless otherwise indicated. ICU, intensive care unit; IMNT, intensive medical nutrition therapy; IQR, interquartile range; LOS, length of stay; SNSC, standard nutrition support care.

a

• Optimizing en:

Gastric residual volume

- Not checking GRV vs checking GRV with 250ml as threshold have no effect on mortality, infection or hospital/ICU stay but associated with significantly better calorie delivery.
- Monitoring GRV every 4 hrs vs every 8hrs have no effect on mortality, infection, or hospital or ICU stay but associated with less vomiting or regurgitation
- GRV 500 ml vs > 250ml has no effect on mortality, infection or LOS (ICU/Hospital) or gastrointestinal tolerance but associated with significantly better calorie delivery.

canadian clinical guideline 2015

Study	Population	Methods (score)	Intervention	Mortali	ty # (%)†	Infections # (%)‡		
1) Montejo 2010	Mechanically C.Random: No ventilated ITT: No patients from 28 Blinding: No ICUs requiring (5) EN for at least 5 days N = 329		GRV limit of 500mL vs. GRV limit of 200mL Both groups: nasogastric EN, prophylactic prokinetics X 3 days & PN, if needed	GRV 500mL GRV 200mL ICU ICU 31/157 (20) 26/165 (16) RR 1.25, 95% CI 0.78, 2.01, p=0.35 Hospital 53/157 (34) 55/165 (34)		GRV 500mL GRV 200mL Pneumonia 44/157 (28) 45/165 (27) RR 1.03, 95% CI 0.72, 1.46, p=0.88		
2) Reignier 2013	Mechanically ventilated patients from 9 ICUs requiring EN via NG within 36 hrs after istribution	C.Random: Yes ITT: Yes Blinding: No (11)	Not monitoring GRV vs. GRV limit of 250 ml Vomiting considered an intolerance to EN in both groups	No GRV ICU 63/227 (28)	GRV 250mL ICU 61/222 (28) Hospital	No GRV GRV 250mL VAP 38/227 (17) 35/222(16) ICU acquired 60/227 (26) 60/222 (27)		
3) Williams 2014	Critically ill pts, single centre, LOS expected >48 hrs, EN expected >72 hrs N=357	C.Random: Yes ITT: Yes Blinding: No (9)	Monitoring GRVs for gastric feeds up to every 8 hrs vs every 4 hrs. For both groups, GRVs were returned if the volume was ≤300 mL and for GRV exceeding 300 mL, the first 300 mL was returned to the stomach and the remainder discarded.	82/227 (36) GRVs q8hr 1 32/178 (18) Ho 39/178 (22)	GRVs q4hr CU 25/179 (14) spital 34/179 (19)	Pts with VAP (p=0.81) 13.2% 14.1%		

Gastric residual volume during enteral nutrition in ICU patients: the REGANE study

J. C. Montejo

REGANE study – Montejo 2010

- **Hypothesis** -if a higher limit is used to define "normal GRV," the frequency of "HGRV" is lessened and also the number of episodes of stopping the diet. So, as a consequence of this, patients could receive more diet and, consequently, the energy deficit would be prevented.
- **Design** open prospective randomized study.
- Method -329 patients across 28 intensive care unit in Spain were recruited and randomly assigned to a study group (GRV 500ml) and control group (GRV 200ml). EN was administered through naso gastric tube and a protocol for management of EN related gastrointestinal management was used.
- **outcome variables-** Diet volume ratio (diet received/diet prescribed), incidence of gastrointestinal complications, ICU acquired pneumonia, days on mechanical ventilation and ICU length of stay were the study variables.
- **Result and conclusion** -Diet volume ratio of mechanically ventilated patients treated with enteral nutrition is not affected by increasing the limit in GRV. A limit of 500 ml is not associated with adverse effects in gastrointestinal complications or in outcome variables

Intensive Care Med (2010) 36:1386-1393

- Hypothesis –variable gastric tube aspiration regimen would reduce frequency of gastric tube aspiration with no increase in the incidence of feed regurgitation or VAP (or pneumonia in nonventilated patients).
- Study design- nonblinded RCT using computer generated randomization
- Method -This randomized controlled trial (RCT) enrolled patients who stayed in the intensive care unit (ICU) for >48 hours, had a gastric tube, and were likely to receive EN for 3 or more days. Patients were randomized (computer generated randomization) to either the control (every 4 hours) or intervention group (variable regimen).
- Outcome primary number of gastric tube aspirations per day from randomization until EN was ceased or up to 2 weeks post randomization.

secondary -Secondary outcomes included incidence of

- 1. vomiting or regurgitation, defined as the presence of feed in the mouth or flowing out of the mouth;
- 2. VAP or pneumonia in nonventilated patients (up to 16 days after enteral feeding commenced);
- 3. attainment of target feeding volume each day.
- Result and conclusion -In the intention-to-treat analysis, the intervention group had fewer tube aspirations per day (3.4 versus 5.4 in the control group, *P* < .001). Vomiting/regurgitation was increased in the intervention group (2.1% versus 3.6%, *P* = .02). There were no other differences in complications noted.

journal of enteral and parenteral nutrition September 2014

Table 2. Patient outcomes.

Outcome	Control Group (n = 179)	Intervention Group $(n = 178)$	P Value
Mean number of tube aspirations per enteral feeding days	5.4 (1.3)	3.4 (1.3)	<.001
Patients with ventilator-associated pneumonia, %	14.1	13.2	.81
Vomiting/regurgitation, %	2.1	3.6	.02
Interruptions to enteral feeding due to vomiting, %	1.5	2.1	.24
Median ICU length of stay, d	9 (5-15)	9 (6–14)	.57
Median hospital length of stay, d	25 (13-41)	23 (12-38)	.19
Intensive care unit survival, %	86	82	.24
Hospital survival, %	81	78	.36

• Discarding GRV:

Refeeding GRV not associated with more gastrointestinal complication when compared to discarding GRV.

Canadian clinical practice guideline 2015
Table 1. Randomized studies evaluating	gastric residual volume i	n critically ill patients
--	---------------------------	---------------------------

Study	Population	Methods (score)	Intervention	Mortali	ty # (%)†	Infectio	ns # (%)‡
1) Juve-Udina 2009	ICU patients fed via EN or PN N=125	C.Random: no ITT: No Blinding: No (5)	GRV>250 mL discard excess, reefed 250mL vs. if GRV>250 mL discard entire feed	GRV return NR	GRV discard NR	GRV return NR	GRV discard NR

- Motility agent
 - Motility agent have no effect on mortality or infectious complication in critically ill patient.
 - Motility agent may decrease feeding intolerance and increase total calorie intake.

Study	Population	pulation Methods Intervention Mortality # (%)† Infections # (%)‡ (score) Experimental Control Experimental Control		ns # (%)‡ Control	Nutritional Indices Experimental Control			
	·//			Placebo-co	ntrolled Trials	5		
1) Chapman 2000	Mixed ICU patient with GRV>250ml N#20	C.Random: Yes ITT: yes Binding: Yes (12)	Erythro 200 mg IV vs placebo x 1 dose	NR	NR	NR	NR	Successful feeding defined as GRV <250 mo and continuing with feeds. Erythro 9/10 vs placebo 5/10, p=0.05
2) Yavagal 2000	Mixed ICU N=305	C.Random: not sure ITT: yes Blinding: yes (10)	Metodopramide 10 mg NG q 6 h vs. placebo	73/ 131 (56)	92/174 (53)	Pneumonia 22/131 (17)	Pneumonia 24/174 (14)	NR
3) Berne 2002	Critically injured patients n=48	C.Random: not sure ITT: no Blinding: no (6)	Erythromycin 250 mg IV q.6 hrs vs. placebo	2/32 (6)	2/36 (6)	Pneumonia 13/32 per group*	Pneumonia 16/36 per group*	Feeds tolerated at 45 hrs 58% 44 % p=0.001 Feeds tolerated for the study 65% 59% p=0.06 59%
4) Reignier 8002	Mixed ICU patients N=48	C.Random: not sure ITT: yes Bilinding: no (6)	Erythra 250 mg q Bh IV vs placebo x 5 days	6/20 (30)	8720 (40)	NR	NR	EN discontinued if GRV>250 or vomited: Erythro 35% vs Placebo 70 p<0.001
5) Meissner** 2003	ICU patients N=84	C.Random: yes ITT: no Blinding: double (11)	Naloxone 8 mg q 6 hrs via NG vs. placebo	6/38 (16)	7/43 (16)	Pneumonia 13/38 (34)	Pneumonia 24/43 (56)	Feeding volumes after day 3 Higher in natione group (trend) Amount of Reflux (mls) 54 129
6) Nursal 2007	Traumatic Brain Injured patients N=19	C.Random: no ITT: no Blinding: double (10)	Metodopramide 10 mg IV TID vs. saline IV TID	Hospital 3/10 (30)	Hospital 3/9 (33)	NR	NR	Patients with high GRV 5/10 (50) 2/9 (22) Days to target calories 5.8 ± 5.2 3.4 ± 1.4 Calorie intake/total calories 61.3% 92.2%

Table 1. Randomized Studies Motility Agents in Critically III Patients

				Head to Hea	d Comparisons	;		
7) MacLaren 2008	Mixed ICU patient with GRV>150ml N=20	C.Random: not sure ITT: yes Blinding: no (9)	Erythro 250 mg q6h vs Meto 10 mg IV q 6h for 4 doses	NR	NR	NR	NR	Both agents resulted in significant reduction in GRV and increase in feeding rate
			N 5/2 N 5/2	Combo	vs Mono	10		
8) Nguyen 2007	Mixed ICU patients N=75	C.Random: yes ITT: yes Blinding: double (11)	Combination of Erythromycin 200 mg IV bid + Metoclopramide 10 mg IV gid vs. Erythromycin 200 mg IV bid alone	Hospital 8/37 (22)	Hospital 10/38 (26)	NR	NR	Failure of feeding (days) 6.5 ± 0.5 4.5 ± 0.5 Caloric intake % prescribed 7 days Higher in combination group (p=0.02) Gastric residual volumes Lower in combination group (p<0.05)
	4		Mot	lity Agent vs	Small Bowel T	ubes		
9) Boivin 2001	Mixed ICU patients N=80	C.Random: not sure ITT: no Blinding: no (5)	Erythro 200 mg q 8 hrs x 96 hrs vs transpyloric feeding	7/39 (18)	7/39 (18)	NR	NR	No difference in time to goal rate or overall adequacy.

RCT comparing between motility agents

- Objective:
- to compare chronic administration of metoclopramide and erythromycin in the management of feed intolerance;
- to determine the effectiveness of "rescue" combination therapy in patients who fail monotherapy
- Design : The study was conducted as a two-way randomized, double-blind, parallel group study.
- Participants :
 - One-hundred and seven consecutive mechanically ventilated patients who failed NG feeding were enrolled into the study over a 12-month period (August 2004 to August 2005).
 - Failure of feeding was defined clinically as a 6-hourly gastric residual volume (GRV) 250 mL 6 hrs after commencing enteral feeding at a rate of 40 mi/hr.

Crit Care Med 2007; 35:483–489

- Material and method:
 - Patients received either metoclopramide 10 mg intravenously four times daily or erythromycin 200 mg intravenously twice a day in a double-blind, randomized fashion.
 - After the first dose, nasogastric feeding was commenced and 6-hourly nasogastric aspirates were performed. If a gastric residual volume >250 mL recurred on treatment, open-label, combination therapy was given. Patients were studied for 7 days. Successful feeding was defined as 6-hourly gastric residual volume <250 mL with a feeding rate >40 mL/hr

- Result
 - Monotherapies reduced the mean gastric residual volume (metoclopramide, 830 +/- 32 mL to 435 +/- 30 mL, p < .0001; erythromycin, 798 +/- 33 mL to 201 +/- 19 mL, p < .0001) and improved the proportion of patients with successful feeding (metoclopramide 62% and erythromycin 87%).
 - Treatment with erythromycin was more effective than metoclopramide, but the effectiveness of both treatments declined rapidly over time.
 - In patients who failed monotherapy, rescue combination therapy was highly effective (day 1 92%) and maintained its effectiveness for the study duration (day 6 67%).
 - High pretreatment gastric residual volume was associated with poor response to prokinetic therapy.

- Small bowel vs intragastric feeding:
 - Small bowel feeding in comparison to intragastric feeding was associated with significant reduction in incidence of pneumonia.
 - No difference in mortality or ventilator days between small bowel and intragastric feeding.
 - Small bowel feeding associated with higher calorie and protein intake and is associated with less time taken to reach target rate of enteral nutrition.

	Small B	owel	Gast	ric		Risk Ratio			Risk Ra	atio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H	, Randon	n, 95% Cl		
Montecalvo	4	19	6	19	3.7%	0.67 [0.22, 1.99]			•			
Kortbeek	10	37	18	43	9.7%	0.65 [0.34, 1.22]		-		-		
Taylor	18	41	26	41	18.1%	0.69 [0.46, 1.05]		() 				
Kearns	4	21	3	23	2.4%	1.46 [0.37, 5.78]		18				
Minard	6	12	7	15	6.8%	1.07 [0.49, 2.34]		-	•			
Day	0	14	2	11	0.6%	0.16 [0.01, 3.03]	←		-			
Davies 2002	2	31	1	35	0.9%	2.26 [0.22, 23.71]						
Montejo	16	50	20	51	12.9%	0.82 [0.48, 1.39]			•	_		
Hsu	5	59	15	62	4.9%	0.35 [0.14, 0.90]	<u>10</u>					
White	11	57	5	51	4.5%	1.97 [0.73, 5.28]						
Acosta-Escribano	16	50	31	54	15.6%	0.56 [0.35, 0.89]			-			
Davies 2012	18	91	19	89	11.4%	0.93 [0.52, 1.65]		-	•			
Friedman	13	54	12	61	8.4%	1.22 [0.61, 2.45]			-			
Total (95% CI)		536		555	100.0%	0.78 [0.63, 0.98]			٠			
Total events	123		165									
Heterogeneity: Tau ² =	= 0.02; Chi	² = 14.1	9, df = 12	(P = 0.	29); I ² = 1	5%	<u>L</u>	1 1		1	1	40
Test for overall effect	Z= 2.17 (P = 0.03	3)	2.10	887.C		0.1	Favours Small	bowel F	2 Favours Ga	5 astric	10

Figure 3. Pneumonia

- **Hypothesis** the use of a jejunal tube does not reduce the incidence of nosocomial pneumonia.
- **Design** pragmatic open randomized control trial.
- **Method** –Patients were randomly assigned to receive enteral feed via a gastric or jejunal tube. Jejunal tubes were inserted at bedside and placement was confirmed radiographically
- **Outcome** –The primary objective of this study is to evaluate the incidence of pneumonia throughout the stay in Intensive Care Unit (ICU) comparing gastric with jejunal nutrition. Secondarily, we evaluated the mortality rate in the ICU until the 28th day and other complications potentially related to enteral feeding
- **Result** A total of 115 patients were enrolled, with 61 patients into the gastric tube group and 54 patients into the jejunal group tube. Baseline characteristics were similar. There was no difference in pneumonia or ICU mortality rates, ICU length of stay and ventilator days. Complications rates were similar.
- **Conclusion** We conclude that the enteral nutrition through a jejunal tube does not reduce the rate of pneumonia in comparison to a gastric tube. In addition, we did not observe differences in rates of gastrointestinal complications or ICU mortality. The routine placement of a jejunal tube in critically ill patients cannot be recommended.

Variables	Nasogastric tube (n=61)	Nasojejunal tube (n=54)	Р
MV-n (%)	51 (84)	44 (82)	0.957
MV duration (days)-median (Cl 25-75)	7 (3-13)	4 (2-11)	0.241
ICU stay (days)-median (CI 25-75)	12 (8-20)	10 (7-21)	0.444
ICU mortality-n (%)	22 (36)	20 (37)	1.000
Pneumonia-n (%)	12 (20)	13 (24)	0.730
Diarrhea-n (%)	11 (18)	15 (28)	0.306
Vomiting-n (%)	18 (30)	14 (26)	0.826
Constipation-n (%)	14 (23)	9 (17)	0.544
Total cost (US\$)	467	1163	

• Bolus vs. continuous feeding:

 There are no differences in mortality, frequency of interrupted feeds, % goal feeds achieved or diarrhea between patients receiving enteral feeds via continuous vs. other methods of administration.

Bolus vs continuous feeding

- **Hypothesis** -intermittent enteral feeding route would optimize caloric intake in the first 7 days of critical illness as compared with continuous tube feedings,.
- **Design** prospective randomized trial.
- Method -A total of 164 trauma patients, were randomized to receive enteral nutrition via an intermittent feeding regimen versus a continuous feeding regimen. A single nutritionist calculated caloric and protein goals.
- **Result** A total of 164 patients were randomized and 139 reached their calculated nutritional goal within 7 days. There were no statistical differences in complications of tube feeding. The patients intermittently fed reached the goal faster and by day 7 had a higher probability of being at goal than did the patients fed continuously Intermittent patients maintained 100% of goal for 4 of 10 days per patient (95% CI 3.5–4.4) as compared with the drip arm goal for only 3 of 10 days per patient (95% CI 2.7–3.6).
- **Conclusion** In a critically ill trauma population, patients fed an intermittent regimen received goal enteral nutrition more quickly and were more likely to remain at goal enteral caloric intake than were patients fed with continuous feeding regimens

ſab	le	3	Nutritional	Outcomes	and	Adverse	Events l	by	Randomized	Interv	vention	Group)
-----	----	---	-------------	----------	-----	---------	----------	----	------------	--------	---------	-------	---

	Intermittent Feeding Regimen (N = 79)	Continuous Feeding Regimen (N = 81)	p Value for a Difference Between Groups
Onset of diarrhea, n (%)	5 (6.3)	3 (3.7)	0.45
ICU mortality rate, n (%)	11 (13.9)	6 (7.4)	0.18
Patients extubated prior to day 7 of study, n (%)	5 (6.3)	7 (8.6)	0.58
New onset pneumonia, n (%)	38 (48)	33 (41)	0.45

drip arm patients, which maintained goal for only 3 days ered between the two groups was not statistically different

• Combined EN and PN in comparison to EN alone:

- o has no effect on mortality in critically ill patient
- has no effect on infectious complications in critically ill patients
- is associated with a significant reduction in hospital length of stay and a trend towards a reduction in ICU LOS in critically ill patients.
- has no effect on duration of ventilation in critically ill patients.
- $\ensuremath{\circ}$ is associated with a higher cost.

Study	Population	Methods	Intervention	Mortalit	y # (%)†	Infection	ns # (%)‡
Study	ropulation	(score)	(both interventions started at same time)	EN + PN	EN	EN + PN	EN
1) Herndon 1987	Bums > 50 % TBSA N ≈ 28	C.Random: not sure (TT: yes Blinding: no (6)	EN + PN vs EN EN + PN group received significantly more calories than EN group	8/13 (62)	8/15 (53)	NR	NR
2) Herndon 1989	Bum patients N = 39	C.Randomization: not sure ITT: yes Blinding: no (7)	EN+ PN vs EN EN + PN group received significantly more calories than EN group	> Day 14 10/16 (63)	> Day 14 6/23 (26)	NR	NR
3) Dunham 1994*	Blunt trauma N = 37	C.Random: not sure ITT: no Blinding: no (8)	EN+ PN vs EN EN + PN group given same calories as EN	3/10 (30)	1/12 (8.3)	NR	NR
4) Chiarelli 1996	ICU patients medical and surgical N = 24	C.Random: not sure ITT: yes Blinding: no (8)	EN+ PN vs EN EN + PN were given 33 kcal/kg/day, EN wore given 31 kcala/kg/day	3/12 (25)	4/12 (33)	6/12 (50)	3/12 (25)
5) Bauer 2000	Patients from 2 ICUs N =120 (all degrees of malnutrition)	C.Random: not sure ITT: yes Blinding: double (12)	EN+ PN vs EN + placebo. EN + PN received 24.6 ± 4.9 kcal/kgiday vs. EN group 14.2 ± 6.5 kcal/kg/day (p<0.0001)	< Day 4 3/60 (5) 90-day 17/60 (28)	< Day 4 4/60 (6.7) 90-day 18/60 (30)	39/60 (65)	39/60 (65)
6) Abrishami 2010	SIRS patients with APACHE II > 10 N=20	C.Random: not sure (TT: yes Blinding: no (7)	EN vs.EN + PN Metocloparamide if GRV >300ml Non isocaloricifsonitrogenous	2/10 (20)	1/10 (10)	NR	NR

Table 1. Randomized studies evaluating combined EN + PN in critically ill patients

7) Chen 2011*	Elderly Patients in respiratory intensive care unit N=147	C.Random: yes ITT: yes Blinding: no (7)	EN + PN: EN as above + PN to make up kcal and nitrogen deficit vs EN: 100ml/hr=goal rate; metoclopramide if GRV >200mL, NJ if not tolerating NG Non-isocaloric/isonitrogenous	20-day 3/49 (6)	29-day 11/49 (22)	6/49 (12)	5/49 (10)
8) Heidegger 2012	ICU patients requiring at least 5 days of treatment with no contraindication to EN, not achieving 60% of	C.Random yes ITT: yes Blinding: single (13)	EN vs EN+PN to make up energy target verified by indirect calorimetry in 65% of patients. EN progression encouraged in both groups.	ICU 8/153 (5) 28-day 20/153 (13)	ICU 11/152 (7) 28-day 28/152 (18)	Day 4 to 28** 77/153 (50)	Day 4 to 28** 85/152 (56)

*Pertains to EN+PN vs EN comparison; for the Chen EN+PN vs PN comparison can section 1.0
** Date obtained from authors

	EN +F	N	EN			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Chiarelli	6	12	3	12	2.0%	2.00 [0.65, 6.20]	1996	
Bauer	39	60	39	60	37.7%	1.00 [0.77, 1.30]	2000	+
Chen	6	49	5	49	2.1%	1.20 [0.39, 3.67]	2011	
Heidegger	77	153	85	152	58.2%	0.90 [0.73, 1.11]	2012	-
Total (95% CI)		274		273	100.0%	0.96 [0.81, 1.13]		•
Total events	128		132					
Heterogeneity: Tau ² =	= 0.00; Ch	i² = 2.2	3, df = 3 (P = 0.5	3); I² = 0 9	6		
Test for overall effect	Z = 0.53	(P = 0.6	60)	ni balan	0414000 - 0141			Favours EN +PN Favours EN

Eigure 2 Infectious complications

Figure 3. Hospital LOS

	EP	+ PN			EN			Mean Difference		Mean Difference	e
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95%	CI
Chiarelli	37	13	12	41	23	12	3.1%	-4.00 [-18.95, 10.95]	1996	+	
Bauer	31.2	18.5	60	33.7	27.7	60	9.1%	-2.50 [-10.93, 5.93]	2000	• • •	_
Chen	17.3	2.47	49	23.32	5.6	49	66.9%	-6.02 [-7.73, -4.31]	2011		
Heidegger	31	23	153	32	23	152	20.9%	-1.00 [-6.16, 4.16]	2012	•	50
Total (95% CI)			274			273	100.0%	-4.59 [-7.27, -1.91]		-	
Heterogeneity: Tau ² =	= 2.03; C	hi² = 3	.78, df :	= 3 (P =	0.29);	1² = 21	%				+ 10
Test for overall effect	Z = 3.35	5 (P = (0.0008)							Favours EN + PN Favour	s EN

RCT – Heidegger 2012

- **Hypothesis** Delivery of 100% of the energy target from days 4 to 8 in the ICU with EN plus supplemental parenteral nutrition (SPN) could optimise clinical outcome.
- **Participants** patients on day 3 of admission to the ICU who had received less than 60% of their energy target from EN, were expected to stay for longer than 5 days, and to survive for longer than 7 days were enrolled.
- **Method** Patients were randomized to receive either EN or SPN. 153 patients receive EN and 152 received PN.
- The primary outcome was occurrence of nosocomial infection after cessation of intervention (day 8), measured until end of follow-up (day 28), analysed by intention to treat.
- Result SPN group had a statistically significant reduction in nosocomial infection .[p=0.0248]

Lancet 2013; 381: 385–93

• Timing of supplemental PN

- Early vs late PN to supplement EN has no effect on mortality in critically ill patients.
- Early supplemental PN is associated with an increase in infectious complications in critically ill patients compared to late supplemental PN.
- Early supplemental PN is associated with significantly longer ICU and hospital length of stay in critically ill patients compared to late supplemental PN.
- Early supplemental PN is associated with an increase in duration of ventilation in critically ill patients compared to late supplemental PN.

Study	Population	Methods (score)	Intervention	Mortality # (%)†		Infections # (%)‡	
	ropulation			EN + PN	EN	EN + PN	EN
1) Casaer 2011	Critically ill from 7 ICUs Admitted with a nutrition risk ≥3 based on Nutrition Risk Screening (NRS) N=4640	C.Random: Yes ITT: Yes Blinding: No (11)	EN + early PN (20% IV glucose; kcal target day 1=400kcal, day 2=800 kcal, Day 3 initiate PN with goal of 100% caloric goal with EN+PN; caloric needs based on IBW, PN d/c if kcal via EN ≥80% requirements, restarted if EN <50%) vs EN + late PN (Late initiation; 5% glucose IV equal to PN group to match hydration) If EN sufficient >7 days, PN added on day 8 to reach kcal requirements) Non-isocaloric/isonitrogenous	ICU 146/2312 (6) RR 1.04, 95% p= Hospital 251/2312 (11) RR 1.04, 95% p= 90-day 255/2312 (11) RR 1.00, 95% p=	ICU 141/2328 (6) % CI 0.83, 1.30 0.72 Hospital 242/2328 (10) % CI 0.88, 1.23 0.61 90-day 257/2328 (11) % CI 0.85, 1.18 0.99	Total 605/2312 (26) RR 1.15, 95% p=(Total 531/2328 (23) 6 Cl 1.04, 1.27 .008

Table 1. Randomized studies evaluating early vs delayed supplemental PN in critically ill patients

EPaNIC trial

- Hypothesis: whether preventing a caloric deficit during critical illness by providing parenteral nutrition to supplement enteral nutrition early in the disease course would reduce the rate of complications or whether withholding parenteral nutrition for 1 week would be clinically superior
- Design –multicentric parallel group, randomized controlled trial.
- Method 4640 patients with NRS score >/=3 were recruited and randomly assigned to one of the two categories of early (within 48 hrs) and late (not before day 8) initiation of supplemental parenteral nutrition. A protocol for the early initiation of enteral nutrition was applied to both groups, and insulin was infused to achieve normoglycemia
- Outcome primary -ICU stay

secondary

- □ number of patients with new infections;
- □ the infection site the duration of antibiotic therapy;
- the time to final weaning from mechanical ventilatory support and the need for tracheostomy;
- □ the rate of incident acute kidney injury,
- □ need for and duration of pharmacologic or mechanical hemodynamic support
- □ status according to the distance walked in 6 minutes
- and the proportion of patients who were independent in all activities of daily living. with respect to the total incremental health care costs from randomization to hospital discharge

Table 2. Outcomes.*			
Variable	Late-Initiation Group (N=2328)	Early-Initiation Group (N=2312)	P Value
Safety outcome			
Vital status — no. (%)			
Discharged live from ICU within 8 days	1750 (75.2)	1658 (71.7)	0.007
Death			
In ICU	141 (6.1)	146 (6.3)	0.76
In hospital	242 (10.4)	251 (10.9)	0.63
Within 90 days after enrollment;	257 (11.2)	255 (11.2)	1.00
Nutrition-related complication — no. (%)	423 (18.2)	434 (18.8)	0.62
Hypoglycemia during intervention — no. (%)‡	81 (3.5)	45 (1.9)	0.001
Primary outcome			
Duration of stay in ICU§			
Median (interquartile range) — days	3 (2-7)	4 (2–9)	0.02
Duration >3 days — no. (%)	1117 (48.0)	1185 (51.3)	0.02
Hazard ratio (95% CI) for time to discharge alive from ICU	1.06 (1.00–1.13)		0.04
Secondary outcome			
New infection — no. (%)			
Any	531 (22.8)	605 (26.2)	0.008
Airway or lung	381 (16.4)	447 (19.3)	0.009
Bloodstream	142 (6.1)	174 (7.5)	0.05
Wound	64 (2.7)	98 (4.2)	0.006
Urinary tract	60 (2.6)	72 (3.1)	0.28
Inflammation			
Median peak C-reactive protein level during ICU stay (interquartile range) — mg/liter	190.6 (100.8-263.2)	159.7 (84.3–243.5)	<0.001
Mechanical ventilation			
Median duration (interquartile range) — days	2 (1-5)	2 (1-5)	0.02
Duration >2 days — no. (%)	846 (36.3)	930 (40.2)	0.006
Hazard ratio (95% CI) for time to definitive weaning from ventilation	1.06 (0.99–1.12)		0.07
	1. 5252 YEARS 200		ST 220 EX253

Variable	Late-Initiation Group (N = 2328)	Early-Initiation Group (N=2312)	P Value
Kidney failure			
Modified RIFLE category — no. (%)¶	104 (4.6)	131 (5.8)	0.06
Renal-replacement therapy — no. (%)	201 (8.6)	205 (8.9)	0.77
Median duration of renal-replacement therapy (interquartile range) — days	7 (3–16)	10 (5–23)	0.008
Duration of hospital stay			
Median (interquartile range) — days	14 (9–27)	16 (9–29)	0.004
Duration >15 days — no. (%)	1060 (45.5)	1159 (50.1)	0.001
Hazard ratio (95% CI) for time to discharge alive from hospital	1.06 (1.00–1.13)		0.04
Functional status at hospital discharge			
Distance on 6-min walk test			
No. of patients evaluated	624	603	
Distance (interquartile range) — m	277 (210-345)	283 (205-336)	0.57
Activities of daily living			
No. of patients evaluated	1060	996	
Independent in all activities - no. (%)	779 (73.5)	752 (75.5)	0.31
Mean total incremental health care cost (interquartile range) — €I	16,863 (8,793–17,774)	17,973 (8,749–18,677)	0.04

• Conclusion :

Late initiation of parenteral nutrition was associated with faster recovery and fewer complications, as compared with early initiation.

NEJM August 11, 2011

• Indirect calorimetry vs predictive equation.

- \odot has no effect on mortality.
- but associated with a significant reduction in hospital mortality.
- When used to supplement EN with PN may be associated with a higher incidence of infections.
- When used as a guide to supplement EN with PN may be associated with a longer ICU length of stay, and duration of ventilation.
- The use of indirect calorimetry compared to predictive equations may result in improved nutritional intake

Study	Population	Methods (score)	Intervention	Mortality # (%)†		Infections # (%)	
				Indirect Calorimetry	Predictive Equation	Indirect Calorimetry	Predictive Equation
1) Saffle 1990	Burns 47 % TSBA N=49	C.Random: not sure ITT: yes Blinding: no (7)	EN via Indirect calorimetry (IC) vs. Curreri formula	3/26 (12)	2/23 (9)	NR	NR
2) Singer 2011*	Mechanically ventilated critically ill patients (Mixed medical, surgical, trauma) N=130	C.Random: Yes ITT: No Blinding: No (8)	EN via indirect calorimetry with measurements Q48H supplemented with PN and energy delivery adjusted accordingly vs. EN (using 25kcal/kg/day and not readjusted for 14 days). PN attempted to make up shortfall Non isocaloric/isonitrogenous	ICU 16/56 (29) Hospital 16/56 (29) 60-day 24/56 (58)	ICU 17/56 (30) Hospital 27/56 (48) 60-day 29/56 (48)	VAP 18/56 (32) Total 37/56 (66)	VAP 9/56 (16) Total 20/56 (36)

Table 1. Randomized studies evaluating indirect calorimetry vs. predictive equation in critically ill patients

• High fat/low carbohydrate:

- A high fat, low CHO enteral formula ay be associated with a reduction in ventilator days in medical ICU patients with respiratoy failure and better glycemic control in patients with hyperglycemia.
- No difference in mortality, infections or LOS found between the critically ill patient receiving high fat/ low carbohydrate formula or standard.

Study	Population	Methods (score)	Intervention	Mortality # (%)		RR (CI)**	Infections # (%)		RR (CI)**
1. van den Berg 1994	Medical ICU patients with COPD Chronically ventilated N=32	C.Random: not sure ITT: yes Blinding: no (5)	55% fat, 28 % CHO (Pulmocare) vs 30 % fat, 53 % CHO (standard, Ensure Plus)	High fat/low CHO NR	Standard NR	NR	High fat/low CHO NR	Standard NR	NR
2. Al Saady 1994	Ventilated patients Acute respiratory failure N=40	C.Random: not sure ITT: no Blinding: double (9)	55% fat, 28 % CHO (Pulmocare) vs 30 % fat, 53 % CHO (standard, Ensure Plus)	3/9 (33)	3/11 (27)	1.22 (0.32-4.65)	NR	NR	NR
3. Mesejo 2003	Critically ill pts with Diabetes or hyperglycemia from 2 different centers N=50	C.Random: not sure ITT: yes Blinding: single (9)	40% fat, 40 % CHO (Novasource Diab Plus) vs. 29 % fat, 49 % CHO (Standard, Isosource Protein)	8/26 (31)	7/24 (29)	1.05 (0.45, 2.47)	10/26 (38.5)	8/24 (33)	1.15 (0.55, 2.43)

Table 1. Randomized Studies Evaluating High Fat/Low CHO Enteral Nutrition In Critically ill Patients

• Low fat/high carbohydrate:

 low fat enteral feeding may be associated with lower incidence of pneumonia and trend towards a reduction in LOS in burn patients.

- High protein vs low protein
 - High protein vs low protein has no effect on mortality in critically ill patient on CRRT.
 - High protein vs low protein has no effect on ICU length of stay or duration of mechanical ventilation.
 - Higher protein formula has no effect on mortality and infectious complications in head injured patients

Study	Population	Population Methods (score) Head injured patients comatose for 24 hrs N=20 C.Random: not sure ITT: yes Blinding: no (8)	Intervention 22% pro, 38 % CHO, 41 % fat, 1.5 Kcal/mi (Traumacal vs. 14 % pro, 50 % CHO, 36 % fat, 2.0 Kcal/mi (Magnacal) Isocaloric, 29 gm Nitrogen vs.17.6 gms Nitrogen	Mortality # (%)		RR (CI)**	Infections # (%)		RR (CI)**
1) Clifton 1985	Head injured patients Comatose for 24 hrs N=20			High protein 1/10 (10)	Low protein 1/10 (10)	1.00 (0.07-13.9)	High protein 3/10 (30)	Low protein 2/10 (20)	1.50 (0.32, 7.1)
2) Scheinkestel 2003	Critically ill ventilated pts on 6 days CRRT for renal failure N=50	C.Random: yes ITT: yes Blinding: no (9)	1.5 g/kg/d protein x2 days, 2.0 g/kg/d protein x2 days and 2.5 g/kg/d protein x2 days while receiving CRRT vs 2.0 g/kg/d protein x6 days while receiving CRRT	High protein ICU: 9/40 (23)	Low protein ICU: 4/10 (40)	0.56 (0.22-1.46)	NA	NA	NA
3) Rugeles 2013	Medical adult ICU patients N=80	C.Random: yes ITT: no Blinding: double (7)	hypocaloric hyperproteic (15 kcal/kg, 1.7 g/kg/d) x 7 days vs standard (25 kcal/kg, 20% calories from protein).	NR	NA	NA	NR	NR	NA

Table 1. Randomized Studies Evaluating Higher Protein vs. Low Protein Enteral Formula in Critically ill Patients

C.Random: concealed randomization

^{±:} mean ± standard deviation

- Peptide vs polymeric protein
 - No difference between mortality, infection or length of stay.
 - No difference in incidence of diarrhea
 - \odot No difference in protein or energy intake.

Study	Population	Methods (score)	Intervention	Mortality # (%)†		Infections # (%)		
				Peptide	Whole Protein	Peptide	Whole Protein	
1. Brinson 1988	Mixed ICU's patients with MOF, hypoalbuminemia, malnutrition from 2 ICUs N=12	C.Random: no ITT: yes Blinding: nsingle (5)	Peptide based formula (vital HN) vs whole protein formula (Osmolite HN)	0/7 (0)	2/5 (40)	NR	NR	
2. Meredith 1990	ICU patients, trauma, N=18	C.Random: yes ITT: yes Blinding: no (8)	Peptide based formula (Reabilan HN) vs whole protein formula (Osmolite HN)	1/9 (11)	1/9 (11)	NR	NR	
3. Mowatt-Larsen 1992	Critically ill, acutely injured patients, albumin < 30 N=41	C.Random: not sure ITT: no Blinding: no (6)	Peptide based formula (Reabilan HN) vs whole protein formula (Isocal)	NR	NR	12/21 (60)	14/20 (70)	
4. Heimburger 1997	ICU patients from 2 ICUs N=50	C.Random: not sure ITT: no Blinding: no (7)	Small peptide formula vs whole protein formula	NR	NR	17/26 (65)	18/24 (75)	
5. de Aguilar- Nascimento 2011	Elderly patients with acute ischemic stroke in ICU N=31	C.Random: Yes ITT: No Blinding: No (7)	Hydrolyzed whey protein feed (Peptamin 1.5) vs. Hydrolyzed casein protein feed (Hiper Diet Energy Plus)	3/10 (30)	4/15 (27)	NR	NR	

Table 1. Randomized studies evaluating enteral PROTEIN vs. PEPTIDES in critically ill patients
• Probiotics with enteral nutrition

- The addition of probiotics to enteral nutrition has no effect on ICU mortality.
- Overall probiotic with EN showed a significant reduction of infectious complication.
- Probiotics when added to enteral nutrition showed no significant reduction in hospital LOS, or ICU LOS.

Canadian clinical practice guideline 2015

Intensive Care Med (2009) 35:854-861 DOI 10.1007/s00134-008-1368-1

ORIGINAL

David J. W. Knight Dale Gardiner Amanda Banks Susan E. Snape Vivienne C. Weston Stig Bengmark Keith J. Girling Effect of synbiotic therapy on the incidence of ventilator associated pneumonia in critically ill patients: a randomised, double-blind, placebo-controlled trial

- Hypothesis: administration of enteral synbiotics would significantly decrease the incidence of VAP in mechanically ventilated (MV) critically ill patients when compared to placebo.
- Design: Prospective, randomised, double blind, placebo controlled trial.
- Method: 259 enterally fed patients requiring mechanical ventilation for 48 h or more were enrolled. All patients were enterally fed as per a standard protocol and randomly assigned to receive either synbiotic 2000 FORTE (twice a day) or a cellulose based placebo for a maximum of 28 days.
- Outcome primary incidence of VAP.

Secondary -variables were oropharyngeal flora, ventilator days, and VAP rates per 1,000 ventilator days, ICU length of stay, ICU mortality and hospital mortality

Fig. 1 CONSORT flow diagram of trial

Table 3 VAP diagnosis

Variable	Synbiotic	Placebo	Р	Relative risk (95% Confidence Interval)
Number of patients	130	129		
VAP (% of total)	12 (9)	17 (13)	0.42	0.70(0.35 - 1.41)
Polymicrobial VAP	3	5	-19-19-19-19-	
Individual pathogens				
Enterobacteriaceae	6	7		
Pseudomonas aeruginosa		1		
MRSA		1		
Haemophilus influenzae		1		
Acinetobacter baumannii	3	1		
Stenotrophomonas maltophilia		1		
VAP episodes per 1,000 ventilator days	13	14.6	0.91	0.89 (0.42-1.87)
Number of ventilator days, median (IQR)	5 (2–9)	5 (3-11)	0.82	

Table 5	Secondary	outcome	results

Table 5 Secondary outcome results					
Synbiotic	Placebo	Р	Relative risk (95% CI)		
130	129				
6.0 (3-11)	7.0 (3-14)	0.45			
19 (8-36)	18 (7-32)	0.85			
10400704 SB250	577.877.0757.5557.074				
28 (21.5)	34 (26.3)	0.44	0.82 (0.53-1.26)		
35 (26.9)	42 (32.5)	0.39	0.83 (0.57-1.20)		
	Synbiotic 130 6.0 (3–11) 19 (8–36) 28 (21.5) 35 (26.9)	Synbiotic Placebo 130 129 6.0 (3-11) 7.0 (3-14) 19 (8-36) 18 (7-32) 28 (21.5) 34 (26.3) 35 (26.9) 42 (32.5)	Synbiotic Placebo P 130 129		

Importance of feeding protocol in ICU

- Feeding protocols/algorithms with prokinetics, post-pyloric tubes may be associated with a trend towards a reduction in hospital mortality and a significant reduction in hospital length of stay.
- Feeding protocols with prokinetics and a higher gastric residual volume threshold (250 mls) are associated with a trend towards a reduction in gastric residual aspirations and less time taken to reach goal feeding rate in the critically ill.
- Feeding protocols with higher target rates, volume based goals, use of a semielemental formula, protein supplements, prophylactic use of motility agents and higher gastric residual volumes (300 mls) are associated with a significantly higher calorie and protein intake and a decreased time to start of enteral nutrition in critically ill patients.

Canadian clinical practice guideline 2015

Study	Population N	Methods	Intervention	Mortality # (%)		Infections # (%)‡	
		(score)		High RV	Low RV	High RV	Low Rv
1) Pinilla 2001	Mixed ICU's N = 96	C.Random: not sure ITT: yes Blinding:no (9)	Feeding protocol with a higher gastric RV threshold (250 mls) + prokinetics vs feeding protocol with lower GRV (150 mls). Both groups received polymeric formula vis gastric feeds.	NR	NR	1/44 (2)	0/36 (0)
2) Martin 2004	Cluster RCT of 14 mixed ICU's N = 492	C.Random: no ITT: no Blinding:no (5)	Nutrition algorithms with prokinetics+post pyloric feeding+ supplemental parenteral nutrition to meet at least 80% caloric goal vs. none	Algorithms 72/269 (27)	No Algorithms 82/223 (37)	NR	NR
3) Doig 2008	Cluster RCT of 27 ICUs. Patients expected to remain in ICU >2 days N = 1118	C.Random: yes ITT: yes Blinding: no (8)	Development of evidence-based guideline + implementation of a practice-change strategy (including staff education, in- services) composed of 18 specific interventions vs. Site monitoring + data collection only	Hospital 172/561 (28.9) ICU 137/561 (24.5)	Hospital 153/557 (27.4) ICU 121/561 (21.5)	NR	NR
4) Zavetailo 2010	Traumatic brain injury or hemorrhagic stroke w anticipated vent >5 days N=56	C.Random: Not sure ITT: yes Blinding: no (7)	Feeding protocol with erythromycin 300 mg first 3 days, target feeding volumes per day, starting EN at 50 ml/hr and increasing by 25 ml/hr daily, introduction of fibre formula on day 3, use of hypercaloric hypernitrogenous formula starting day 1 vs fibre free formula, isotonic, no erythromycin, starting EN at 50 ml/hr and increasing by 25 ml/hr daily.	30 Day 3/28 (10.7)	30 Day 3/28 (10.7)	NR	NR
5) Heyland 2013	Cluster RCT, Multicenter ICUs previously demonstrating poor nutritional adequacy N=1059	C.Random: No ITT: yes Blinding: no (11)	PEP uP protocol – started feeds at higher target rate, volume-based goal, semi- elemental feeding, protein supplements starting day 1, metoclopramide starting day 1 prophylactically, GRV threshold of 300 ml. Nursing education of protocol, plus bedside	ICU 35/252 (13.9) 60 Day 68/252 (27)	ICU 42/267 (15.7) 60 Day 63/267 (23.6)	ICU acquired pneumonia, by pt 7/252 (2.8)	ICU acquired pneumonia, by pt 16/267 (6.0)

Table 1. Randomized studies evaluating feeding protocols in critically ill patients

PEP UP feeding algorithm chart

PEP u P studies

EP uP Studies N		tudies N Nutrition Outcome		Clinical Outcome	
Pilot Study (2010)	Before group: 20	Adequacy of calories EN: 58.8% (before) vs 70.2% (after); P = .23 Total nutrition ^a : 71.7% (before) vs 80.3% (after); P = .23	Vomiting: 15.0% (before) vs 6.7% (after); P = .38 Regurgitation: 10.0% (before) vs 0 (after); P = .16	Length of ICU stay (days): 17.9 (before) vs 8.5 (after); P = .14 Length of hospital stay (days): 57.4 (before) vs 22.9 (after); P = .02	
	After group: 30	Adequacy of protein EN: 61.2% (before) vs 76.1% (after); $P = .08$ Total nutrition ^a : 61.2% (before) vs 73.6% (after); $P = .13$ Time of initiation of EN (hours): 16.0 (before) vs 17.7 (after); $P = .72$	Macroaspiration: 10.0% (before) vs 0 (after); P = .16 Pneumonia (48 hours after ICU admission): 25.0% (before) vs 13.3% (after); P = .45	Length of mechanical ventilation (days): 11.8 (before) vs 5.8 (after); P = .06 60-day mortality: 10.0% (before) vs 30.0% (after); $P = .16$	
Clustered Randomized Controlled Trial (2013)	Site Control: 9 Intervention: 9	Adequacy of calories (% difference) EN: -0.6% (control) vs 11.6% (intervention); P = .004 Total nutrition ^a : 0.2% (control) vs 12.3% (Intervention); $P = .01$	Vomiting (% difference): -2.9% (control) vs 1.2 % (intervention); P = .45 Regurgitation (% difference): -0.4% (control) vs -1.2%	Length of ICU stay (days difference): -0.7 (control) vs 1.1 (intervention); P = .35 Length of hospital stay (days difference): -2.9 (control) vs -0.7	
	Patient • Control • Baseline: 270 • Follow-up: 267 • Intervention • Baseline: 270 • Follow-up: 252	Adequacy of protein (% difference) EN: $-0.2\%\%$ (control) vs 13.6% (intervention); $P = .005$ Total nutrition ^a : -1.2% (control) vs 14.4% (intervention); $P = .004$ Time of initiation of EN (hours difference): 1.6 (control) vs -11.0 (intervention); $P = .10$	(intervention); P = .39 Macroaspiration (% difference): -0.4% (control) vs 1.3% (intervention); P = .11 ICU-acquired pneumonia (% difference): 1.9% (control) vs 0.6% (intervention); P = .43	 (intervention); P = .73 Length of mechanical ventilation (days difference): -0.1 (control) vs 0.6 (intervention); P = .57 ICU mortality (% difference): -7% (control) vs -12% (intervention); P = .57 60-day mortality (% difference): -2% (control) vs -2% (intervention); P = .53 	

Table 2. Summary of Nutrition, Safety, and Clinical Outcomes of the PEP uP Studies.

Nutrition in Clinical Practice Volume 31 Number 1 February 2016 68–79

Nutrition in ICU – PGI experience

- In a prospective cohort study conducted in RICU , PGIMER found that
 - Calorie delivery increased from 55.1% (35.4–81.3%) of the recommended value on day 1 to 92.0% (35.7–124.6%) on day 28. Protein delivery improved from 46.7% (31.6–72.1%) of the recommended value on day 1 to 75.3% (54.3–85.5%) on day 28. but none of them reached the goal.
 - Risk factors for hospital mortality identified were admission Sequential Organ-Failure Assessment score(odds ratio 1.30, 95% confidence interval 1.03–1.63) and mean daily calorie delivery of < 50% of the recommended value

Respir Care 2009;54(12):1688–1696.

Take home message

- All ICUs should have feeding protocol.
- Early initiation of enteral feeding [preferably full] should be the first step in all such protocol.
- Volume based feeding and compensation for missed calories are something new and worth trying.
- Supplemental PN may be beneficial in selected patients.