Al in thoracic
Imaging




Overview:

@  What s Artificial intelligence?

ﬁ" How might it be helpful in medicine?
ﬁ} What are the current advances in thoracic imaging with the help of Al?
How accurate is it?
v

Is it an adjunctive method or will it replace diagnosticians?



Artificial intelligence

« Al can be defined as the ability of computers to

perform task that normally requires human intelligence.

« Machine learning is a subfield of Al in which statistical Art'f'c'al lntellngence

models are used to learn patterns from data in order to / Machine \\\

accomplish a specific task ’ l{ ;earnlgg '\,\' ‘
- Artificial neural networks (ANNs) are loosely modelled I: // Deep \ :!

on the human brain and consist of multiple layers of "\\ |: Learning

‘neurons’ that successively process input data until the \ /’
output layer is reached. Deep neural networks are a \
more complex network with usually more than 10

intermediate layers (DNN).

Gonem S, Janssens W, Das N, Topalovic M. Applications of artificial intelligence and machine learning in respiratory medicine. Thorax. 2020 May 14;75(8):695-701



Al in medical
field

P

Drug development and design

Development of precision therapeutic approaches

Predictive models for specific diseases: PTE, lung cancer,
coronary artery diseases

Augmentation of precision in robotic surgery and invasive
therapeutic procedures

Interpretation of histopathological imaging

Interpretation of radiological imaging

Aiding in medical decision making (holistic approach with all the
information)



Fields of pulmonary medicine Al is used in

Thoracic imaging for lung nodule detection and ILD classification

Prediction of survival or disease progression from histopathological imaging

Development of risk prediction models for pulmonary thromboembolism and pulmonary
hypertension

Composite interpretation of pulmonary function tests to predict risk of disease
progression or exacerbation in obstructive and restrictive lung diseases



GPU
Increased capability in
handling large dataset and
efficient computing

1980

Feature extraction

4 N

Pattern recognition

Computer-aided detection
(67:YD)

Radiomics




Computer aided detection
(CADe and CADXx)

 The computer is fed data regarding ‘what
is abnormal’ (training)

« On subsequent instances, on being fed
raw non-labelled data (images) computer
predicts parts of the new data that might
be ‘abnormal’ according to its training

« Points out such areas of suspected
abnormality to radiologist

« Radiologist reviews those areas and
decide whether they are actually
abnormal or not

Principle: sophisticated pattern recognition
Prerequisite: thousands of normal and
abnormal images labelled

Steps: removes bugs, adjusts for variabilities
of exposure

Output: detects abnormalities in imagings
likely to be missed by human eyes
Reliability: radiologist/pathologist takes the
final decision regarding the accuracy of
detection
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Radiomics:

« Radiomics generally aims to extract quantitative, and ideally reproducible, information
from diagnostic images, including complex patterns that are difficult to recognize or
quantify by the human eye.

* It can identify with considerable accuracy, the change in size, shape and amount of
heterogeneity in a tumor that may be missed by human eyes.

* In a large cohort of patients, it has the ability to identify previously unknown trends of
disease progression, evolution and response to treatment, which would be impossible
to be identified by human brain just due to the large size of the data set and
innumerability of the variables.



Terminology Used in Radiomics and Al

Artificial intelligence

Wide-ranging branch of éomputer sciénce, gcneraﬁng coméi&x software that
perform tasks that would typically have required human intelligence, by
sensing and responding to a feature of their environment.

CAD (Computer Aided Detection or Diagnosis)

Technology combining elements of artificial intelligence with radiological and
pathology image processing. Its aim is to assist in the detection and /or
diagnosis of diseases, improving the accuracy of radiologists with a reduction

Radiomics

Method that extracts a large number of quantitative features from radiographic
medical images using data-characterization algorithms, to help in disease
diagnosis and prognosis.

Machine Learning

Field in artificial intelligence studying computer algorithms that improve
automatically through experience, by building a model based on sample data,
known as “training data”, in order to make predictions or decisions.
Supervised learning: The computer receives example inputs and their foreseen
outputs. Its goal is to learn a general and reproducible function that links
inputs to outputs.

Unsupervised learning: The computer receives no labels to the learning
algorithm for previously undetected patterns in a data set, leaving it on its own
to find structure in its input.

Convolutional neural networks

Class of deep neural networks, which have the particularity of being fully
connected networks. It gives them the advantage of understanding the
hierarchical pattern in data and assembling more complex patterns using
smaller and simpler patterns.

Voxel
: R’Olr (liegion of intemsi)

Skew of histogram

Single sample, or data point, on a regularly spaced, three-dimensional grid. In
CT scans, the values of voxels are Hounsfield units.
A voxel is a 3D pixel.

Image areas containing the information relevant to image processing,.

Measure of the asymmetry of attenuation distribution.
The lung normal attenuation histogram is skewed to the left.
There is a decreased leftward skewness in IPE

Kurtosis of histogram

Measurement of how sharp an attenuation distribution curve is.
Kurtosis is abnormally low in idiopathic pulmonary fibrosis (IPF).

Threshold measurement

Texture analysis

Total count of pixels/voxels above or below a specific attenuation value that
determines a relative volume.

Threshold measures in emphysema quantifies the extent of emphysema
according to a specific index of —950 Hounsfield units (HU).

Statistical methods that evaluate spatial relationship between voxels in an ROI,
in order to characterize textural features of the parenchyma and give
information about heterogeneity.




Radiomics features (how they interpret images)

Statistical: Model- Transform- Shape-
Texture-based based based based

Histogram- Texture-
based based




Histogram-based approach .

: . CE-CT 8F-FDG PET
« These are mainly calculations of , 220l

variances in terms of grayscale
intensity, deviation (skewedness) from
the mean and change in that intensity
at different areas at specified .
distances from ROI (region of interest) ety

° Color-coded
feature map

« These gives the idea of heterogeneity
inside a tumor, how varied the pixels GLCM
and voxels are inside that tumor Entropy

» A high degree of heterogeneity has
been shown to be associated with GLRLM
higher level of aggressiveness of a shofi-fun
) . emphasis
tumor, progression of disease or
absence of response to treatment Haar wavelet

transform
energy (HH)



Model-based approach

» This feature analyzes gray-level special information to characterize objects
or shapes

» A parameterized model of texture generation is calculated and fitted to the
ROI, and its estimated parameters are used as radiomic features

» Fractal analysis yields features in fractal dimensions which reflects the rate
of addition of structural details with increasing magnification, scale and
resolution reflecting increasing complexity

« Lacunarity detects lack of rotational or translational invariance therefore
giving an idea regarding increasing inhomogeneity



Transform-based approach

* Fourier, Gabor, and Haar wavelet transforms, analyze gray-level patterns in a different
space

« Wavelet de composition of an image is possible by applying a pair of so-called
quadrature mirror filters, a high-pass and a low-pass filter

« High-pass filtering in both directions captures diagonal details
« High-pass filtering followed by low-pass filtering captures vertical edges

« Low-pass filtering followed by high-pass filtering captures horizontal edges, and low-
pass filtering in both directions captures the lowest frequencies, at different scales

« Wavelet transformation can be used not only for generation of radiomic features but
also for image segmentation or as a pre-processing step to texture analysis



Shape-based approach

Describe geometric properties of ROls

Features include compactness and sphericity

These describe how the shape of an ROI differs from that of a
circle (for 2D analyses) or a sphere (for 3D analyses), and density

This relies on the construction of a minimum oriented bounding box
(or rectangle for 2D analyses) enclosing the ROI
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Application in
clinical

pulmonary Lung cancer detection
medicine

Lung nodule characterization

Interstitial lung diseases

Infection: tuberculosis

Pulmonary vascular diseases

Obstructive airway diseases

Pleural diseases



/ TRADITIONAL RADIOMICS : HANDCRAFTED FEATURES PROCESSING
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How does deep neural networks work?

Deep neural networks are developed in a way to
resemble the human neuronal connections.

In human beings, neurons are interconnected, and
these connections improve the analysis of inputs
and refine the outcome in response to that input

Deep neural networks work in a similar way
There are input layers and output layers

In between these two layers there are numerous
hidden layers neural interconnections

The dataset given as input is analyzed and
according to the training provided and self-training,
the dataset is analyzed through the meshwork of
‘neurons’ to give a result

Deep Neural Network

put layer hidden layer 1 hidden layer 3

hidden layer 2
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Figure 12.2 Deep network architecture with multiple layers.



Convolutional neural network

» Different types of

artificial neural networks g gy

are used for different il
purposes  Inputlaye

e

« Convolutional neural BAGE
networks are especially |
useful for classifying and —
identifying specific
features in a large
dataset of images
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« Advantages of CNN

1.Good at detecting patterns and features in images, videos, and audio signals.
2.Robust to translation, rotation, and scaling invariance.
3.End-to-end training, no need for manual feature extraction.

4.Can handle large amounts of data and achieve high accuracy.



« Disadvantages of CNN:

1.Computationally expensive to train and require a lot of memory.
2.Can be prone to overfitting if not enough data or proper regularization is used.
3.Requires large amounts of labeled data.

4.Interpretability is limited, it's hard to understand what the network has learned.



Pulmonary nodules and lung cancer:

« Traditional clinico-radiological approaches use pre-existent risk factors and mostly size
and progression of size of a pulmonary nodule to predict its malignant potential and
prognostication

* It requires repeat imaging at specific intervals
« |t is still an imperfect method

« Radiomics not only detects and analyzes size and shape of nodules to predict the
malignant potential, also additionally predicts histological types and prediction and
evaluation of treatment responses



In a 2017 study, CT images of 76 patients with lung
nodules were collected and image segmentation was
done (biopsy reports of the patients were known)

760 radionomic signatures were identified and they
were tested between the two groups (benign and
malignant nodules) to see which of them were
significantly different between the two groups

Among those that were different (P<0.05), best 4
features were selected and applied in the radionomic
analysis of the same dataset (as comparators, all 760
features and a randomly selected set of 4 features
were also applied)

Chen CH, Chih Han Chang, Chih Yen Tu, Liao WC, Wu BR, Kuei Ru Chou, et al. Radiomic features analysis in
computed tomography images of lung nodule classification. PLOS ONE. 2018 Feb 5;13(2):e0192002-2.

RESEARCH ARTICLE

Radiomic features analysis in computed
tomography images of lung nodule
classification

Chia-Hung Chen'*, Chih-Kun Chang?®*, Chih-Yen Tu', Wei-Chih Liao’, Bing-Ru Wu', Kuei-
Ting Chou®, Yu-Rou Chiou?, Shih-Neng Yang®*, Geoffrey Zhang®, Tzung-Chi Huang®*¢+*

1 Division of Pulmonary and Critical Care Medicine, Department of Intemal Medicine, China Medical
University Hospital, Taichung, Taiwan, 2 Department of Medical Imaging, Chang Bing Show Chwan
Memorial Hospital, Changhua, Taiwan, 3 Department of Biomedical Imaging and Radiological Science,
China Medical University, Taichung, Taiwan, 4 Artificial Intelligence Center for Medical Diagnosis, China
Medical University Hospital, Taichung, Taiwan, 5 Department of Radiation Oncology, Moffitt Cancer Center,
12902 USF Magnolia Drive, Tampa, FL, United States of America, 6 Department of Bioinformatics and
Medical Engineering, Asia University, Taichung, Taiwan
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Fig 1. Radiomics analysis workflow. First, the clinical CT images of malignant and benign pulmonary nodules were collected. Second,
image segmentation was used to delineate the pulmonary nodules, Next, the image features were extracted by the sutomated high
throughput feature analysis algorithm. Finally, the statistical analysis was applied and the sequential forward search was used for feature
selection for the classification of lung nodules



Accuracy (%)

* When the classifier produced results, the
accuracy for the selected 4 radiomic features

were 84%

« Sensitivity and specificity (biopsy being the gold
standard) were 92.85% and 72.73%

respectively

« Accuracy for the randomly selected groups
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e AT BMC Cancer
« |n 2022, a study was conducted to compare the

accuracy, sensitivity and specificity of radiomics, CNN RESEARCH °P-n'
and experts’ manual analysis in separating benign and The diagnostic and prognostic value
malignant nodules on HRCT thorax. of radiomics and deep learning technologies
for patients with solid pulmonary nodules T:
- . o)
- They retrospectively collected data of 720 patient inchestllimages. S fc
Rui Zhang'', Ying Wei*', Feng Shi-, Jing Ren’, Qing Zhou*, Weimin LI' and Bojiang Chen in

(each with one nodule and surgical biopsy/trans-
thoracic biopsy/transbronchial biopsy-proven disease)

Pre-trained model

A
i,
‘ '. Feature mapy
v |

Welghted trumsfer & v tuning

« They randomly divided the patients’ data into two
groups (7:3)- training set and testing set for CNN
model

2 classes

Prediction [lll
' &=

Rendgn Mabigosnt

==

« For radiomics model used 42 dedicated hand-crafted Fine-tuned model u ﬁ e
features and 104 widely used features and 3 random sy | | @ |peicion m
forest prediction models were made — RF with ' l
radiomics, EF with clinical features and RF with both

1’ @ reatwe concatenston
Attention map

yaxi Conv @ It Iboxck

« 2 blinded radiologists were asked to classify the | 5 I 5 ! 7 —
nodules on the basis of their observation (represents | [ty conmecre e
manual analysis of the images) 0. . D

Zhang R, Wei Y, Shi F, Ren J, Zhou Q, Li W, et al. The diagnostic and prognostic value of radiomics and deep learning technologies for patients with solid pulmonary nodules in chest CT
images. BMC Cancer. 2022 Nov 1;22(1).



True Positive Rate

10 : - 1.04
CNN with clinical
features had the
o.a L] 0.8 9
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ROC £
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Table 2 Predictive performance of different classification models and junior radiologists in the testing set
Model or radiologist Sensitivity Specificity Accuracy AUC
RF + Clinical 0.535 (0437, 0.633) 0.740 [0.656, 0.824) 0.640 [0.574, 0.706) 0.721 [0651,0.791]*
RF + Radiomics 0.747 [0.661,0.833) 0.606 [0.512,0.700] 0,675 [0.611,0.739) 0.778 [0.738, 0.858)
RF + Combined 0616 [0.520,0.712) 0.788 [0.709, 0.867) 0.704 [0.641, 0.767) 0.811(0.713,0.839)
CNN 0.758 [0.674, 0.842) 0.788 [0.709, 0.867] 0.773 [0.715,0.831) 0.816[0.758, 0.875) -
CNN+ Clinical 0.778 [0.696, 0.860] 0.788[0.709, 0.867) 0.7830.726, 0.840) 0.819[0.760, 0.877) Best accuracy: CNN+clinical
Radiologist 1 0.778 [0.696, 0.860] 0.452 [0.356, 0.548) 0611 [0.544,0.678) 0615 [0.538,0.692]
Radiologist 2 0.990 [0.970, 1.000] 0519 [0.423,0615) 0.749 [0.689, 0.808) 0.755 [0.688,0.821)

*Significant difference was found between the CNN model with clinical features and RF with clinical features by Delong test (p <0.05)
Abbreviations: RF Random forest, CNN Convolutional neural network, AUC Area under the receiver operating characteristic curves




Survival data from 295 patients were oo :
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¢ The Kaplan-Meier survival curves in the training set.
*  Survival analysis among stage I patients with solid adenocarcinomas
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« CNN model was
also used for
survival analysis

* It was not able to
predict survival
as effectively as
the radiomics
model
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The study showed that radiomics features can be successfully applied to
differentiate patients with benign nodules from those with malignant nodules on the
basis of HRCT thorax

Both radiomics and CNN, in addition to clinical features outperformed the
radiologists (however, it was mentioned they were not as experienced as many
other radiologists might be, and were also arbitrarily chosen)

Radiomics features may be helpful in predicting relapse free survival

CNN was not as effective as radiomics in predicting outcome of patients with lung
nodules



Review Article

Acta Radiologlea
2023, Vol. 64(12) 3074-3084

The classification of benign and malignant 25508 i .

« A 2023 systematic review and metaanalysis lung nodules based on CT radiomics: a ﬁihb,eusixu.:.eﬂnfs,
selected 20 studies that evaluated radiomics systematic review, quality score DO 01 770aBes 23125737

and deep learning to differentiate malignant assessment, and meta-analysis S sage

lung nodules from benign ones
Fandong Zhu' , Chen Yang', Jiajun Zou', Weili Ma',
Yuguo Wei? and Zhenhua Zhao'

« All the studies were retrospective

Records identified through Additional records identified
database searching through other sources
' = (n =0)
« The authors calculated the positive and s s i
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negative likelihood ratio and diagnostic odds
ratio for radiomics and deep learning = i Tk
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Fig. |. Study flow diagram,

Zhu F, Yang C, Zou J, Ma W, Wei Y, Zhao Z. The classification of benign and malignant lung nodules based on CT radiomics: a systematic review, quality score assessment, and meta-analysis. Acta
Radiologica. 2023 Oct 10;64(12):3074—84.



Table |I. Characteristics of the included studies.

No. of Malignant Benign
Study and year Counury Method Segmentation Nodules patients lesions lesions TP  FP FN TN
Beig et al.. 2019 (22) USA Radiomics Internal and LA vs. granulomas 145 72 73 53 24 |9 49
around
Chen et al., 2020 China Radiomics Internal LA vs. granulomas 64 35 29 25 5 10 24
23
D(emzie et al, 2016 Canada Texture Internal Malignant lung nodules vs. 55 31 24 23 0o 8 24
(24) granulomas
Feng eral, 2020 (25) China Deep learning Internal LA vs. TBG 192 141 51 128 20 13 31
Heuvelmans et al.,, Netherland Deep learning Internal Malignant lung nodules vs. 2016 205 1811 203 2 1411 400
2021 (26) benign lung nodules
Hu et al.. 2020 (27) China texwure Internal Malignant lung nodules vs. 30 15 15 13 6 2 9
benign lung nodules
Kamiya et al,, 2014 Japan Histograms Internal Malignant lung nodules vs. 93 72 21 41 2 31 19
(28) benign lung nodules
Liu et al., 2020 (29) China Radiomics Internal LA vs. benign lung nodules 63 39 24 33 4 6 20
Mao ecal, 2019 (30) China Radiomics Internal Malignant lung nodules vs. 98 21 77 17 6 4 71
benign lung nodules
Ni et al., 2021 (31) China Radiomics Internal Malignant lung nodules vs. PSP 60 35 25 28 4 7 21
Suo et al, 2016 (32) China Texture Internal and Malignant lung nodules vs. 48 28 20 23 4 5 16
around Inflammatory lesions
Uthoff et al., 2019 USA € Machine learning ) Internal and Malignant lung nodules vs. 100 50 50 50 0 0 50
(33) around benign lung nodules
Uthoff et al., 2019 USA Radiomics Internal and NSCLC vs. HPN 71 40 31 34 5 6 26
(34) around
Wan etal, 2020 (35) China Internal Malignant lung nodules vs. 75 47 28 44 5 3 23
Taiwan benign lung nodules
Woang et al,, 2021 China Radiomics Internal LA vs. SPCH 62 49 13 45 I 4 12
(36) Taiwan
Wei et al,, 2020 (37) China Matchematical Internal NSCLC vs. granulomas 61 40 21 25 6 15 15
diagnosis model
Wei et al,, 2021 (38) China Radiomics Internal Malignant lung nodules. vs. 78 41 37 36 37 5 37
TBG
Yang et al, 2018 (39) China Radiomics Internal LA vs. granulomas 21 63 28 52 7 I 21
Zhang et al.,, 2019 China Radiomics Internal LA vs. FOP 226 109 117 93 12 leé 105
(40)
Zhao et al, 2021 China Radiomics Internal LA vs. PC 128 66 62 50 12 55

41

FN, false negative: FOP. focal organising pneumonia: FP, false positive; HPN, histoplasmosis pulmonary nodules; LA, lung adenocarcinoma; NSCLC, non-small-cell lung cancer; PC, pulmonary cryptococcosis:

PSP, pulmonary sclerosing pneumocytoma; SPCH, solitary pulmonary capillary haemangioma: TBG, tuberculous granuloma; TN, true negative: TP, true positive.
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Fig. 2. Methodological quality was evaluated by using the RQS tool. (a) The proportion of studies with different RQS percentage scores,
(b) Average scores of each RQS item (orange bars = total points of each item, blue bars = actual points). RQS, radiomics quality score.

« The studies included in this analysis
were of sufficient quality to meet the
requirements.

« The absence of publication bias was
demonstrated in Deeks’ funnel plot
asymmetry test (P=0.96)
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Table 2. Overview of RQS items and mode of the respective score in the reviewed studies.

RQS Average
checkpoint RQS item number and name Description and (points) score
First Item |: image protocol Well-documented protocol (+1) AND/OR publicly available protocol 0.75
quality (+1)
Second ltem 2: multiple Testing feature robustness to segmentation variability, e.g. different 0.65
segmentation physicians/algorithms/software (+1)
ltem 3: phantom study Testing feature robustness to scanner variability, e.g. different vendors/ 0
scanners (+1)
ltem 4: multiple time points  Testing feature robustness to temporal variability, e.g. organ movement/ 0
expansion/shrinkage (+1)
Third ltem 5: feature reduction Either feature reduction OR adjustment for multiple testing is 2.10
implemented (+3); otherwise (—3)
ltem 6: multivariable analysis Non-radiomic feature are included in/considered for medel building (+1) 0.40
Item 7: biological correlates  Detecting and discussing correlation of biology and radiomic features (+1) 0
Item 8: cutoff analysis Determining risk groups by either median, pre-defined cutoff, or 0.35
continuous risk variable (+1)
ltem 9: discrimination Discrimination statistic and its statistical significance are reported (+1):a 1.45
statistics resampling technique is also applied (+1)
Item 10: calibration statistics Calibration statistic and its statistical significance are reported (+1); a 0.70
resampling technique is also applied (+1)
Item | |: prospective design  Prospective validation of a radiomics signature in an appropriate trial (+7) 0
ltem 12: validation Validation is missing (—=5) OR internal validation (+2) OR external 1.35
validation on single dataset from one institute (+3) OR external
validation on two datasets from two distinct institutes (+4) OR
validation of a previously published signature (+4) validation is based on
three or more datasets from distinct institutes (+5)
ltem |3: comparison to Evaluating model's agreement with/superiority to the current “gold 2.00
“gold standard” standard” (+2)
ltem |4: potental clinical Discussing model applicability in a clinical setting (+2) 2.00
application
ltem |5: cost-effectiveness  Performing a cost-effectiveness of the clinical application (+1) 0
analysis
ltem |6: open science and ~ Open source scans (+|) AND/OR open source segmentations (+1) AND/  0.25

data

OR open source code (+1) AND/OR open source representative
features and segmentations (+1)

Radiomics: the bridge between medical imaging and
personalized medicine

Philippe Lamme, Ralph T.H. Leijenaar, Timo M. Deist, Jurgen Peerlings, Evelyn E.C de Jong, Janita van

Timmeren, Sebastian Sanduleany, Ruben T.HM, Larue, Aniek J.G, Even, Arthur Jochems, Yvonka van Wik,
Henry Woodruff, Johan van Soest, Tim Lustberg, Erik Roelofs, Wouter van Elmpt, Andre Dekker, Felix M

Mottaghy, Joachim E. Wildberger & Sean Walsh

Nature Reviews Clinical Oncology 14, 749-762 (2017) ‘
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Distinction between benign and malignant pulmonary nodule
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Table 3. Meta-regression results of radiomics for the diagnosis of benign and malignant lung nodules.

Covariates Subgroups No. of studies P Sensitivity Pl Specificity P2

CT scanning equipment ~ GE 10 0.59 0.84 (0.75-0.94)  0.45 0.87 (0.77-0.96)  0.23
Others 10 0.77 (0.65-0.90) 0.86 (0.76-0.95)

CT slice thickness (cm) >2 9 0.64 0.79 (0.67-0.91)  0.09 0.89 (0.81-0.97)  0.52
<2 I 0.83 (0.73-0.92) 0.83 (0.73-0.93)

Modeling method Logistic 9 0.71 0.84 (0.75-0.94) 04| 0.85 (0.74-0.96)  0.10
Others I 0.78 (0.66-0.89) 0.87 (0.79-0.96)

RQS >13 14 0.07 0.85 (0.78-0.92) 0.88 0.81 (0.72-0.90)  0.00*
<13 6 0.69 (0.51-0.87) 0.94 (0.88-1.00)

Clinical factor Yes 8 0.15 0.81 (0.68-0.93) 0.15 0.79 (0.65-0.92)  0.0I*
Unclear 12 0.82 (0.72-0.92) 0.90 (0.84-0.97)

Segmentation method Manual 12 0.18 0.75 (0.64-0.86)  0.00*  0.88 (0.80-0.96) 0.46
Automatic 8 0.88 (0.80-0.96) 0.83 (0.71-0.96)

Enhanced scanning Yes 9 0.27 0.73 (0.60-0.87) 0.01*  0.89 (0.80-0.97) 043
Unclear I 0.86 (0.78-0.94) s 0.84 (0.74-0.94)

Geographical location Mainland China 12 0.04" _ 0.83 (0.74-0.92) 0.39 0.79 (0.68-0.89)  0.00*
Other 8 .78 (0.65-0.92) 0.94 (0.89-0.99)

No. of patients >90 10 0.8l 0.79 (0.67-0.90)  0.06 0.88 (0.79-0.96) 03I
<90 10 0.83 (0.73-0.93) 0.85 (0.74-0.95)

ROI Tumor 14 0.82 0.80 (0.70-0.90)  0.13 0.86 (0.77-0.94)  0.20
Peritumor 6 0.84 (0.71-0.96) 0.87 (0.76-0.99)

Tumor size (mm) >15 9 0.37 0.82 (0.72-0.93)  0.25 0.80 (0.68-0.93)  0.01*
<15 I 0.80 (0.69-0.91) 0.90 (0.83-0.97)

Published year >2020 I 0.39 0.80 (0.69-0.91)  0.10 0.83 (0.72-0.93)  0.02°
<2020 9 0.82 (0.72-0.93) 0.90 (0.82-0.97)

Values in parentheses are 95% CL.

#P<00l.
1p<0.05.

CT, computed tomography; ROI, region of interest; RQS, radiomics quality score.

G

1]

Higher QRS reduced
specificity

Inclusion of clinical factors
reduced specificity

Larger tumor reduced
specificity




This study showed that pooled sensitivity and specificity as well as diagnostic odd ratio
were considerably high with radiomics in differentiating benign and malignant lung
nodules

Some of the studies included machine learning and deep learning as well

Both hand-picked radiomics signatures (trained by humans) and radiomic signature
chosen by artificial intelligence were used in different studies

These gave rise to significant heterogeneity

Question still remains whether it should be completely left to Al without any need for
human verification



Diagnostic Accuracy and Performance of Artificial

- A common concern regarding Al-detection Intelligence in Detecting Lung Nodules in Patients
of lung nodules is that whether Al would be With Complex Lung Disease
able to correctly identify a nodule on the A Noninferiority Study
background of chronic lung disease Andres F. Abadia, PhD;* Basel Yacoub, MD.* Natali Siringer, BSc®

Madalyn Snoddy, BA* Madison Kocher, MD,* U. Joseph Schoepf MD,*
. Gilberto J. Aquino, MD,* Ismail Kabakus, MD, PhD,* Danielle Dargis BSc*
hd A 2 022 StUdy addressed th|S concern Philipp Hoelzer, PhD,t Jonathan I. Sperl PhD.¥ Pooyan Sahbaee, PhD.¥

Vincenzo Vingiani, MD,*} Megan Mercer, MD.* and Jeremy R. Burt, MD*

« The study was aimed to determine whether AI-RADS
Al was non-inferior in identifying lung
nodules on the background of

ILD/COPD/pulmonary oedema/pulmonary
embolism when compared to radiologists

Probability score
(for being a nodule)

Nodule candidate

« They kept a study population of patients generation (NCG) Nodule

who had nodules reported on CT report and
a control population with no reported nodule
(to assess the False Positive rate in
presence of background lung disease).

Weighted
sum

Not nodule

False Positive
Reduction (FPR)

Probability score
Abadia AF, Yacoub B, Stringer N, Snoddy M, Kocher M, Schoepf UJ, et al. Diagnostic Accuracy and Performance of Artificial Intelligence in (fOF not being a

Detecting Lung Nodules in Patients With Complex Lung Disease: A Noninferiority Study. Journal of Thoracic Imaging [Internet]. 2022 May 1

[cited 2022 Sep 23];37(3):154-61. nodule)



STUDY POPULATION

ILD, COPD, RB, EDEMA, PE

CONTROLPOPULATION

ILD, COPD, RB, EDEMA, PE

\ 4

Presence of at least one suspicious

Absence of lung nodules

TABLE 1. Baseline Characteristics

Study Population

Control Population

lung nodule on radiology reports on radiology reports of

of chest CT scans chest CT scans
> RB EXCLUDED 10
\ 4 A 4
ILD 21 ILD 10
copD 21 COPD 10
RB 21 EDEMA 10
EDEMA 19 PE 10
PE 21

(n=103) (n = 40)
Age (y) 62.6+12.9 58.4+16.4
No. men 55 (53.4) 16 (40.0)
Condition
ILD 21 (20.4) 10 (25.0)
COPD 21 (20.4) 10 (25.0)
RB 21 (20.4) NA
EDEMA 19 (18.4) 10 (25.0)
PE 21 (20.4) 10 (25.0)
BMI 24.9 (21.8-30.6) 29.9 (25.6-34.6)
Smoking (pack 15.0 (0.0-38.8) 12.0 (0.0-30.0)
years)
Current smoker 26 (25.2) 8 (20.0)
DM 26 (25.2) 5(12.5)
HTN 67 (65.0) 23 (57.5)
TB exposure 3(2.9) 1 (2.5)
Asbestos exposure 7 (6.8) 0
Family Hx of lung 7 (6.8) 3(1S)
cancer
CTDI, (mGy) 8.0 (4.3-11.4) 8.2 (4.9-14.7)

DLP (mGy-cm)

290.6 (133.3-468.7)

244.7 (127.9-477.5)




LESIONS Lobe Volume

L1
L2
)
L4

(mm’]
Right Middle Lobe 362.2

Left Upper Lobe 36.3
Right Upper Lobe 31.6
Left Upper Lobe 33.0

Tumor Burden

“L1:10.8m

Not for diagnosis *




TABLE 2. Results From the AI-RAD and Expert Nodule Assessment of the Study Population

All Conditions ILD COPD RB EDEMA PE

Nodules

Missed by expert (TP) 37 (840 5 (5.8) 6 (6.9) 3 (4 9 (7.9)

Missed by AI (FN) q29 (29.3) 27 (31.4) 17 (19.5) 23 (28.0) 26 (36.1) 36 (31.6)

Detected by expert and Al (TP) 233 (52.8) 48 (55.8) 51 (58.6) 32 (39.0) 37 (51.4) 65 (57.0)

Al FP 38 (8.6) 5(5.8) 10 (12.2) 6(8.3) 4 (3.5)

Wrong location by AI* 4 (0.9) 1(1.2) 0 3(3.7) 0 0

Total detected by Al 312 (70.7) 59 (68.6) 70 (80.5) 59 (72.0) 46 (63.9) 78 (68.4)

Total detected by expert 366 (83.0) 76 (88.4) 68 (78.2) 58 (70.7) 63 (87.5) 101 (88.6)

Total nodulest 441 86 87 82 72 114

Al median size (mm) 84 (6.3-11.6) 8.4 (69-11.5) 7.7(6.0-10.7) 7.6 (5.4-10.2) 10.4 (7.2-13.8) 9.1 (6.5-13.9)

Expert-—median size (mm) 7.1 (5.3-10.5) 6.9 (5.5-10.2) 6.0 (4.9-8.1) 7.1 (4.9-9.2) R, 1( 3 R 6
Accuracy

Al sensitivity 67.7% 66.3% 77.0% 66.7% _

Al PPV (positive predictive value) 87.7% 91.4% 81.4% 82.1% In comparison to the expert

radiologist, the Al showed non-inferior
efficacy in detecting nodule and
classifying them correctly ( Nodule
present vs nodule absent)

Nodule values are reported as total number and percentages, n (4). Nonparametric continuous variables are exprg
quartile ranges.

*The nodule was detected correctly but reported in the wrong lobe.

tNodule adddition of total detected by the expert, total by AI-RAD but missed by expert, and the number of FP yiel¢
on the nodules are based on this total.

Al indicates Artifical Intelligence: COPD, Chronic Obstructive Pulmonary Disease; FN, False Negative; FP, False Pq
PE, Pulmonary Embolism: RB, Respiratory Bronchiolitis; TP, True Positive.

TABLE 4. AlI-RAD’s Nodules Present Versus Absent Test Results
The Truth Sensitivity 96.1%

Control population

Has Nodules No Nodules Specificity 77.5%

Al score
Has nodules
No nodules 4 (FN)

99 (TP) 9 (FP) PPV 9L.7%
31 (TN) NPV 88.6%




25 -
TABLE 3. Results From the AI-RAD Assessment of the Control
Population 20~
All 15
Conditions ILD COPD EDEMA PE il o o
FP 7 1 2 1 3 E Y
TN 33 9 8 9 7 g T 50 $,0° O e - e
FP size (mm)* 152+ 10.1 11.0 6.3; 23.50 28.4; 6.9; 8 vl ‘ T ; 5 17
16.2 9.6 A & o
Al specificity 82.5%  90.0% 80.0%  90.0% 70.0% £ 5 - 128 iz
z ° ~
R B cases were not included in this assessment as all of them had presence -10 |-
of lung nodules mentioned in the radiology reports.
*Given the small amount of FP found, it was decided to report the 15 =
e size (and ) or A onditions.” anp he size of ¢ 0O he

Al showed good correlation in measuring the nodules as compared with measurements made by the
radiologist

Time taken was shorter in case of Al

On revisiting 20 random cases of this cohort, radiologists claimed interpreting with Al gave them
more confidence regarding the diagnosis

They detected nodules with greater accuracy and in shorter time (when taking help of Al)

Total in reports 182 (79.1) 25 (73.5) 37 (78.7) 37 (84.1) 44 (86.3) 39 (72.2)

Total nodules* 230 34 47 44 51 54
Accuracy

% of nodules reported detected by Alf 75.8% 80.0% 75.7% 75.7% 63.6% 87.2%

Al Sensitivity 89.4% 96.7% 90.5% 85.4% 79.5% 96.1%

Nodule values are reported as total number and percentages, n (). At our institution, radiologists only reported the largest 1 to 3 nodules on most reports;

therefore, we assessed those nodules reported versus the largest three nodules (or less) found by AI-RAD (validated as TP by our expert radiologist).
*Obtained by adding the total number of nodules found in the reports and the total number of nodules not reported that were found by AI-RAD.
tTotal number of nodules found by AI-RAD that were also in the reports divided by the total number of nodules reported across all cases.




* Prediction of lung cancer in patients with high-risk status has been an important
prospective field of research in Al technologies

« Only thoracic imagine can not predict risk of lung cancer in healthy subjects

« Multiple Al models have been used to predict the risk of lung cancer in such patients,
but they take into account multiple factors such as age, smoking status, spirometry
values and family history just like the traditional models of risk prediction which used
regression analysis for development



Al imaging in interstitial lung disease

Radiological diagnosis

Quantification on basis of CT imaging

Prognostication

Assessment of disease progression and
response to treatment
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HIROTAKA NISHIKIOR! ET AL

* In 2021 a study used CXRs and CT

Deep-learning algorithm to detect fibrosing interstitial lung

thorax from chronic fibrosing ILD disease on chest radiographs

patlentS and tralned a DCN N AI tO Hirotaka Nishikiori @', Koji Kuronuma'®, Kenichi Hirota®, Naoya Yama®, Tomohiro Suzuki®, Maki Onodera?,
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predlct the presence Of absence Of Hirofumi Ohnishi®, Masamitsu Hatakenaka®, Hiroki Takahashi' and Hirofumi Chiba

fibrosing ILD on the basis of CXR alone

* The deep convolutional network-based
Al showed an AUC of 0.91 for
differentiating CF-ILD from normal
CXRs successfully (all CF-ILD
confirmed by MDD) and were generall
better than the clinicians in doing so

N

Nishikiori H, Kuronuma K, Hirota K, Yama N, Suzuki T, Onodera M, et al. Deep-learning algorithm to detect fibrosing interstitial lung disease on chest radiographs. The European
Respiratory Journal [Internet]. 2023 Feb 1 [cited 2023 Sep 5];61(2):2102269.



* In 2021 a study used CXRs and CT
thorax from chronic fibrosing ILD
patients and trained a DCNN Al to 3 el I \',:)“'b 5 .

>1-2 (h=121) : lrj:,‘f fj,;;.:‘l 990) >1-2(n=127) 0.951 (0.984-0.997)

. »2-3 (N=56) 0.993 (0.985-1.000) »2-3 (n=46) 0.996 (0.992-1,000)

predict the presence of absence of
0.24 024

fibrosing ILD on the basis of CXR alone

* The deep convolutional network-based ffff
Al showed an AUC of 0.91 for b

differentiating CF-ILD from normal .
CXRs successfully (all CF-ILD =
confirmed by MDD) and were generally 7 oy
better than the clinicians in doing so o e Radiologist
‘ Bl <oy
Sensitivity and false positive rate of
algorithm using cut-off 0.267
0.0 T T T T
0.0 0.2 0.4 0.6 0.8

False positive rate

Nishikiori H, Kuronuma K, Hirota K, Yama N, Suzuki T, Onodera M, et al. Deep-learning algorithm to detect fibrosing interstitial lung disease on chest radiographs. The European
Respiratory Journal [Internet]. 2023 Feb 1 [cited 2023 Sep 5];61(2):2102269.



THE LANCET Deep learning for classifying fibrotic lung disease on high-resolution computed
tomography: a case-cohort study

Respiratory Medicine

* In 2018, a case-cohort study compared the accuracy of classification of fibrotic
interstitial lung diseases diagnosed by Al (deep learning) with that by 91 expert
radiologists.

« They trained the Al system with a dataset of 1157 HRCTs, finally comprising of
420096 images (each a montage of four slices) classified according to the 2011
ATS guidelines on diagnosis of pulmonary fibrosis

« The Al was then asked to interpret HRCTs of a test set of 150 individuals (test set
B).

* The accuracy of the algorithm on test set A was 73-3%, while that of the
radiologists was 70.7%, and the algorithm completed the task in 2.3 seconds

Walsh SLF, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. The Lancet Respiratory

Medicine. 2018 Nov;6(11):837-45.



 Interobserver agreement between the algorithm and the radiologist's majority opinion
was good (kw=0-69), outperforming 56 (62%) of 91 thoracic radiologists.

* The algorithm provided equally prognostic discrimination between usual interstitial
pneumonia and non-usual interstitial pneumonia diagnoses (hazard ratio 2-:88, 95% ClI
1-:79-4-61, p<0-0001) compared with the majority opinion of the thoracic radiologists
(2:74,1-67-4-48, p<0-0001).

* The study showed that deep learning algorithms may be a reproducible and accurate,
and at the same time time-saving aid or alternative to manual evaluation of CT scan for
diagnosis of fibrotic interstitial lung diseases (IPF).



« A 2022 study took patients from an
Australian IPF-registry (a good number of
registered patients were found to have
non-IPF disease) and applied an Al
algorithm to them (SOFIA-systemic
objective fibrotic image analysis algorithm,
based on CNN)

« They compared the diagnosis made by
SOFIA and compared them with the
diagnosis made by two expert radiologists

« They also assessed whether the diagnosis

made by the Al correlated with the disease

outcome of the patients (followed up until
they had transplant/death or disease

progression at 12 months as detected by
fall in FVC/DLCO

ORIGINAL

Deep Learning-based Outcome Prediction in Progressive Fibrotic
Lung Disease Using High-Resolution Computed Tomography
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SOFIA was trained during a study in 2019 by 420096 4-slice montages of IPF patients

SOFIA classified the cases as having The 2 radiologists evaluated the HRCTs for
probability IPF : definite UIP- 0.985 probabilities of IPF diagnosis (2018 ATS

: v e : guidelines)
probable UIP- 0.011; indeterminate- 0.002; UIP- 75%; probable UIP- 25% indeterminate for
alternative diagnosis- 0.002

UIP- 0%; and alternative diagnosis- 0%

By use of PIOPED model classified them By use of PIOPED model classified them

UIP not included in the differential, 0-4%; UIP not included in the differential, 0—-4%;
Low probability of UIP, 5-29%; Low probability of UIP, 5-29%;
Intermediate probability of UIP, 30-69%; Intermediate probability of UIP, 30-69%;
High probability of UIP, 70-94%; High probability of UIP, 70-94%;
Pathognomonic for UIP, 95-100% Pathognomonic for UIP, 95-100%

Compared the results with the actual follow up data of the registry
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Figure 3. Kaplan-Meier analysis of survival differences between patients assigned to SOFIA-PIOPED (Systematic Objective Fibrotic lmaging
Analysis Algorithm—Prospective Investigation of Pulmonary Embolismm Diagnosis) wsual interstitial pneumonia categories.



HR P Value Cl 95%

SOFIA PIOPED UIP probability categories 1.52 <0.0001 1.38-1.67
%Predicted FVC (n=356) * 0.08 <0.0001 | 0.04-0.16
SOFIA PIOPED UIP probability categories 1.33 <0.0001 | 1.20-1.48 Radiologists’ indeterminate group
%Predicted DLco (n=313) * 0.02 <0.0001 | 0.01-0.05

SOFIA PIOPED UIE L : . o
CPI (n=309) *

=Gl 1.40-2.14

Table E2. Cox p SOFIA-PIOPED classifications were significantly related to disease

function. “LinHed progression at 12 months (FVC, DLCO)
SOFIA-PIOPED classification were more significantly related with survival than
SLB results

Table 7. POX P It re-classified a number of patients radiologists had put in indeterminate class
Pneumonia Prol (21 of 83)

Biopsy (n=86)

Variable (n=83") HR P Value 95% CI
Increasing SOFIA-PIOPED probability

SOFIA-PIOPED UIP probability categories 1.75 <0.0001 1.37-2.25 category was associated with a 2.37-fold
Guideline histological pattern 1.29 0.109 0.94-1.78 increased likelihood of progressive

Total ILD extent (1% increments) 1.01 0.237 0.99-1.02 disease at 12 months




* This study is pivotal in However
showing that certain Al « The study had very few patients undergoing
algorithms can aid in not only biopsy
accurately diagnose but also

_ o « Radiologists’ personal opinions rather than
predict mortality in ILDs

consensus of a number of radiologists were used

 Prevents misclassification and

_ « The agreement between radiologists and SOFIA
delays in treatment was fair at best (weighted kappa-0.35)

(antifibrotic)




« Others have attempted to

differentiate IPF from non-IPF on the Deep Learning of Computed Tomography Virtual Wedge Resection for
basis of wedges of CT images Prediction of Histologic Usual Interstitial Pneumonitis
i Hiram Shaish’, Firas S. Ahmed', David Lederer”, Belinda D'Souza’', Paul Armenta’, Mary Salvatore’, Anjali Saqi®,
evaluated by AI algor_lthm’ bUt Onl_y Sor;:;a Hs‘asng', Sr:(s:hin Ja:bawali:;r". and Simuk:yinM?:tasa?uza - : oy e j *
found that a h|gher disease severity ‘Department of Raciology andN;chYpar’t(mcnt of Pathology, Columbia University Medical Center, New Yark, New York; and “Regeneron
. . . . Phamaceuticals, Tarrytown, or
IS needed to Improve dlagnOStIC ORCID IDs: D000-0002-9914-528X (H.5.); DO00-0001-5258-0228 (D.L).
accuracy
ROC Curve for Model
o rea Tndorthe Surve =0.1417 Sensitivity 74% Specificity 58%
* In line with the previous studies, it

has been seen that even with robust
training-dataset, diagnostic accuracy Testing Pathology Dx of UIP CNN-predicted UIP
of Al remains around 65% unless ] . No[n(%)]  Yes[n(%)]  Total [n(%)]
clinical data are also involved in the 3

e No 35 (44.87) 21(26.92) 56 (71.79)
classification process when the . Ves 4519 18 2300 2 821
accuracy goes up to >80% Total 39 (50.00) 39 (50.00) 78 (100.00)

0.00
0.60 0.I25 0.I50 O.IT5 1 .IOO
1 - Specificity

* Shaish H, Ahmed FS, Lederer DJ, D’Souza B, Armenta PM, Salvatore MM, et al. Deep Learning of Computed Tomography Virtual Wedge Resection for Prediction of Histologic
Usual Interstitial Pneumonitis. Annals of the American Thoracic Society. 2021 Jan 1;18(1):51-9.

* Furukawa T, Oyama S, Yokota H, Yasuhiro Kondoh, Kataoka K, Takeshi Johkoh, et al. A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary
fibrosis from other chronic interstitial lung diseases. Respirology. 2022 Jun 13;27(9):739-46.



« Others have attempted to
differentiate IPF from non-IPF on the
basis of wedges of CT images
evaluated by Al algorithm, but only
found that a higher disease severity
is needed to improve diagnostic
accuracy

* In line with the previous studies, it
has been seen that even with robust
training-dataset, diagnostic accurac
of Al remains around 65% unless
clinical data are also involved in the
classification process when the
accuracy goes up to >80%

1.01

0.81

0.61

0.44

0.21

0.01
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A comprehensible machine learning tool to differentially
diagnose idiopathic pulmonary fibrosis from other chronic
interstitial lung diseases

1,23 | Hideo Yokota®™* |

Junya Fukuoka’ |

Yasuhiro Kondoh” |

Naozumi Hashimoto' |

Shintaro Oyama®™” |
Takeshi Johkoh® |
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Kaplan-Meier curve based on diagnosis
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*+= |PF (MDD)

=+ NonlPF (Al)
-+ |PF [Al)

0 12 24 36 48 60 72 84
Months

* Shaish H, Ahmed FS, Lederer DJ, D’Souza B, Armenta PM, Salvatore MM, et al. Deep Learning of Computed Tomography Virtual Wedge Resection for Prediction of Histologic
Usual Interstitial Pneumonitis. Annals of the American Thoracic Society. 2021 Jan 1;18(1):51-9.

* Furukawa T, Oyama S, Yokota H, Yasuhiro Kondoh, Kataoka K, Takeshi Johkoh, et al. A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary
fibrosis from other chronic interstitial lung diseases. Respirology. 2022 Jun 13;27(9):739-46.



° A 2022 Study evaluated an Al_based Novel Artificial Intelligence-based Technology for Chest Computed

Tomography Analysis of Idiopathic Pulmonary Fibrosis
H . T iro Handa'*, Kiminobu Tani LT h ', Ryuji U i?, Kizuku W be', N F L3
quantitative CT-assessment tool called Takatumi Niwamoto. Hiroahi Stimar. Ryobu Morl. Tomomi W, Nobaahie. Fyo Sakamoto®, Takeaht Rubos, =
Atsuko Kurosaki®, Kazuma Kishi®, Yuji Nakamoto®, and Toyohiro Hirai'

" L . 'Department of Respiratory M(‘.(il('.{ﬂﬂ, “Dapartment of Advanced Modwcine for Respratory Failure, “Department of Biomedical
AI I KI Oto l ' + F u Ifl I m fo r Its Statistics and Boinformatics, and “Department of Diagnosic maging and Nuclear Medicine, Graduate School of Medicine, Kyoto
University, Kyoto, Japan. "Department of Diagnostic Radiology, Fukujuji Hospital, Kiyose, Tokyo, Japan, and "Departrment of
Respiratory Medicinag, Graduate School of Madicing, Toho Univarsity, Tokyo, Japan
ORCID 105, 0000-0002-3378-6412 (T. Hanaa), 0000-0002-5719-0744 (K. 7 ,): 0O00-0002-9546-9869 (R L), 0D000-0002-7481-0212(N.T ),

Correlation With Visual diagnOSiS by :;";;:g:gf‘:ﬁ:gtﬁuzz_w;?mtg;z;gﬁ‘égv&/::),rx'rn-n(m-13|0-.rwn(nF.),lwnmrp-azmhm'/?(lK)m‘rxyrxn;'-?ﬂm-mmmx)_
radiologist and pulmonologists, with lung

function tests and with prognosis * ’ ‘ ’

« AIQCT automatically gives data

O Normal 629%
regarding multiple parameters in the CT s
categorized under lung extraction, airway = sommulil
extraction, pulmonary vessel extraction, S
and lung parenchyma segmentation: 10 i A
patterns were automatically generated N -
based on various values of these 4

segments sl (4-5) Reprasentative hgh aschsion CT soars (A and ) and cormesponding verayed images (B.and D) are shown. .

Handa T, Kiminobu Tanizawa, Tsuyoshi Oguma, Ryuji Uozumi, Watanabe K, Tanabe N, et al. Novel Artificial Intelligence-based Technology for Chest Computed Tomography Analysis of
Idiopathic Pulmonary Fibrosis. Annals of the American Thoracic Society. 2022 Mar 1;19(3):399-406.



It was found that for most of the
features there was moderate to strong
correlation with visual observation

The radiological features of ILD as
determined by AIQCT correlated well
with the spirometric findings

Especially the bronchial volume and
the label “normal lung volume”, when
combined with GAP staging, showed a
significant correlation with mortality

It may reflect the previously
established correlation between
traction bronchiectasis and poor
prognosis in fibrotic ILDs

Use of antifibrotic drugs, reticulations
and bronchial volume were
iIndependently associated with disease
progression/survival
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« But it must be kept in mind
that Al was not always correct
in classification, even in
training set

« It was not refined enough to
differentiate between small
features in CT scan

Original labeling
(28 patterns)

Number of
labeled images
used for training

Final labeling
(10 patterns)

Normal lung 816 Normal lung

Borderline between normal &6 Normal lung

and hyperlucency

Faint ground-glass opacity 496 Normal lung

Borderline dilatation of Normal lung

bronchioles 2

Ground-glass opacity 372 Ground-glass opacity

Centrilobular ground-glass 108 Ground-glass opacity

opacity

Nodular ground-glass opacity 69 Ground-glass opacity

Reticulation 274 Reticulation

Fine reticulatiose— ZI3 : i

Consolidation 269 Consolidation \

Pleural effusion 59 Consolidation )

al thickening 47 Consolidation/

Honeycomm T78 Hmbing

Tree-in-bud 168 Nodules

Small nodules (not Nodules

centrilobular) 210

Centrilobular nodules 90 Nodules

Interlobular septal thickening 409 Interlobular septum

Hyperlucency 2725 = n

Cyst 179 Hyperlucency\

Centrilobular emphysema 235 Hyperlucency )
lobular emphysema 112 HyperlucM

Cavity surrounded By — ot Fyperlucency

infiltration




Detection of tuberculosis:

« Detection of tuberculosis on basis of chest X ray (screening)
« Patterns of tubercular involvement in radiographs/CT

« Assessment of severity of tuberculosis on radiological basis



« A 2023 systematic revie

different studies evalua Pooled D —

sensitivity-
94%

intelligence in detecting
images

Imaging
modality
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Risk of bias was high (and uncertain) in large
number of studies

Zhan Y, Wang Y, Zhang W, Ying B, Wang C. Diagnostic Accuracy of the Artificial Intelligence Methods in Medical Imaging for Pulmonary Tuberculosis: A Systematic Review and Meta-

Analysis. Journal of Clinical Medicine. 2022 Dec 30;12(1):303.



Table 2. Subgroup analysis based on different standards.

: Sensitivity Specificity DOR "
Sbashies (95%CI) (95%CI) gsucy  AH-85adD
All (23) 0.91(0.89-0.93) 0.65(0.55-0.75)  20(13-29)  0.91(0.89-0.94)

Study Design

hspective ' 0.48(0.34-0.6 9(4-20 0.85(0.82-0.88)
92)

» Sensitivity was higher when CT scan was used as imaging modality
« Specificity was better when it was compared with human reader, sputum smear which 36)
have poor sensitivity 30)
« Specificity was poorer when highly sensitive tests such as GeneXpert was used as golden -
standard P3)
« Accuracy differed according to the Al models used: deep learning and machine learning
had better sensitivity but poor specificity 07)

/32)

Al type
Deep learning (13) 0.91(0.89-0.92)  0.62(0.48-0.74)  16(10-23)  0.91(0.88-0.93)
Machine learning (9) 0.93(0.85-0.97) 0.61(0.46-0.75)  21(11-42)  0.87(0.83-0.89)

Abbreviation: DOR, diagnostic odds ratio; AUC, area under curve.



European Radiology (2022) 32:2188~2199
https://dol.org/10.1007/500330-021-08365-2

In 2021, a retrospective cohort study e —— p-
evaluated a fully automated CNN-based Tz
system to identify patients with imaging  Afully automatic artificial intelligence-based CT image analysis

_ system for accurate detection, diagnosis, and quantitative severity
features suggestive of TB as well as evaluation of pulmonary tuberculosis

their severity of involvement

Chenggong Yan'? - Lingfeng Wang®* - Jie Lin"* . Jun Xu® - Tianjing Zhang* - Jin Qi* - Xiangying Li” - Wei Ni® -
Guangyao Wu?? - Jianbin Huang' - Yikai Xu' - Henry C. Woodruff*'® . Philippe Lambin®'®
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Yan C, Wang L,rLin J, XuJ, Zhang T, Qi J, et al. A fully automatic artificial intelligence—based CT image analysis system for accurate detection,
diagnosis, and quantitative severity evaluation of pulmonary tuberculosis. European Radiology. 2021 Nov 29;32(4):2188-99.



* They assessed how well the Al-detected TB cases Chest CT scans of suspected TB (n=1356)
. . . from Dec 2017 to Sep 2020
and severity correlated with two independent

radiologists Excluded
Inadequate image quality (n=73)
° The Al differentiated norma' from abnormal CT No typical imaging findings indicative of TB (n=215)
’ Negative Mycobacterium tuberculosis culture (n=176)
detected the sites of involvement, predicted the v
. . . . Eligible scans (Dataset-1, n=892
activity of the disease and commented on disease oo i Ll

Image labeling and crop

severity

<7 lesions per scan

Bounding boxes (n=1921)

Dataset | Detected False +ve | PPV
candidate

l Data annotation and augmentation

regions Training : Validation 8:2

l Trained Al model

Test2 563 518 45 92%
Performance evaluation
Test3 502 440 62 87.6% | '
Test 4 931 869 62 93.3% Test sell-YanIing Test slel -Haikou Test s}l -NIH

(Dataset-2, n=99) (Dataset-3, n=86) (Dataset-4, n=171)
Ground truth: consensus by two radiologists
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TB score
2 o 33 ¥ 858 38 38

Severe Non-severe

and classify suspected TB lesions with

considerable accuracy (0.86-0.92);

Al could make prediction about the
Validation set activity status of the disease;

' > The study showed that Al could detect

reasonable accuracy;
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Lung TB score: Ratio of lesion volumetric summation to that of the corresponding lung lobes

Severe -LTS >2 in any lobe; Non-severe-LTS <2




Pulmonary vascular diseases:

« Pulmonary hypertension

* Pulmonary embolism



Problem with early diagnosis of pulmonary hypertension through imaging modality is
that the affected pulmonary arterioles are not visible properly with the best resolution
of images

Artificial intelligence is largely based on the power of the imaging modality to clearly
delineate the region of interest

Imaging solely is not currently developed enough to utilize Al in diagnosing and
predicting pulmonary hypertension in patients

But as RHC is an invasive procedure and any advance in diagnosing PH with imaging
should be explored



* In 2016 a study used MRI of the
MPA and heart along with
computational models that take
into account windkessel effect and
applies them through random
forest decision tree to diagnose
pulmonary hypertension

* They evaluated the diagnostic
accuracy of different combinations
of imaging and computational data
with the RHC being the gold
standard

ORIGINAL RESEARCH

Diagnosis of pulmonary hypertension from magnetic resonance
imaging—based computational models and decision tree analysis

Angela Lungu,"” Andrew ). Swift,"”” David Capener,' David Kiely,”* Rod Hose,"” Jim M. Wild"?

'Cardiovascular Science Department, University of Sheffield, Sheffield, South Yorkshire, United Kingdom; 2Insignco Institute for in silico Medicine, University of
Sheffield, Sheffield, South Yorkshire, United Kingdom; *Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, South Yorkshire,
United Kingdom

Functional MRI of pulmonary artery

A \)
2 A /

b N

Dynamic MRI of right ventricle

(A

| |

Computational metrics Anatomy metrics

“ RAC, RVEDVI, RVEF, VMI
st R RVMI, syst angle
o | s U a— ' (
C
Apply
Qi % Classification trees
Diagnosis
‘PH’/’NoPH’

Lungu A, Swift AJ, Capener D, Kiely DG, Hose R, Wild JM. Diagnosis of Pulmonary Hypertension from Magnetic Resonance Imaging—Based Computational Models and Decision Tree Analysis.

Pulmonary circulation. 2016 Jun 1;6(2):181-90.



Table 2. Noninvasive metrics’ individual accuracies evaluated for a cutoff value corresponding to maximum Youden index

Noninvasive PH markers (data-driven threshold) = AUC  Misclassification error ~ Sensitivity ~ Specificity =~ Threshold

1D model .

W/Wo, - 5% b6 , 635 Two computational models were
0D model included-

R4, mmHg s/mL 0.85 0.25 0.72 0.87 0.45

R, mmHg s/mL 0.67 0.38 0.56 0.86 0.01

¢, wil el 0.83 0.25 0.72 0.87 0.88 1D model: used Wb/W?tot (backward
RA-tmaging wave to total wave proportion)

RAC, % 0.81 0.29 0.67 0.87 16

CMR

RVMI, g/m’ 0.81 026 0.68 0.93 16.01 OD model: included distal

RVEDVI, mL/m? 0.64 0.51 0.36 0.93 0.94 . . .

e 555 o - 55 555 resistance, characteristic resistance

RVEF, % 0.74 038 0.56 0.87 43 and total pulmonary compliance

Systolic septal angle, degrees 0.81 0.35 0.56 1 164

Note: PH: pulmonary hypertension; AUC: area under the curve; 1D: one-dimensional; Wy,/W,,: ratio of backward to total
wave power; 0D: zero-dimensional (Windkessel); Ry: distal resistance; R.: characteristic resistance; C: total pulmonary compli-
ance; RAC: relative area change of main pulmonary artery (PA); CMR: cardiac magnetic resonance; RVEDVI: right ventricle
end-diastolic volume index; RVEF: right ventricle ejection fraction; VMI: ventricular mass index; RVMI: right ventricle mass
index.

MRI data had good specificity but poor sensitivity alone
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It showed that the OD+1D+PA+CMR

together had the best overall accuracy




Patients' classification

Table 3. Classification accuracies for the coupled pulmonary hypertension metrics models

borderline v false positive
PH e correctly classified
i = false negative . ; ; " s %
LOOCV AUC Misclassification error Sensitivity Specificity
0D + 1D 0.89 0.21 0.88 0.47
A 0D + 1D + PA 0.9 0.13 0.93 0.67
RN e, & % = 0D + 1D + PA + CMR (all) 0.89 0.14 0.97 0.47
0D + 1D + PA + CMR 0.91 0.08 0.97 0.73

Note: LOOCV: leave-one-out cross validation; AUC: area under the curve. For all models, threshold is not applica-
ble. Zero-dimensional (0D) metrics derived from the 0D Windkessel model. One-dimensional (1D) metrics derived
from the 1D wave model. Pulmonary artery (PA) metrics derived from the two-dimensional images of the main PA.
Cardiac magnetic resonance (CMR) metrics derived solely from measurements on the cardiac images, with AUC > 0.8.

%

mPAPéfmmH 9) CMR (all) includes all measured metrics derived from the cardiac images.

RHC

Only 6 out of the 72 patients were misclassified by the model

All the patients who were false negative or false positive had mPAP very close to 25 mmHg




Patients' classification

borderline
PH

v false positive
e correctly classified
» false negative
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Pulmonary embolism

Sensitivity, specificity, accuracy and AUC for machine learning algorithms.

Study type / country  Population Intervention Comparison Outcome
(ML algorithm)
Gawlitza J Retrospective study, Emergency room LR Cluster analysis Potential predictors to further increase pee-test
et al unicenter Age > 18 SVM probability
(2021) N = 2045 Suspected PE, RF
PE prevalence 33 % Blood testing CT AdaBoost
43%
Germany
Liu H et al. Hetrospective study, Inpatients LR 167 inpatients with deep venous To develop und externally validate o new
(2021) unicenler Digital medical or thrombosis (DVT) and/or pulmonary prediction moded for young middleaged people
N =573 database NN embolism {PE) and 406 patients using machine learning methods
PE prevalence 41 % Age < 45 SVM without DVT or PE
China RF
Ryan L Retrospective study Inpatients population, LR Noa PE encounters {%6) n = 60,297 To identify parients at risk of PE before the
(2022) unicenter clectronic health record NN clinical detection of onset in an inpatient
N = 63,798 data from medical and XGBoost PE encounters (%) n = 309 population,
PE prevalence: 0.5 %  surgical inpatients
USA
Hou L Retrospective study Inpatients that received LR Compared the models with To establish a novel PE risk prediction model
(2021) unicenter pulmoanry computed SVYM representative baseline algorithms, hased on M1, methods and to evaluate the
N = 3619 tomography imaging RF and investigsted their predictabikity predictive performance of the model and the
PE prevalence: 16,9 Age: older than 18 years  GBDT and feature interpretation contribution of variables to the predictive
%-19.1 % performance.
China (Sanghal)
Shen J Retrospective study Inputients XGBoost External validation of the model from  To conduct the first large-scale external
(2022) multicenter 12 medicol institutions ench of 32 medical Institutions (total n  validation of a machine leaming-based PE
Tralning modek: N for training model 1,660,715; 3.7 % PE positive) prediction model which uses EHR dat from the

331,268,

PE prevalence: 3.3 %
External validation
model

N « 1,660,715;

PE prevalence: 3.7 %
UsA

32 medical instituttons
for external validation
moxled

without retraining

first three hours of a patient’s haspital stay 1o
predict the occurrence of PE within the next 10
days of the inpatient stay,

ML Sensitivity Specificity Accuracy AUC (CI 95 %)
model
Gawlitza J LR NA NA =90 % 0.977 (NA)
et al. SVM NA NA =90 % 0.945 (NA)
(2021) RF NA NA =90 % 0.947 (NA)
AdaBoost NA NA =90 % <0.900 (NA)
Liu H LR 61 % 99 % 88 % 0.837
et al. (0.756-0.919)
(2021) DT 59 % 99 % 87 % 0.799
(0.667-0.931)
NN 46 % 97 % 82 % 0.841
(0.756-0.925)
SVM 56 % 97 % 85 % 0.875
(0.806-0.944)
RF 59 % 99 % 87 % 0.850
(0.793-0.907)
Ryan L LR 81 % 35 % NA 0.67 (NA)
(2022) NN 81 % 44 % NA 0.74 (NA)
XGBoost 81 % 70 % NA 0.85 (NA)
Houl L LR 68.1 % 66.1 % 66.5 % 0.716 (NA)
(2021) SVM 75 % 65.1 % 67 %, 0.743 (NA)
RF 71.5 %, 72.7 %, 72.5 %, 0.791 (NA)
GBDT 63.9 %, 81.1 % 77.8 % 0.799 (NA)
Shen J XGBoost 80 % 85 % NA 0.88
(2022) (0.79-0.93)

ML: Machine Learning, PE: Pulmonary Embolism, LR: Logistic Regression, SVM:
Support-vector machines, RF: Random Forest; AdaBoost: Adaptative Boosting,
GDBT: Gradient Descent Boosting Tree, XGBoost: Extreme Gradient Boosting,
DT: decision tree, NN: Feed-forward Neural Network, AUC: area under the curve.

NA: not applicable.



* A retrospective study aimed at
external validation of a machine-
learning algorithm (XGBoost) for
prediction of pulmonary embolism in
hospitalized patient with high risk of
PTE

« The algorithm was trained with a
dataset including 330,000 patients
 From 12 institutions

* |t was then applied to over 1.7
million patients admitted in 32
different hospitals to predict the
occurrence of pulmonary embolism
in them

« Gold standard was hospital data
documenting PTE with specific ICD-
10 code and acquiring thrombolytics
and anticoagulants for its treatment

Contents lists available at ScienceDirect

Thrombosis Research

-

ELSEVIER journal homepage: www.elsevier.com/locate/thromres
Full Length Article ')
Massive external validation of a machine learning algorithm to predict e

pulmonary embolism in hospitalized patients

Jieru Shen, Satish Casie Chetty , Sepideh Shokouhi, Jenish Maharjan, Yevheniy Chuba,
Jacob Calvert, Qingqing Mao

Dascena, Inc., Houston, TX, United States

A Encounters from 12 hospitals B
- 7 4 5 X i
Inpatients At high risk
(n=8421534, —> (n =370395,
pos = 2.89%) pos = 3.72%)
\. J \
. y :
Taining, interna vlidaion, selection | (" WithPEtmesin ) (~ Withvils
(3, 243] hrs if pos — and lab data
(n = 340830, (n = 343525,
External validation \ pos=321%) ) |  pos=3.97%)
Age 2 18 years With onset times
(n=2339774, (n=331268,
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« The machine learning algorithm
was found to have moderately ) 3
good sensitivity in predicting 50
PTE in hospitalized patient -y

- It still did miss out on some of )
the PTE cases

» This can be attributable to the e site

Fig. 2. Performance of the eXtreme Gradient Boosting (XGB) model on the test datasets from 32 institutions. (A) Receiver operator characteristic curves for the 32

Iowe r PT E rates I n th e tral n I n g test sets. (B) Area uxx:ler the receiver operating characteristic (AUROC) values for the 32 test sets. in descending order. with corresponding specificitv and diagnostic
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ContrIbUted mOSt to the AI S deCISIon In Suppl. Figure 2. Evaluation of model performance. (A) Comparison of performance between Explainable

d A t' PTE Boosting Machine (EBM), eXtreme Gradient Boosting (XGB)., and Elastic Net Logistic Regression (LR)
pre IC Ing models in terms of AUROC on a hold-out test subset of the training dataset. (B) The top 20 features for the

XGB model. Abbreviations: auc — aren under the curve, vte — venous thromboembolism, hr — heart rate, sbp —
systolic blood pressure, dbp — diastolic blood pressure. rr — respiratory rate. bimi — body mass index.




Obstructive airway disease:

Diagnosis of obstructive airway diseases are mostly straight-forward and involves
inexpensive and accurate investigations which are easily accessible

Use of expensive imaging in addition to artificial intelligence is not always necessary

There are few instances where it may be helpful

Early diagnosis of COPD (before it is identified my spirometry)

Phenotypical classification of asthma



Study characteristics.

Auther Country Model type Sample size AUC Sensitivity Specificity Other performance indicators
Chen et al 2022 China CNN(ResNetl0) + 4823(Developmental setz4552 1.00/ 0.97/ 1.0070.83 ACC:1.00/0.78
(17) MIL (NLST:3715),External test setz:271) 0.86 0.0.66
Dorosti et al Germany CNN(DenseNet121) 78(Developmental set=60,Test set:18) 0.86 NA NA
2023(18)
Du et al 2020 China CNN(AlexNet) 280(10-fold cross-validation) 0.92 NA NA ACC:0.89 TP:63 FP:5 FN:27
(19 TN:185
Erdem et al Tiirkiye CNN(AlexNet) 802 1.00 NA NA Fl-score:1.00 Precision:1.00
2023(20) Recall:1.00
Gonza lez et al Spain CNN 9983(Developmental set:8983, Test 0.86 NA NA TP:348 FP-116 FN:111 TN:425
201821 set: 1000 COPD Gene)
Guan et al 2024 China CNN(ResNet50) 1024({Developmental set:726, Test 0.90/ 0.85/0.63 0.85/0.73 ACC:0.85/0.64 NPV:0.53/0.23
[22]) set:298) 0.70 PPV:0.96,/0.94
DT 0.949/ 0.91,/0.84 0.84/0.58 ACC:0.89/70.81 NPV:0.64/0.36
0.73 PPV:0.97,/0.93
Ho et al 2021 Korea CNN 596(5-fold cross-validation) 0.93 0.88 0.94 ACC:0.89 Precision:0.83 F1-
(23} Score:0.85
Li(1) et al 2022 China GOCN 600(Developmental set:500,Test 0.81 NA NA ACC:0.77 F1-Scorez0.78
[24) set: 100 DLCST) Precision:0.80 TP:40 FP:10 FN:13
TN:37
Li(2) et al 2022 China LR 322 (Developmental setz257, Test 0.97 0.98 0.92 ACC:0.96 Precision:0.98 F1-
[25]) set:65) Score:0.98
Moslemi et al Canada/ SVM 95 NA 0.87 0.71 ACC:0.80 F1-Score-0.81
2022(26| Germany
Ramalho et al Brazil ELM 72 NA NA NA ACC:0.96
2014{27)
Savadjiev et al Canada CNN(ResNet50) 274 0.89 NA NA Precision:0.66 Recall:0.85
2021|258
Silvia et al 2024 Germany SSL 9861 (Developmental set:1549, Test 0.85 NA NA AUPRC:0.76
{29]) set:2312)(COPD Gene)
Serensen et al Denmark KNN 300(Developmental set:200,Test 0.71 NA NA
2012(30) set:100)
Sun et al 2022 China CNN(ResNetl8) + 2013(Developmental set:1393 External 0.93/ 0.81/0.80 0.93,/0.84 NPV:0.89,/70.98 PPV:0.87/70.33 F1-
(31 MIL test set:620(NLST)) 0.87 Score:0.89,/0.46
Tang et al 2020 Canada CNN(ResNetl52) 4742(Developmental set:2589 0.89 NA NA NPV:0.76 PPV:0.85 F1-Score:0.76
132} (PanCan).External test set:2153 Precision:0.80
{ ECLIPSE ) )
Wu(l) et al China CNN(ResNet26) 581 (Developmental set:380,External NA 0.93/0.92 0.97/70.80 ACC:0.95/70.85 NPV:0.932/0.93
202333 test setz201) PPV:0.97/0.76
wu(2) et al China CNN(VGG-16) - 561 (Developmental set:260,External NA 0.95/0.77 0.97/0.89 ACC:0.96/0.83 NPV:0.95/0.80
2023 34) MIL test setz201) PPV:0.97/0.88
Xu et al 2020 China CNN(AlexNet) + 280(10-fold cross-validation) 0.99 0.99 0.99 ACC:0.99 F1-Scorez0.99
{35] PCA + MIL
Xue et al 2023 China CNN(ResNet50) + 1060(Developmental set:800,External 0.95/ 0.92/0.77 0.92,/0.83 ACC:0.95/0.87
136] MIL test setz260) 0.87
Zhang et al China CNN(DenseNet201) 599(Developmental set:373 External 0.99/ 0.95/0.81 0.91,/70.84 ACC:0.93/0.82 F1-Score:0.95/
202237 | test set=226) 0.90 0.85
Zhu et al 2024 China VAE - MLP 2317(Developmental set:1853, Test 0.97 NA NA ACC:0.89 Precision:0.91

[38)

set:464)

Recall:0.89 F1-Score:0.89




Subgroup analysis.
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Wu Q, Guo H, Li R, Han J. Deep learning and machine learning in CT-based COPD diagnosis: Systematic review and meta-analysis. International Journal of Medical Informatics
[Internet]. 2025 Jan 30;196:105812.



Studies have used emphysema
as a measure of COPD severity

Radiomics features that have
been associated with
emphysema have been identified
and utilized by machine learning
to diagnose and stage COPD

Character of airways as seen on
CT has been also included for
training machine and its output
utilized in diagnosing and
classifying COPD

However, they don’t specifically
mention diagnosing early COPD
(before overt imaging features
appear) and impact on treatment
and outcome

Table 3 The preprocessing, feature extraction, and feature selection method of deep learning method in COPD identification and

stage
Team Reference Preprocessing Feature extraction Feature selection
Mets et al. [64] The segmentation of lung and airway ~ Three quantitative CT biomarkers
(emphysema, air trapping, and bron-
chial wall thickness)

Gonzdlezetal.  [66] Join four views into a single montage ~ CNN features
Cheplyginaetal.  [67] 3D Region of interest (ROI) from CT ~ Gaussian scale space features

image
Sathiya et al. [68] Gray Scale Gray Level Co-occurrence Matrix
Xu et al. [70] The segmentation of lung from CT CNN features (AlexNet) Principle component analysis

image
Tang etal. [72] Lung mask generation, spatial nor- ~ CNN features (ResNet-152)

malisation
Hasenstabetal  [74] Co-registration, lung segmentation ~ Emphysema and air trapping feature -
Lietal [76] Volume of Interest segmentation 1395 radiomics features Variance threshold, Select K Best

from CT method, and least absolute shrinkage

and selection operator (LASSO)

Yang etal. (80] Lung region segmentation 1316 radiomics features LASSO
Yang etal. [81] Lung parenchyma segmentation 1316 radiomics features Generalized linear model and LASSO
Puchakayala et al. [86] Segmentation of lung and airways ~ Demographics features, emphysema -

feature, lung and airway radiomics
features



Contents lists available at

* In 2023, a new approach for imaging in COPD

Biomedical Signal Processing and Control

was proposed i Jihe o
. . . m
3D reconStrUCtlon Of alrway and parenChyma Deep CNN for COPD identification by Multi-View snapshot integration of &=
obtained from CT images were evaluated by 3D alrway tree and lung field
. Yanan Wu ", Ran Du ", Jie Feng ", Shouliang Qi " , Haowen Pang ", Shuyue Xia", Wei Qian
deep CNN to comment on whether the patient sy e i sl st e ot

atlen. Northeastern Untversiy, Shemyang Chinag
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« The assumption was that subtle narrowing of CT seans -

airways, irregularities on surfaces of the lungs Alrway tree extraction | Lung field extraction
would differentiate patients afflicted with 1
COPD from the healthy controls e 7L§
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n 3D Lung field

l.\lnlll—v‘lcw snapshots l Multi-view snapshots
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Fig. 1. Workflow of the multi-view-based majority voting convolutional neural network,

Wu Y, DuR, FengJ, Qi S, Pang H, Xia S, et al. Deep CNN for COPD identification by Multi-View snapshot integration of 3D airway tree and lung field. Biomedical Signal Processing and
Control. 2023 Jan 1;79:104162-2.



Table 5
Comparison between our method and the state-of-the-art CNN method on
Dataset 1.
Methods ACC SEN SPE PPV NPV
VGG16 0.898 0.866 0.938 0.942 0.855
Inception_v3 0.926 0.901 0.955 0.958 0.895
ResNet50 0.889 0.849 0.940 0.947 0.832
|| it nG bt || G S SR [ A et asosanse DenseNet121 0.929 0.901 0.961 0.963 0.895
R O T T e VTR Y . s Our method 0.947 0.929 0.967 0.968 0.926
190 Spoaifhery 190 Spanseny 100 Mgt
View: Ventral View: Dorsal View: Isometric
Comparison of our method and state-of-the-art methods.
Methods ACC SEN SPE PPV NPV
BOA-CNN [40] 0.881 0.864 0.901 0.905 0.858
Resnet50 [42] 0.889 0.849 0.940 0.947 0.832
Gonzalez [31] 0.824 0.895 0.753 0.783 0.877
T ] T | [ ———— Our method 0.947 0.929 0.967 0.968 0.926
o ] "' . » 106 L] o ;w: w e LJ > '. - » (L]
View: Front View: Rear View: Left

The views evaluated did not affect the outcome
significantly;

In terms of accuracy, this method was superior
| et e on A 6 sseom T Mt apea e g erasen | Mot A 212 1Y $ 9134 from a” the AI teChniqueS preViOUSIy Used
View: Rght Vi Top, i D

ig. 5. ROC of nine single-view using ResNet-26 model by different airway segmentation and lung field segmentation methods on Dataset 1. *In the view of the
irway tree, Method 1 means the Airway 1 method and Method 2 means the Airway 2 method. For the view of the lung field, Method 1 means the Lung field 1 method
nd Method 2 means the Lung field 2 method.



Asthma and pleural effusion: scarce data

« Although artificial intelligence has been evaluated in diagnosing asthma and monitoring
its response to treatment, there has been scarce or no data regarding using Al to
radiology for this purpose

« Similarly, use of Al in imaging has been very limited in case of pleural effusion.

« Studies that considered pleural abnormalities have only done so in the context of
malignant infiltration of the pleura as part of evaluation for extent/staging of
bronchogenic carcinoma



Concerns regarding Al:

« Can not be relied upon without final verification by human
« Known to misclassify images that has been slightly altered (even by few pixels)
« Known to be biased in testing if the training dataset has bias

* Problem of generalizability: may not work on imaging from older machines already
installed in some centers

« ‘BLACK-BOX' - we do not often know how the neural network is interpreting data and
making predictions—> difficult to make changes without retraining



Future possibilities:

Thermal imaging scan to assess asthma response to medication

Detection of airway abnormalities from 3D reconstructed images of CT thorax
(emphysema, bronchiectasis, congenital airway malformations)

Better prediction models for suspecting PTE in patients clinico-radiologically

Delineation of haemodynamics in pulmonary hypertension non-invasively



Al in medical imaging in India: where are we now?

* Role of artificial intelligence in medical field is blooming in India
« The market for Al-powered machines (largely robotics) is rapidly growing
« However, Al-imaging for lung cancer, ILD and TB detection is not widely applied

» The cost and time required for integrating Al systems with existing PACS and RIS are
considerably higher than training radio-technologists in identifying gross abnormalities
and suspicious lesions on radiology

« Large studies in Al-imaging are also lacking to build confidence and interest regarding
its application in diagnostics and even imaging



Conclusion:

« Artificial intelligence in thoracic imaging have made great strides in areas such as early
detection of malignant nodules, predicting malignant potential of nodules and survival of
patients

* It has shown great potential in classifying and predicting survival in interstitial lung
diseases

* In diagnosing pulmonary hypertension and pulmonary embolism it has shown promise, but
more studies are required

 In diagnosing and classifying COPD according to severity, it has established its efficacy
but whether the increased cost is justified requires farther evaluation

* |n asthma and pleural diseases, more studies are required to find its place



Although Al has been found to be reasonably accurate in diagnosing certain diseases,
it requires a large dataset for accuracy, to avoid overfitting and to minimize false
negatives

The benefit of Al imaging lies in the rapidity with which it can diagnose a large number
of patients

Almost all the studies show that the outputs of Al systems had to be validated by
human radiologists and while doing it a considerable number of false positive and false
negatives have been identified

Artificial intelligence should be considered as an aid to the diagnosticians rather than
an alternative or a replacement



Artificial intelligence is a rapidly expanding modality in field of medicine

There has been a considerable gap between this technology and the clinicians who are
supposed to use it

Composite approaches by clinician and Al may not only increase the diagnostic
accuracy of both as well as dramatically reduce time to diagnosis

Clinicians should be more accepting of it and more research in this field should be
aimed at validating different Al methods as well as cost-benefit analysis



Thank you
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