Management of PAH

21.8.15 and 11.9.15

Seminar outline

- Definition and classification
- Treatment
 - Specific therapies for PAH
 - Role of combination therapy
 - Status of emerging therapies
- PAH 2° to lung disease (Group 3)
- CTEPH (Group 4)
- Prognosis and prognosis assessment tools

PAH

- Pulmonary arterial hypertension (PAH) remains a highly morbid disease with high mortality.
- Despite a recent growth in therapeutic options, clinicians and their patients continue to struggle with questions regarding pharmacologic treatments and major uncertainties persist in the management of PAH.

Definition & Classification

Old definition

- Pulmonary arterial hypertension (PAH) was defined by
 - Mean PAP >25 mmHg at rest or >30 mmHg with exercise
 - PAWP ≤15 mmHg and
 - PVR >3 mmHg/L/min (Wood units) or >240 dyn·s/cm⁵

ESC guidelines. Galie N et al. European Heart Journal (2004) 25, 2243–2278

New definition

- Pulmonary hypertension (PH) is defined as a resting mPAP ≥25 mmHg at right heart catheterization (RHC)
- PAH is defined as a subgroup of PH with:
 - PAWP ≤15 mmHg (Pre-capillary PH) with PVR ≤ 3 Wood units
 - Normal or reduced cardiac output
 - Absence of other causes of pre-capillary PH (PH due to lung diseases, CTEPH, or other rare diseases)

ESC guidelines. Galie N et al. European Heart Journal (2004) 25, 2243–2278

Why this cut-off?

- Systematic review of 47 studies describing 72 healthy populations (1187 patients)
 - Normal resting mPAP: 14 ± 3.3 mmHg
 - Upper limit of normal (ULN = Mean + 2SD): 20.6

^m mPAP 21-24 mmHg: Borderline PAH?

Kovacs G et al. Eur Respir J 2009; 34: 888-894

Why was exercise cut-off (>30mmHg) eliminated?

Kovacs G et al. Eur Respir J 2009; 34: 888-894

Table 1 Updated Classification of Pulmonary Hypertension*

- 1. Pulmonary arterial hypertension
 - 1.1 Idiopathic PAH
 - 1.2 Heritable PAH
 - 1.2.1 BMPR2
 - 1.2.2 ALK-1, ENG, SMAD9, CAV1, KCNK3
 - 1.2.3 Unknown
 - 1.3 Drug and toxin induced
 - 1.4 Associated with:
 - 1.4.1 Connective tissue disease
 - 1.4.2 HIV infection
 - 1.4.3 Portal hypertension
 - 1.4.4 Congenital heart diseases
- 1.4.5 Schistosomiasis
- 1' Pulmonary veno-occlusive disease and/or pulm
- 1". Persistent pulmonary hypertension of the ne
- Pulmonary hypertension due to left heart dise
- 2.1 Left ventricular systolic dysfunction
- 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease
- 2.4 Congenital/acquired left heart inflow/out congenital cardiomyopathies
- 3. Pulmonary hypertension due to lung diseases
- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitial lung disease
- 3.3 Other pulmonary diseases with mixed restr
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental lung diseases
- Chronic thromboembolic pulmonary hypertensi

- 1. Pulmonary arterial hypertension (PAH)
- 1.1. Idiopathic PAH
- 1.2. Heritable
- 1.2.1. BMPR2
- 1.2.2. ALK1, endoglin (with or without hereditary hemorrhagic telangiectasia)
- 1.2.3. Unknown
- 1.3. Drug- and toxin-induced
- 1.4. Associated with
- 1.4.1. Connective tissue diseases
- 1.4.2. HIV infection
- 1.4.3. Portal hypertension
- 1.4.4. Congenital heart diseases
- 1.4.5. Schistosomiasis
 - 1.4.6. Chronic hemolytic anemia
 - 1.5 Persistent pulmonary hypertension of the newborn
 - 1'. Pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillary
- Pulmonary hypertension with unclear multifact

5.1 Hematologic disorders: chronic hemolytic anemia, myeioproliterative

disorders, splenectomy

- 5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis,
- lymphangioleiomyomatosis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure,
- segmental PH

Simonneau et al. J Am Coll Cardiol 2013;62: D34–41

- hemangiomatosis (PCH)

Disease burden

- Prevalence: 15–50 patients per million population
- Annual incidence: 2-7 cases per million

population

 No systematic data on prevalence/incidence from India

> Humbert M et al. Am. J. Respir. Crit. Care Med. 173, 1023–1030 (2006) Peacock AJ et al. Eur. Respir. J. 30, 104–109 (2007)

Therapies for PAH

Therapy without RCT data

- CCBs
- Warfarin
- Oxygen
- Exercise
- Diuretics

Targeted Therapies

- Prostanoids
- Endothelin receptor antagonists
- PDE-5 inhibitors
- Prostanoids
- Riociguat
- Emerging therapies

Monotherapy vs Combination therapy?

Humbert M, Ghofrani H-A. Thorax 2015

CCBs

- Nifedipine and Diltiazem MC used > Amlodipine
- Verapamil avoided d/t negative inotropic effect
- HR > 100 \rightarrow Ditiazem
- HR < 100 \rightarrow Nifedipine/Amlodipine
- High dose CCBs required:
 - Nifedipine 180-240 mg/d
 - Diltiazem 720-960 mg/d
 - Amlodipine 20-30 mg/d
- 1. Taichman, Ornelas et al. CHEST 2014
- 2. McLaughlin, Archer et al. Circulation 2009

Vasoreactivity testing

- Done with short acting agent: Inhaled nitric oxide (iNO) is drug of choice
 - IV epoprostenol, acetylcholine, adenosine or tolazoline also used: may have systemic vasodilator effects
 - Inhaled iloprost has emerged as newer alternative
- Fall in mPAP > 10 mmHg to value < 40 mmHg cutoff for selecting patients for CCBs

- 1. Taichman, Ornelas et al. CHEST 2014
- 2. Galie et al. Journal of the American College of Cardiology 2013

CCBs

Rich et al. NEJM 1992

- 17/64 patients (26%) had acute pulmonary vasoreactivity (20% decrease in mPAP and PVR)
- Responders received CCBs: At 5 yrs CCB group had 94% survival compared with 55% in non-responders (p=0.003)

Sitbon et al. Circulation 2005.

- Retrospective study: 70/557 (12.6%) showed vasoreactivity and got CCB
- Only 38/70 (7% of total) had response to CCB
- CCB responders had better baseline NYHA Class, longer 6MWD and hemodynamic variables
- Also showed significant survival benefit (98% v 48%)

CCB responder group had reached a lower mPAP (<40 mmHg) and lower PVR on vasodilator testing when compared to CCB non-responder group

Figure 4. Breakdown of long-term responders to calcium channel blocker (CCB) monotherapy amongst those who are acutely vasoreactive, by type of PAH (data adopted from Sitbon et al. (2004)

Fallah. Global Journal of Health Science 2015

Factors predicting response to CCBs

TABLE 5. Odds Ratios for Variables Associated With Treatment Success on Long-Term CCB for Acute Responders (Univariate Analysis)

	Dichotomy/Median	Odds Ratio	95% CI	Ρ
Baseline clinical variables				
Age, y	<42.8	2.18	0.83-5.75	0.115
History of RHF	No	3.48	0.95-12.68	0.059
NYHA functional class	11/111-TV	3.02	1.13-8.13	0.028
Hemodynamic variables measured at baseline				
Mean RAP, mm Hg	<7	2.36	0.89-6.21	0.083
Mean PAP, mm Hg	<56	3.02	1.13-8.13	0.028
Cardiac index, L · min ⁻¹ · m ⁻²	>2.5	3.21	1.20-8.54	0.015
PVR, Wood units	<11.5	4.24	1.55-11.49	0.005
Svo ₂ , %	>65	19.18	5.73-64.25	< 0.0001
Variables achieved during acute vasodilator testing				
Mean PAP, mm Hg	<37	6.13	2.11-17.86	0.0009
Fall in mean PAP, %	>31	7.35	2.54-21.28	0.0002
PVR, Wood units	<6.7	7.35	2.54-21.28	0.0002
Fall in PVR, %	>45	3.27	1.22-8.77	0.018

RHF indicates right heart failure; RAP, right atrial pressure.

CCBs: Use with Caution!

- Start with low dose and titrate upwards
- Edema
- Hypotension
- Reflex tachycardia \rightarrow RV ischaemia
- Increasing CCB doses in patients who are not vasoreactive may be fatal
- As 93% patients are not likely to respond →
 Should not be used without vasoreactivity testing

Prostanoids

- Prostacyclin(PGI₂) endogenous eicosanoid produced by endothelial cells.
- Epoprostenol is the synthetic equivalent of prostacyclin, and treprostinil and iloprost are both stable synthetic analogs.
- Deficiency of prostacyclin activity identified as an important part of the pathobiology of PAH.
- Loss of expression of prostacyclin synthase also been observed in lung tissue of PAH patients.

Prostanoids - Mechanism of Action

- Primary target of prostacyclin → IP receptor on vascular smooth-muscle cells.
- Prostacyclin binds target receptors on smooth-muscle cells, intracellular signaling leads to adenylate cyclase activation and increase in cAMP levels.
- Results in smooth-muscle relaxation with vasodilation.
- Also believed to target pathologic vascular remodeling observed in PAH.
- Additional prostanoid effects include anti-proliferative, inhibition of platelet aggregation, anti-inflammatory, and augmentation of ventricular inotropy

Perrin et al. Expert Opin. Pharmacother. 2015

Prostanoids – Dosing and administration

Drug	Preparation	Administration	Dosage
Epoprostenol GM (glycine-mannitol FLOLAN) 0.5 mg 1.5 mg lyophilised powder	Reconstituted solutions stable for up to 8 hrs. May be stored for up to 40 hrs refrigerated at 2°C to 8°C.	Continuous IV infusion via central line with ambulatory infusion pump	Start at 2 ng/kg/min (titrate upward 3-7 days) Mean dose: 12 wks = 11 ng/kg/min 1 yr = 21 ng/kg/min 1 ½ yr = 35 ng/kg/min
Epoprostenol AS (arginine-sucrose VELETRI) 0.5 mg 1.5 mg Iyophilised powder	Reconstituted solutions stable for up to 48 hrs. May be stored for up to 8 days refrigerated at 2°C to 8°C.	do	do

Not to be exposed to direct sunlight

Prostanoids – Dosing and administration (contd)

Drug	Preparation	Administration	Dosage
Iloprost – Inhaled (VENTAVIS) 10 mcg/ml = 2.5 mcg 20 mcg/ml = 5 mcg	No dilution required	Oral inhalation via ultrasonic nebuliser	2.5-5 mcg per dose 6 to 9 times/day
Treprostenil – Inhaled (TYVASO) 1.74 mg/2.9 ml	No dilution required. One ampoule to be changed every 24 hrs.	Oral inhalation via Tyvaso Inhalational System	3-9 breaths per session(18-54 mcg)4 times/day
Treprostenil - IV/SC (REMODULIN)	With sterile water: storage upto 4 hrs at room temp and 24 hrs refrigerated. With diluent: Maybe stored upto 14 days. Administer within 48 hrs	Continuous IV/SC infusion with ambulatory infusion pump	1.25 ng/kg/min and titrate upward*Dosage of 40ng/kg/min a/w improved survival
Treprostenil – Oral (ORENITRAM)	-	-	0.25 mg bd and increase 3-4 days *Mean dose 3.4 mg bd

Epoprostenol – Landmark Trial

- 12 week prospective randomized open label trial (epoprostenol vs standard care)
- IPAH, NYHA Class III/IV, n = 81 (41 Epoprostenol)
- 1° outcome: mean 6MWD increased by 32 m in epoprostenol group (decrease by 25 m in std Rx)
- Other statistically significant outcomes:
 - Only randomised PAH trial to show improved survival
 - Improvement in hemodynamic parameters, FC, QoL and dyspnea scores

Comparison of RCTs in Epoprostenol

Study	n	Pop ulati on	6MWD Improveme nt (compared to placebo)	Survival	Dysp nea	FC change	QoL	Hem odyn amics	Serious Adverse Events
Rubin 1990 Barst 1994	25 18	IPAH	106 m at 6 mon 144 m at 18 mon	At 3 yrs 63% v 40% (p=.045)	-	-	-	Y	2 deaths d/t catheter complication s 7 episodes of sepsis
Barst 1996	81	IPAH	60 m at 12 wks	8 vs 0 deaths (p =.003)	Y	Y	Y	Y	4 sepsis, 1 paradoxical embolism. No deaths.
Badesc h 2000	11 1	SSc	108 m at 12 wks	5 vs 4 deaths (p=NS)	Υ	Y	Ν	Y	2 sepsis, 2 cellulitis, 2 pneumothor ax, 2 hemorrhage

Figure 2

Meta-Analysis of Published Randomized Controlled Studies (Identified by First Author and Year of Publication) With Epoprostenol in Pulmonary Arterial Hypertension by Mantel-Haenszel and Peto Methods

The analysis included 215 patients in 3 trials. The figure shows the cumulative relative risk (RR) estimate of death in active treatment groups when compared with control groups. An overall reduction of the risk of mortality of 70% (p = 0.019) and 68% (o = 0.012) is shown with Mantel-Haenszel and Peto methods, respectively. Cl = confidence interval; OR = odds ratio.

Galie et al. Journal of the American College of Cardiology 2013

RCTs with iloprost/treprostenil

Study	n	Popu latio n	6MWD Improvement (compared to placebo)	Surviv al	Dys pne a	FC change	QoL	Hemo dyna mics	Serious Adverse Events
Olschews ki 2002 (AIR- Double blind RCT)	203	IPAH, CTEP H NYH 3 or 4	36 m at 12 wk (p=.004) (59 in IPAH, 12 in CTEPH p=NS)	4 vs 1 (p=NS)	Υ	Υ	Υ	Υ	Increased syncope, flushing, cough
Simonne au 2002	470	Grp 1 PAH NYH 2/3/4	16 m at 12 wks (p=.006)	7 vs 7		Ν	Y	Y	3 GI bleed
Jing 2013 Freedom- M	349	Grp 1 PAH	26 m at 12 wks (p=.012)	10 vs 6 (p=NS)	Ν	Ν	Ν	-	2 syncope, 2 pul edema

Selexipag

Simonneau G et al. Eur Respir J. 2012 Oct;40(4):874-80

Adverse events with prostacyclins

Drug Related

- Flushing
- Headache
- Diarrhea
- Nausea/Vomiting
- Jaw pain
- Flu-like symptoms
- Syncope/hypotension
- Cough (with inhaled)

Catheter Related

- Sepsis
- Thrombosis
- Bleeding
- Drug interruption and rebound PAH
- Paradoxical embolism

Endothelin pathway

Perrin et al. Expert Opin. Pharmacother. 2015

Endothelin receptor antagonists

- ET-1 → potent vasoconstrictor that promotes smooth muscle proliferation and contributes to disease progression in PAH.
- ET-1 levels increased in PAH, levels correlate with PVR in IPAH.
- 2 receptors, endothelin-A (ETA) and endothelin-B (ETB).
- ETA receptors, found on smooth muscle cells only, induce vasoconstriction and cellular proliferation.
- ETB receptors on smooth muscle cells, when activated, also stimulate vasoconstriction; however, ETB receptors on endothelial cells have the counter-effect of vasodilation and clearance of ET-1.
- Whether selective ETA receptor antagonism offers greater benefit in PAH? Inconclusive data

Comparison of ERAs

Drug	Dose	Selectivity	Main Adverse Affects	Interactions	Monitoring
Bosentan BOSENTAS/ LUPIBOSE Rs 110: 62.5 mg	Initially 62.5 mg bd, If LFT normal increase to 125 mg bd	Non- selective	Transaminitis, Teratogenic, Edema, Anemia	Glyburide, Cyclosporine, CYP450 inhibitors/ind ucers	Monthly LFT, Monthly pregnancy testing
Ambrisentan AMBRICAN/ ENDOBLOC Rs 140: 5mg Rs 230: 10mg	5 mg to 10 mg od	ET-A	<transaminitis, Teratogenic, Nasal congestion, edema, Anemia</transaminitis, 	Cyclosporine, CYP450 inhibitors/ind ucers	Monthly pregnancy testing
Macitentan	10 mg od	Non- selective	do	do	

Sitaxsentan withdrawn after reports of ALF

RCTs with ERA monotherapy

Study	n	Popul ation	6MWD Improvement (compared to placebo)	Death/Cli nical Worsenin g	Dy sp ne a	FC change	QoL	Hemod ynamic s	Serious Adverse Events	
Channik 2001	32 (Bosent an 125 mg bd)	Grp 1 PAH NYH 3	76 m at 12 wks (p=.021)	No deaths (CW p=.03)	Y	Y	-	Y	Nil	
Rubin 2002 (BREAT HE-1)	213 (Bosent an 125 vs 250)	NYHA -4 also	44 m at 12 wks (p=.001), 250 mg better, IPAH group better	CW (p=.004)	Y	Y	-	Y	Transaminitis in 9%, dose dependent	
Galie 2006 (BREAT HE-5)	51 (Bosent an 125 bd)	Eisen meng ers	53 m at 16 wks (p=.008)	-	-	Υ	-	Υ	Chest pain, palpitation, edema	
Galie 2008 ARIES-1 and ARIES-2 (Ambris entan)	202 (5 vs 10 mg)	Grp 1 PAH, 6MW	Grp 1 PAH, 6MW D 150- 450m	10mg=51m 5mg=31 m at 12 wks	No diff death or CW	Y	Y	Ν	Cath not done,	Nasal congestion, edema
	and ARIES-2 (Ambris entan)	192 (2.5 vs 5 mg)		5mg=59 2.5mg=32 m at 12 wks	CW (p<0.05 in both doses	Y	Y	Y	NT- BNP improv ed	do

Circulation. 2008 Jun 10;117(23):3010-9

ARIES-2

ARIES extension

EARLY: Bosentan in WHO FC II

Galie N et al. Lancet 2008; 371: 2093–100.
Macitentan – SERAPHIN trial

- Multicentre, double blind RCT, n=742
- 250 = placebo, 250 = 3 mg, 242 = 10 mg
- Group 1, NYHA class II or III
- 61% PDE-5, 5% prostanoids as additional Rx
- Follow-up for 2 yrs
- Primary outcome = composite of mortality and morbidity

Table 2. Primary and Secondary End Points for Events Related to Pulmonary Arterial Hypertension and Death.*								
End Point	Placebo (N=250)	Macitentan, 3 mg (N=250)	Macitentan, 10 mg (N=242)	Macitentan, 3 vs. Placeb	mg,	Macitentan, 10 mg, vs. Placebo		
				Hazard Ratio (97.5% CI)	P Value	Hazard Ratio (97.5% CI)	P Value	
	numb	er of patients (p	ercent)					
Event related to PAH or death as the first event								
All events	116 (46.4)	95 (38.0)	76 (31.4)	0.70 (0.52-0.96)	0.01	0.55 (0.32-0.76)	<0.001	
Worsening of PAH	93 (37.2)	72 (28.8)	59 (24.4)					
Death from any cause†	17 (6.8)	21 (8.4)	16 (6.6)					
Prostanoid initiation	6 (2.4)	1 (0.4)	1 (0.4)					
Lung transplantation	0	1 (0.4)	0					
Death due to PAH or hospitalization for PAH as the first event								
All events	84 (33.6)	65 (26.0)	50 (20.7)	0.67 (0.46-0.97)	0.01	0.50 (0.34-0.75)	<0.001	
Hospitalization for PAH	79 (31.6)	56 (22.4)	45 (18.6)					
Death due to PAH‡	5 (2.0)	9 (3.6)	5 (2.1)					
Death from any cause	19 (7.6)	21 (8.4)	14 (5.8)	0.97 (0.48-1.98)	0.92	0.64 (0.29-1.42)	0.20	
Death due to PAH§	14 (5.6)	14 (5.6)	7 (2.9)	0.87 (0.37-2.04)	0.72	0.44 (0.16-1.25)	0.07	
Death from any cause by the end of the study¶	44 (17.6)	47 (18.8)	35 (14.5)	1.05 (0.65–1.67)	0.83	0.77 (0.46–1.28)	0.25	

Treatment effect maintained across subgroups including those receiving background therapy

Other outcomes and status

- 6MWD (vs placebo): 3 mg-16.8m, 10 mg-22m
- Significant change in FC (20 and 22% resp)
- Better cardiac hemodynamics at 6 months
- ADR: Headache, anemia (4.3% in 10mg arm), nasal congestion
- 10 mg received FDA approval in October 2013
- India NA

PDE-5 inhibitors - mechanism

Perrin et al. Expert Opin. Pharmacother. 2015

PDE-5 inhibitors - mechanism

- NO \rightarrow vasodilator, antiproliferative, and antithrombotic.
- Its activity is mediated by second messenger, cGMP.
- cGMP rapidly degraded by PDE-5 isoenzyme.
- PDE-5 inhibition thus acts to enhance cGMP levels and prolong its vasodilating effects.
- Also, increased myocardial PDE-5 expression, facilitated by pressure-overloaded myocytes, occurs in the hypertrophied RV but not in normal hearts.
- PDE5 inhibitors may directly target RV function and acutely improve contractility in RV failure patients who express elevated PDE5 levels.

Comparison of PDE-5 inhibitors

Drug	Dose	Main Adverse Affects	Interactions	Contraindica tions
Sildenafil	Only 20 mg tds FDA approved (higher doses used off-label)	Flushing, dyspepsia, myalgia, visual changes, epistaxis, nasal congestion, headache	Concomitant nitrates avoided (hypotension), Cy450 inhibitors	MI in past 3 mon, hypotension, AION
Tadalafil	40 mg od	do	do	do

Study	n	Popul ation	6MWD Improvement (compared to placebo)	Death/Cli nical Worsenin g	Dy sp ne a	FC change	QoL	Hem odyn amic s	Serious Adverse Events
Galie 2005 SUPER (Silden afil)	278 (20, 40, 80 mg tds)	Grp 1 PAH, NYH II or III	45, 46 and 50 m for the 3 doses at 12 wks (p<.001)	P= NS	Ν	Y	-	Y	MI, LV dysfunction, postural hypotension (1 each), frequent mild ADR
Galie 2009 PHIRST (Tadala fil)	405 (2.5, 10, 20, 40 mg od)	Grp 1 PAH, NYH II or III, 53% on	33 m at 16 wks (p=.01) Sig benefit seen in 40 mg & bosentan naïve	CW (p=.04 for 40 mg)	Ν	N in whole, Y in bosenta n naive	Y	Υ	Nil, frequent mild ADR (49%) – MC headache
Galie 2012 PHIRST Extn (Tadala fil)	357 (63 in 20 mg, 293 in 40 mg)	bosen tan	Effect maintained at 52 wks, but no improvement in dose escalated patients	No diff in 20 or 40 mg,	Ν	Υ	Y	-	do

Guanylyl cyclase activator - Riociguat

Perrin et al. Expert Opin. Pharmacother. 2015

Guanylyl cyclase activator - Riociguat

- Soluble guanylyl cyclase stimulator → increases cGMP levels → Vasodilation
- Pyrimidine derivative
- First-in-its class drug
- Good oral bioavailability
- T ¹/₂ = 5-10 hrs
- Dose = 1-2.5 mg tds

• MC adverse effects:

Hypotension, syncope, transaminitis, supraventricular tachycardia, edema, headache, nasal congestion, neck pain

Dose to be reduced by
 0.5-1 mg in case of ADR

RCTs with Riociguat

Study	n	Populatio n	6MWD Improvement (compared to placebo)	Death/C linical Worseni ng	FC ch an ge	QoL	Hemo dynam ics	Serious Adverse Events
Ghofrani 2013 (PATENT)	443	Grp 1 PAH, NYHA II,III>IV	36m at 12 wks, 55m at 24 wks (p=.001), NYHA III/IV had more benefit	Y	Y	Ν	Y	Hypotension (10%, p=.005))
Ghofrani 2013 (CHEST- 1)	261	CTEPH, NYH II or III	46m at 12 wks, (p=.001)	Ν	Y	Y (Dyspnea scores also improved)	Y	do
Ghofrani 2015	22	COPD with PAH, GOLD II- IV, FEV1<70, pO2>50	-	-	-	-	Y	-

Combination therapy for PAH

- Strong rationale for combining drugs as different drugs act on different pathways
- Beyond a simple additive effect, certain combinations may also have a synergistic action (eg Sildenafil and prostanoid/Selective ETRA)
- REVEAL registry 52% pts on combination Rx
- The general treatment paradigm has been to add drugs sequentially
- In an early open-label trial using a step-wise goal-directed approach, sildenafil and iloprost added sequentially after 1st line therapy with bosentan (n=123) showed significant benefit

Sequential vs. upfront combination

Emerging concept

- Mortality and Morbidity similar to many rheumatologic and oncologic disorders
- Multi-mechanistic approach from the start, in which physicians use several drug combinations to effectively treat the disease and gain disease remission.
- Several large trials testing the upfront multi-drug combination therapy are ongoing, AMBITION trial recently published

BREATHE-2: Bosentan + IV epoprostenol

ABSTRACT: The efficacy and safety of combining bosentan, an orally active dual endothelin receptor antagonist and epoprostenol, a continuously infused prostaglandin, in the treatment of pulmonary arterial hypertension (PAH) was investigated.

In this double-blind, placebo-controlled prospective study, 33 patients with PAH started epoprostenol treatment (2 ng·kg⁻¹min⁻¹ starting dose, up to 14 ± 2 ng·kg⁻¹min⁻¹ at week 16) and were randomised for 16 weeks in a 2:1 ratio to bosentan (62.5 mg *b.i.d* for 4 weeks then 125 mg *b.i.d*) or placebo.

Haemodynamics, exercise capacity and functional class improved in both groups at week 16. In the combination treatment group, there was a trend for a greater (although nonsignificant) improvement in all measured haemodynamic parameters. There were four withdrawals in the bosentan/epoprostenol group (two deaths due to cardiopulmonary failure, one clinical worsening, and one adverse event) and one withdrawal in the placebo/epoprostenol group (adverse event).

This study showed a trend but no statistical significance towards haemodynamics or clinical improvement due to the combination of bosentan and epoprostenol therapy in patients with pulmonary arterial hypertension. Several cases of early and late major complications were reported. Additional information is needed to evaluate the risk/benefit ratio of combined bosentan-epoprostenol therapy in pulmonary arterial hypertension.

Eur Respir J 2004; 24: 353-359.

COMBI Trial: lloprost + Bosentan

ABSTRACT: Addition of inhaled iloprost to bosentan may have beneficial effects in patients with idiopathic pulmonary arterial hypertension (IPAH). A multicentre, open, randomised, controlled trial was performed to assess the safety and efficacy of inhaled iloprost in patients with IPAH who had already been treated with bosentan.

The trial was terminated early after a futility analysis predicted failure with respect to the predetermined sample size. At that time, 40 patients were randomised to receive either bosentan alone (control group) or bosentan plus inhaled iloprost (combination group) for a 12-week period.

The primary end-point, change in 6-min walking distance, was not met (mean changes +1 m and -9 m in the control and combination group, respectively). These results may have been skewed by three outliers in the iloprost group who presented with severe clinical worsening. None of the secondary end-points including functional class, peak oxygen uptake, and time to clinical worsening differed significantly between groups.

The current study failed to show a positive effect of adding inhaled iloprost to bosentan in idiopathic pulmonary arterial hypertension patients. Further studies involving larger sample sizes and long-term follow-up are needed to determine the efficacy of adding inhaled iloprost to bosentan in patients with idiopathic pulmonary arterial hypertension.

Hoeper et al. Eur Respir J 2006

McLaughlin et al Am J Respir Crit Care Med. 2006

TRIUMPH I: Addition of inhaled treprostinil to oral therapy

McLaughlin VV et al. J Am Coll Cardiol. 2010 May 4;55(18):1915-22

Tadalafil + Bosentan in PHIRST: 6MWD

Tadalafil + Bosentan in PHIRST: clinical worsening

Figure 2. Clinical worsening by bosentan use and tadalafil treatment subgroup.

AMBITION trial

- Multicenter, randomized, double-blind, phase 3 trial, n=500
- 126 pts = Ambrisentan 10 mg monotherapy
- 121 pts = Tadalafil 40 mg monotherapy
- 253 pts = Combination
- Follow-up 517 days
- Group I PAH
- NYHA II (30%), III (70%)

Study Design

Clinic visits every 12 weeks Safety visits every 4 weeks

Results

Table 4. Primary and Secondary Efficacy End Points.*								
End Point	Combination- Therapy Group (N=253)	Pooled- Monotherapy Group (N = 247)	Ambrisentan- Monotherapy Group (N=126)	Tadalafil- Monotherapy Group (N=121)				
Primary end point								
First event of <mark>cl</mark> inical failure — no. of participants (%)	46 (18)	77 (31)	43 (34)	34 (28)				
Death	9 (4)	8 (3)	2 (2)	6 (5)				
Hospitalization for worsening pulmonary arterial hypertension	10 (4)	30 (12)	18 (14)	12 (10)				
Disease progression	10 (4)	16 (6)	12 (10)	4 (3)				
Unsatisfactory long-term clinical response	17 (7)	23 (9)	11 (9)	12 (10)				
Hazard ratio, combination therapy vs. mono- therapy (95% CI)	Reference	0.50 (0.35 to 0.72)	0.48 (0.31 to 0.72)	0.53 (0.34 to 0.83)				
P value	s <u></u> 1	<0.001	<0.001	0.005				

	Group	Events Participants with eve /total participants (%	nts 6)	Hazard	l Ratio (95	% CI)				P Value
Clinical failure	Combination	46 /253 (18)								
	Pooled Monotherapy	77 /247 (31)		•				0.50	(0.35, 0.72)	<0.001
	AMB Monotherapy	43 /126 (34)	-	-				0.48	(0.31, 0.72)	<0.001
	TAD Monotherapy	34/121 (28)		*	- 1			0.53	(0.34, 0.83)	0.005
Clinical worsening	Combination	36 /253 (14)	a Thiri							665.7
	Pooled Monotherapy	60 /247 (24)	-		-			0.51	(0.34, 0.78)	0.001
	AMB Monotherapy	36 /126 (29)		-				0.44	(0.28, 0.70)	<0.001
	TAD Monotherapy	24 /121 (20)	6	-				0.61	(0.36, 1.03)	0.06
Death	Combination	13 /253 (5)			i i					
	Pooled Monotherapy	19/247 (8)	-	•				0.64	(0.31, 1.29)	0.21
	AMB Monotherapy	9 /126 (7)			<u> </u>			0.71	(0.30, 1.67)	0.43
	TAD Monotherapy	10/121 (8)	2	-				0.57	(0.25, 1.29)	0.17
First hospitalization	Combination	19 /253 (8)								
	Pooled Monotherapy	44 /247 (18)		—				0.37	(0.22, 0.64)	<0.001
	AMB Monotherapy	27 /126 (21)						0.32	(0.18, 0.58)	<0.001
	TAD Monotherapy	17/121 (14)	<u>21</u>	*	-!			0.44	(0.23, 0.85)	0.01
First disease progression	Combination	13 /253 (5)								
	Pooled Monotherapy	19 /247 (8)		•				0.62	(0.31, 1.25)	0.18
	AMB Monotherapy	14/126 (11)	<u></u>	-	-1			0.44	(0.21, 0.93)	0.03
	TAD Monotherapy	5 /121 (4)		-	<u> </u>		-	1.12	(0.40, 3.15)	0.84
First ULTCR	Combination	17 /253 (7)								
	Pooled Monotherapy	25 /247 (10)	85		_ <u>+</u> _			0.61	(0.33, 1.13)	0.11
	AMB Monotherapy	12/126 (10)	8	-	<u> </u>			0.67	(0.32, 1.41)	0.29
	TAD Monotherapy	13/121 (11 <u>)</u>		*	<u> </u>			0.55	(0.27, 1.14)	0.10
			0.25	0.5	1	2	4	-		
			Favors Co	mbination	1	Favors	Monother	≯ apy		

Kaplan–Meier Curves for the Probability of a First Adjudicated Primary End-Point Event.

Subgroup	No. of Participants	Combination Therapy	Pooled Monotherapy						P Value	P Value for Interaction
	9	Participants with ev	ents /total participant	s (%)	Hazard R	atio (95%)	CI)			
Etiology										0.66
IPAH/HPAH	279	25 /134 (19)	46 /145 (32)					0.54 (0.33, 0.87)	0.01	
APAH	221	21/119 (18)	31 /102 (30)	0				0.45 (0.26, 0.79)	0.005	
Baseline WHO FC										0.08
WHO FC II	155	4 /76 (5)	17 /79 (22)		—			0.21 (0.07, 0.63)	0.005	
WHO FC III	345	42 /177 (24)	60 /168 (36)					0.58 (0.39, 0.86)	0.006	
Age at Baseline										0.26
< 57 years	244	13/124 (10)	31 /120 (26)	37 <u>-</u>	-			0.37 (0.19, 0.70)	0.002	
>= 57 years	256	33/129 (26)	46 /127 (36)					0.58 (0.37, 0.91)	0.02	
Baseline 6MWD										0.41
< 363.7 m	250	35 /129 (27)	51 /121 (42)					0.54 (0.35, 0.83)	0.005	
>= 363.7 m	250	11/124 (9)	26 /126 (21)		•			0.38 (0.19, 0.77)	0.007	
Region										0.92
North Ameri	ica 228	22/116(19)	34 /112 (30)					0.51 (0.30, 0.87)	0.01	
Rest of Worl	d 272	24 /137 (18)	43 /135 (32)					0.51 (0.31, 0.83)	0.008	
Gender										0.68
Female	388	32 /188 (17)	61 /200 (31)	-				0.47 (0.31, 0.73)	<0.001	
Male	112	14/65 (22)	16 /47 (34)					0.58 (0.28, 1.19)	0.14	
			F	0.125 0.25	0.5 1	2	4			
				4						
				Favors	s tion	Fa Mono	vors therapy			

Secondary end points

Secondary end points	Combination Pooled		Ambrisentan	Tadalafil
NT-proBNP level†		Monotherapy		
Percentage change in geometric mean from bas <mark>elin</mark> e to week 24	-67.2	-50.4	-56.2	-43.8
P value	Reference	< 0.001	0.01	< 0.001
Satisfactory clinical response at week 24 — no. of participants/total no. (%)	:			
Yes	91/234 (39)	66/226 (29)	35/113 (31)	31/113 (27)
No	143/234 (61)	160/226 (71)	78/113 (69)	82/113 (73)
Unknown	19/253 (8)	21/247 (9)	13/126 (10)	8/121 (7)
Odds ratio, combination therapy vs. monotherapy (95% CI)	Reference	1.56 (1.05 to 2.32)	1.42 (0.88 to 2.31)	1.72 (1.05 to 2.83)
P value	1 <u>- 15</u>	0.03	0.15	0.03
6-Minute walk distance — m∫				
Median (IQR) change from baseline to week 24	48.98 (4.63 to 85.75)	23.80 (-12.25 to 64.5	27.00 (-14.00 to 63.25)	22.70 (-8.25 to 66.00)
P value	Reference	<0.001	<0.001	0.003
Change in WHO functional class at week 2 — no. of participants/total no. (%)	4 §			
Improved	94/252 (37)	81/244 (33)	42/124 (34)	39/120 (33)
No change	146/252 (58)		73/124 (59)	74/120 (62)
Deteriorated	12/252 (5)	16/244 (7)	9/124 (7)	7/120 (6)
P value	Reference	0.24	0.30	0.36

Combination Therapy:

Ongoing or Recently Completed Clinical Trials

	Current therapy	Added therapy Patients (n)		Study duration	Primary end point
FREEDOM- C	Bosentan and/ or sildenafil	Treprostinil oral	300	16 weeks	6MWD
AMBITION	Ambrisentan/ tadalafil/combo	Combo vs mono	Combo vs mono 300 E		Morbidity/mortality event
Pfizer	Bosentan	Sildenafil	106	12 weeks	6MWD
COMPASS-1	Bosentan	Sildenafil	45	Single dose	PVR
COMPASS-2	Sildenafil Bosentan 250		Event-driven	Morbidity/mortality event	
COMPASS-3	Bosentan Sildenafil 100		100	16 weeks	6MWD
ATHENA-1	Sildenafil or tadalafil	Ambrisentan	40	24 weeks	PVR
SERAPHIN	Naïve/PDE- 5/PGI/combo	Macitentan	742	Event-driven	Morbidity/mortality event
PATENT	Naïve/PGI/ERA	Riociguat	462	12 weeks	6MWD
IMPRES	≥2 current therapies	Imatinib	200	24 weeks	6MWD
Gilead	Stable PAH therapy	Cicletanine	160	12 weeks	6MWD
ATPAHSS	Ambrisentan/ tadalafil/combo	Combo vs mono	63	36 weeks	RV mass/PVR
GRIPHON	ERA, PDE5 or both	Selexipag	670	Event-driven	Morbidity/mortality event
Novartis	Stable PAH therapy	Nilotinib	66	6 months	PVR

Warfarin – role in Group 1 PAH

- Retrospective data show benefit, No prospective RCT in modern PAH therapy era
- But used in 50-85% patients in US/European registries
- Rationale for use:
 - Many endothelial cell abnormalities that predispose patients to PAH also predispose thrombosis
 - Microscopic throbi well documented on pathology
 - Heart failure, immobilisation, Central venous lines

McLaughlin et al. ACCF/AHA 2009 Expert Consensus Document on PAH

Warfarin in PAH – meta-analysis

- No RCTs found
- 9 cohort studies were selected (2 prospective)
- 31% mortality risk reduction with warfarin (HR = 0.69, CI 0.57-0.82)
- "Pooled results from cohort studies suggest a survival benefit, but the moderate study quality, the high risk of publication bias, and the methodological limitations inherent in the analysis of observational studies preclude a definite conclusion."
- Need for quality RCT

Guidelines on Warfarin

- Warfarin anticoagulation is recommended in all patients with IPAH.
- Updated guidelines have not changed this recommendation.
- However should be used with caution in patients with hemoptysis or bleeding
- Also interactions with other PAH specific drugs must be kept in mind

Other supportive therapy

- Oxygen: sO2< 90% or pO2<60 should receive supplemental oxygen.
- Diuretics
- A sodium restricted diet (<2400 mg per day) advised and is important to manage volume status in patients with RV failure.
- Routine Immunizations (influenza and pneumococcal)
- Avoid:
 - Pregnancy
 - High altitude
 - Heavy exercise (aerobic exercises allowed)

Galiè Net al. Updated Treatment Algorithm of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology 2013.

Approach to PAH specific therapy based on NYHA class

- Class I: Wait and watch, assess 6 monthly
- Class II/III/IV: Vasoreactivity testing → If positive try CCB
- Class II: Oral monotherapy
 - Riociguat
 - Ambrisentan/bosentan/macitentan
 - Sildenafil/Tadalafil

Add second drug if no response

May consider upfront combination therapy

Contd.

- Class III: Consider combination oral therapy
 upfront
 - For Class III with:
 - Poor prognostic markers*
 - Progression despite 2 oral therapies
 Add IV or inhaled prostanoid
- Class IV
 - IV Prostanoid drug of choice
 - Inhaled prostanoid + ETRA in unwilling patients
 - Combination oral therapy if prostanoids NA

Prognostic markers in PAH

Lower	Determinants of Risk	Higher		
No	Clinical Evidence of RV Failure	Yes		
Gradual	Progression	Rapid		
11, 111	WHO Class	IV		
Longer (>400 m)	6 Minute Walk Distance	Shorter (<300 m)		
Minimally elevated	BNP	Very elevated		
Minimal RV Dysfunction	Echocardiographic Findings	Pericardial Effusion Significant RV Dysfunction		
Normal/Near normal RAP and Cl	Hemodynamics	High RAP, Low CI		

ACCF-AHA Expert Consensus. J Am Coll Cardiol 2009;53:1573-619
Follow-up

	At baseline (prior to therapy)	Every 3–6 months ^a	3–4 months after initiation or changes in therapy	In case of clinical worsening
Clinical assessment WHO-FC ECG	~	~	~	4
6MWT ^b	✓	1	✓	1
Cardio-pulmonary exercise testing ^b	~		~	~
BNP/NT-proBNP	✓	✓	✓	✓
Echocardiography	✓		✓	✓
RHC	√c		√d	√d

European Heart Journal (2009)30, 2493–2537

Lung Transplantation

- NYHA Class III or IV despite a trial of at least 3 months of combination therapy including prostanoids.
- Cardiac index ≤ 2 liters/min/m2.
- Mean right atrial pressure \geq 15 mm Hg.
- 6-minute walk test \leq 350 m.
- Development of significant hemoptysis, pericardial effusion, or signs of progressive right heart failure (renal failure, increasing bilirubin, brain natriuretic peptide, or recurrent ascites)

Lung Tx only or Heart-lung Tx?

- In most patients with pulmonary hypertension associated with RV failure, isolated bilateral lung transplantation is associated with comparable or better results than heart-lung transplantation
- Most commonly, patients with irreversible myocardial dysfunction or congenital defects with irreparable defects of the valves or chambers in conjunction with intrinsic lung disease or severe PAH are considered for heart-lung transplantation

CTEPH

- Endarterectomy recommended in all patients who are fit for surgery and show evidence of PAH at rest or exercise
- Warfarin in all
- Those not-operable or those with residual PAH after surgery may be put on PAH specific Rx

PAH secondary to lung disease

- Only short term hemodynamic benefits of PAH specific Rx (ERA, PDE-5) demonstrated in both ILD/COPD
- Long term benefits not seen
- IPF patients with bosentan and ambrisentan showed worse outcomes
- Likely due to worsening hypoxia due to reversal of protective vasoconstriction → V/Q mismatch
- Patients with CTD with disproportionate PAH to lung disease may benefit with PAH specific therapy

Take Home message

- No approved therapy for PAH shown to prevent progression of the underlying pulmonary vascular disease - PAH remains an incurable disease
- Correct diagnosis (PAH and group) and ruling out treatable causes is must
- Stepwise approach to Rx based on WHO FC
- Rational combination therapy maybe helpful in those with progressive disease
- Lung Tx for those symptomatic despite maximal Rx