UPDATES IN MANAGEMENT OF ARDS

Dr Akshay Raut

- 1. Definition
- 2. Phenotypes

Respiratory management of ARDS

- 1. HFNO
- 2. NIV
- 3. Tidal Volume
- 4. PEEP

- 5. Recruitment Manoeuvres
- 6. Prone position
- **7.** NMB
- 8. ECMO
- 9. Corticosteroids

ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies

AMERICAN THORACIC SOCIETY DOCUMENTS

An Update on Management of Adult Patients with Acute Respiratory Distress Syndrome An Official American Thoracic Society Clinical Practice Guideline

Definition of ARDS

Acute onset of tachypnoea, hypoxaemia, and loss of compliance, refractory to oxygen therapy, diffuse infiltrates on cxr

Lung Injury Score – Included oxygenation- P:F ratio, severity of lung Injury, PEEP

Included differentiation between ALI and ARDS depending on P:F ratio, mentioned no increase in PAWP, exclusion of cardiogenic pulm edema Berlin Definition 2012

Future Definition

Berlin Definition	Rationale for Updating Criteria	How This is Addressed in the Global Definition			
Acute onset within 1 week of known insult or new or worsening respiratory symptoms	Onset may be more indolent for some insults, such as COVID-19	The inclusion of patients with HFNO will capture patients with more indolent courses, and therefore the timing criterion has not been changed			
Bilateral opacities on chest radiography or computed tomography not fully explained by effusions, lobar/lung collapse, or nodules	Chest radiography and computed tomography not available in some clinical settings	Ultrasound can be used to identify bilateral loss of lung aeration (multiple B lines and/or consolidations) as long as operator is well trained in the use of ultrasound			
Three severity categories defined by Pa _{O2} :FI _{O2}	Pulse oximetric measurement of Spo ₂ :Fio ₂ is widely used and validated as a surrogate for Pao :Fio	Sp _{O₂} :F _{IO₂} can be used for diagnosis and assessment of severity if Sp _{O₂} is ≤97%			
Requirement for invasive or noninvasive mechanical ventilation such that PEEP \ge 5 cm H ₂ O is required for all categories of oxygenation severity	HFNO increasingly being used in patients with severe hypoxemia who otherwise meet ARDS criteria	New category of nonintubated ARDS created for patients on HFNO at ≥30 L/min who otherwise meet ARDS criteria			
except mild, which can also be met with CPAP $\ge 5 \text{ cm H}_2\text{O}$	Invasive and noninvasive mechanical ventilation not available in resource- limited settings	Modified definition of ARDS for resource- limited settings does not require Pa _{O2} :FIO2, PEEP, or HFNO			

(Matthay et al., New Global Definition of ARDS., ATS Journals, 2024)

Patie	ent Description	Imaging	Oxygenation	ARDS Categories
Ca	68-year-old M with abdominal sepsis, septic shock, and		Mechanically ventilated Fi _{O2} 0.5	Intubated ARDS Severity: Moderate
	respiratory failure		P/F = 150 mm Hg	Typical patient included in prior Berlin definition
Sul	54-year-old F with history of		High-flow nasal oxygen	Nonintubated ARDS
	COVID-19 pneumonia, and worsening shortness of breath for the past 6 days		Fi_{O_2} 0.80 Sp_{O_2} 91% S/F = 114	New category in Global definition
	39-year-old F with abdominal sepsis and gram-negative bacteremia in a small	N. Jun Jun	Supplemental oxygen by face mask at 15L/min Fi _{O2} 0.6	ARDS in resource-limited settings
	without blood gases,		Sp _{O2} 85% S/F = 142	New category in global definition consistent

R

radiography, or mechanical

ventilation

definition, consistent with the Kigali modification

(Matthay et al., New Global Definition of ARDS., ATS Journals, 2024)

			Criteria That Apply to All ARDS Ca	tegories
Risk factors and origin of edema Timing Chest imaging		Precipitated by an trauma, transfus attributable to c abnormalities a in the presence Acute onset or wo of the predispos Bilateral opacities consolidations of	acute predisposing risk factor, such as pner sion, aspiration, or shock. Pulmonary edema ardiogenic pulmonary edema/fluid overload, re not primarily attributable to atelectasis. Ho of these conditions if a predisposing risk factor prsening of hypoxemic respiratory failure with sing risk factor or new or worsening respirator on chest radiography and computed tomogr on ultrasound* not fully explained by effusion	umonia, nonpulmonary infection, is not exclusively or primarily and hypoxemia/gas exchange owever, ARDS can be diagnosed ctor for ARDS is also present. in 1 week of the estimated onset ory symptoms. raphy or bilateral B lines and/or is, atelectasis, or nodules/masses.
		Crite	eria That Apply to Specific ARDS Categori	ies
	Nonintu	bated ARDS [†]	Intubated ARDS	Modified Definition for Resource-Limited Settings [‡]
Oxygenation [§]	Pa _{O₂} :Fi _{O₂} ≤ 30 Sp _{O₂} :Fi _{O₂} ≤ 30 on HFNO w ≥30 L/min o with at least end-expirato	0 mm Hg or 315 (if $Sp_{O_2} \le 97\%$) ith flow of r NIV/CPAP 5 cm H ₂ O ory pressure	$\begin{array}{l} \mbox{Mild}^{1\!\!1}\!\!: 200 < \mbox{Pa}_{O_2}\!\!:\!\!F_{IO_2} \! \leqslant \! 300 \mbox{ mm Hg} \\ \mbox{ or } 235 < \mbox{Sp}_{O_2}\!\!:\!\!F_{IO_2} \! \leqslant \! 315 \\ (\mbox{if } \mbox{Sp}_{O_2} \! \leqslant \! 97\%) \\ \mbox{Moderate: } 100 < \mbox{Pa}_{O_2}\!\!:\!\!F_{IO_2} \! \leqslant \! 200 \mbox{ mm Hg} \\ \mbox{ or } 148 < \mbox{Sp}_{O_2}\!\!:\!\!F_{IO_2} \! \leqslant \! 235 \\ (\mbox{if } \mbox{Sp}_{O_2} \! \leqslant \! 97\%) \\ \mbox{Severe: } \mbox{Pa}_{O_2}\!\!:\!\!F_{IO_2} \! \leqslant \! 100 \mbox{ mm Hg} \\ \mbox{ or } \mbox{Sp}_{O_2}\!\!:\!\!F_{IO_2} \! \leqslant \! 100 \mbox{ mm Hg} \\ \mbox{ or } \mbox{Sp}_{O_2}\!\!:\!\!F_{IO_2} \! \leqslant \! 148 \\ (\mbox{if } \mbox{Sp}_{O_2} \! \leqslant \! 97\%) \end{array}$	$Sp_{O_2}:F_{I_{O_2}} \leq 315$ (if $Sp_{O_2} \leq 97\%$) [†] . Neither positive end-expiratory pressure nor a minimum flow rate of oxygen is required for diagnosis in resource-limited settings.

(Matthay et al., New Global Definition of ARDS., ATS Journals, 2024)

ARDS Phenotyping

- **Phenotype** A clinically observable set of traits resulting from an interaction of genotype and environmental exposures (i.e., ARDS is a phenotype)
- **Subgroup** A subset of patients within a phenotype, which may be defined using any cut-off in a variable (e.g., PaO2/FiO2 severity classification of ARDS)
- **Sub-phenotype** A distinct subgroup (of ARDS patients) that can be reliably discriminated from other subgroups based on a set or pattern of observable or measurable properties (e.g. radiological , biological subphenotypes)
- Endotype A sub-phenotype with a distinct functional or pathobiological mechanism, which preferably responds differently to a targeted therapy

Intervention/trial cohort analyzed		Hypoinflammatory subp	henotype response	Hyperinflammatory subphenotype response		
	Outcome	Intervention	Control	Intervention	Control	
High vs. low PEEP/ ALVEOLI [*] [27]	90-day mortality	24% high PEEP	16% low PEEP	42% high PEEP	51% low PEEP	
Conservative vs. liberal fluid strategy/ FACCT [*] [29]	90-day mortality	18% conservative fluid strategy	26% liberal fluid strategy	50% conservative fluid strategy	40% liberal fluid strategy	
Simvastatin/ HARP-2 [40]	28-day survival	No difference		Improved survival with s 0.008)	imvastatin (p =	
Rosuvastatin/SAILS [41]	90-day mortality	No difference		No difference		

Table 3 Subphenotype-specific treatment response in the reanalyses of outcomes in four different clinical ARDS trials

PEEP positive end-expiratory pressure; *p value <0.05 for interaction between treatment and subphenotype

Respiratory Management of ARDS

1. HFNO

FLORALI: High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

- Multicentre, open label, randomized, controlled trial
- N=310 (AHRF with P:F \leq 300)
 - High-flow oxygen therapy (n=106)
 - Standard oxygen therapy (n=94)
 - Non-invasive ventilation (n=110)
- Included patients with AHRF with RR \ge 25, PaO2:FiO2 ratio \le 300, PaCO2 \le 45 and no clinical h/o chronic respiratory failure
- Primary outcome: Proportion of patients intubated at day 28

Primary Outcome												
Measure	High-flow (n=106)	NIV (n=110)	Facemask (n=94)	p								
Intubation												
Intubation by day 28 – n (%)	40 (38%)	55 (50%)	44 (47%)	0.18								
High flow = High flow oxygen group (also	known as 'high-flow nasal cannula'	or 'HFNC'); NIV = Non-ir	nvasive ventilation; n = number;	; % = percentage								

Secondary Outcomes													
Measure	High-flow	NIV	Facemask	р									
Mortality													
ICU Mortality – n (%)	10 (12%)	23 (28.4%)	16 (21.6%)	0.03									
Mortality at 90 days – n (%)	11 (13%)	26 (32%)	20 (27%)	0.01									
LOS ICU (assessed at 90 days)													
LOS ICU for survivors - mean days (SD)	10 (+/- 14.9)	12.4 (+/- 13.1)	8.3 (+/- 6.9)	0.96									
LOS ICU for non survivors - mean days (SD)	15.9 (+/- 14.4)	14.9 (+/-13.2)	18.1 (+/- 14.8)										
	Complications of	luring ICU Stay											
Cardiac dysrhythmia – n (%)	11 (10.4%)	17 (15.4%)	16 (17.0%)	0.35									
Septic shock – n (%)	19 (17.9%)	34 (30.9%)	26 (27.7%)	0.08									
Cardio-respiratory arrest – n (%)	5 (4.7%)	6 (5.4%)	7 (7.4%)	0.7									
Nosocomial pneumonia – n (%)	3 (3.6%)	7 (8.6%)	4 (5.4%)	0.81									
Reasons for intubation													
Respiratory failure – n (%)	29 (70.7%)	43 (71.7%)	34 (75.5%)	0.41									
Circulatory failure – n (%)	5 (12.1%)	5 (8.3%)	3 (6.7%)	0.6									
Neurologic failure – n (%)	7 (17.1%)	12 (20%)	8 (17.8%)	0.96									
	Grade of dyspnoea af	ter 1 hr of treatment											
				<0.001									
Marked improvement – n (%)	19 (22.1%)	13 (4.3%)	5 (6.8%)										
Slight improvement – n (%)	46 (53.5%)	40 (44.0%)	26 (35.1%)										
No change – n (%)	18 (20.9%)	23 (25.5%)	33(44.6%)										
Slight deterioration – n (%)	3 (3.5%)	8 (8.8%)	9 (12.2%)										
Marked deterioration – n (%)	0 (0%)	7 (7.7%)	1 (1.3%)										
Respiratory patient - discomfort at	38 +/-31	46 +/-30	44 +/-29	0.2									
inclusion - mm (SD)			,										
Respiratory patient - discomfort at 1hr of treatment - mm (SD)	29 +/-26	43+/-29	40+/-29	<0.01									
	Oth	er											
Ventilator free days at day 28 - mean (SD)	24 (+/-8)	19 (+/-12)	22 (+/-19)	<0.02									
	LOS = Length of stay; S	D = standard deviation											

Frat, J.-P. et al. (2015) "High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure, NEJM,

JAMA | Original Investigation

Effect of High-Flow Nasal Cannula Oxygen vs Standard Oxygen Therapy on Mortality in Patients With Respiratory Failure Due to COVID-19 The SOHO-COVID Randomized Clinical Trial

Frat, J.-P. et al. (2022) " The SOHO-COVID randomized clinical trial," JAMA: t 328(12), p. 1212. doi: 10.1001/jama.2022.15613

Table 2. Primary and Secondary Outcomes											
Outcomes	High-flow oxygen (n = 357)	Standard oxygen (n = 354)	Absolute difference (95%CI)	Unadjusted odds ratio (95%CI)	P value for unadjusted odds ratio	Adjusted odds ratio ^{a,b} (95% CI)	P value for adjusted odds ratio				
Primary outcome											
Mortality at day 28, No. (%)	36 (10)	40 (11)	-1.2 (-5.8 to 3.4)	0.88 (0.55 to 1.42)	.60	0.78 (0.48 to 1.28)	.32				
Secondary outcomes											
Intubation at day 28, No. (%)	160 (45)	186 (53)	-7.7 (-14.9 to -0.4)	0.73 (0.55 to 0.99)	.04	0.65 (0.48 to 0.89)	.007				
ICU mortality, No. (%)	42 (12)	52 (15)	-2.9 (-7.9 to 2.1)	0.77 (0.50 to 1.20)	.25	0.68 (0.42 to 1.05)	.08				
Hospital mortality, No. (%)	46 (13)	53 (15)	-2.1 (-7.2 to 3.0)	0.84 (0.55 to 1.29)	.42	0.74 (0.48 to 1.15)	.18				
Mortality at day 90, No. (%)	<mark>48 (13)</mark>	53 (15)	-1.5 (-6.7 to 3.6)	0.88 (0.58 to 1.34)	.56	0.79 (0.51 to 1.23)	.30				
Ventilator-free days at day 28 median (IQR), d ^{c,d}	28 (11 to 28)	23 (10 to 28)	0.5 (-7.7 to 9.1) ^b		.07						

Frat, J.-P. et al. (2022) " The SOHO-COVID randomized clinical trial," JAMA: t 328(12), p. 1212. doi: 10.1001/jama.2022.15613

Figure 2. Kaplan-Meier Plot of the Cumulative Incidence of Mortality (Primary Outcome) and Intubation (Secondary Outcome) From Randomization to Day 28

The median observation time was 28 days (IQR, 28-28) in all treatment groups.

Frat, J.-P. et al. (2022) " The SOHO-COVID randomized clinical trial," JAMA: t 328(12), p. 1212. doi: 10.1001/jama.2022.15613

Role of HFNC

- To be used instead of COT can lower the need for intubation
- Need data to suggest mortality benefit

ESICM Guidelines on ARDS

- Recommendation Non MV patients with AHRF not due to cardiogenic pulmonary edema or AECOPD receive HFNO compare to COT **
- Unable to make recommendation for or against HFNO or COT to reduce mortality
- This recommendations applies to AHRF from COVID 19 *

2. NIV

A concern regarding the use of CPAP/NIV is the potential delay in intubation, which might lead to worse outcomes, including increased mortality Moreover, high transpulmonary pressures can be observed during NIV potentially leading to P-SILI, analogous to the VILI lung injury In the LUNG SAFE study NIV was used in 15 % of ARDS patients, NIV use was associated with increased mortality, especially in patients with P/F <150 – 36% vs 25% (p=0.03)

Effect of Noninvasive Respiratory Strategies on Intubation or Mortality Among Patients With Acute Hypoxemic Respiratory Failure and COVID-19: The RECOVERY-RS Randomized Clinical Trial

- The objective was to determine whether either CPAP or HFNO, compared with COT, improves clinical outcomes in COVID-19–related AHRF
- N = 1273, CPAP (n = 380), HFNO (n = 418), or COT (n = 475)
- Included covid 19 patients with AHRF with clinical status Fio2 ≥40%, spo2
 ≤94%
- The primary outcome was a composite of tracheal intubation or mortality within 30 days

Table 3. Primary and Secondary Outcomes in the Continuous Positive Airway Pressure Group vs the Conventional Oxygen Therapy Group

	Continuous positivo	Conventional		Unadjusted		Adjusted		
	airway pressure	oxygen therapy	Difference (95% CI) ^a	Effect estimate (95% CI)	P value ^b	Effect estimate (95% CI) ^c	P value ¹	
Primary composite outcome	-22/412	1007. 0.10 ¹						
Tracheal intubation or mortality within 30 d, No./total (%)	137/377 (36.3)	<mark>158/356 (44.4</mark>)	AD, -8 (-15 to -1)	OR, 0.72 (0.53 to 0.96)	.03	OR, 0.68 (0.48 to 0.94)	.02	
Secondary outcomes								
Individual components of the primary composite outcome, No./total (%)								
Tracheal intubation within 30 d	126/377 (33.4)	147/356 (41.3)	AD, -8 (-15 to -1)	OR, 0.71 (0.53 to 0.96)	.03	OR, 0.67 (0.48 to 0.93)	.02	
Mortality within 30 d	63/378 (16.7)	69/359 (19.2)	AD, -3 (-8 to 3)	OR, 0.84 (0.58 to 1.23)	.37	OR, 0.91 (0.59 to 1.39)	.65	
Tracheal intubation rate, No./total (%) ^d	126/377 (33.4)	147/356 (41.3)	AD, -8 (-15 to -1)	OR, 0.71 (0.53 to 0.96)	.03	OR, 0.67 (0.48 to 0.93)	.02	
Admission to intensive care unit, No./total (%)	204/368 (55.4)	219/348 (62.9)	AD, -7 (-15 to -3)	OR, 0.73 (0.54 to 0.99)	.04	OR, 0.69 (0.49 to 0.96)	.03	
Duration of invasive mechanical ventilation after tracheal intubation, median (IQR), de	(n = 126) 15.0 (8.0 to 25.0)	(n = 147) 11.0 (6.0 to 23.0)	MDND, 4.0 (0.04 to 8.0)	HR, 0.82 (0.61 to 1.09)	.17	HR, 0.83 (0.61 to 1.12)	.22	
Time to event, median (IQR), d								
Tracheal intubation ^f	(n = 126) 2.0 (1.0 to 4.0)	(n = 147) 1.0 (0 to 4.0)	MDND, 1.0 (0.2 to 1.8)	HR, 0.77 (0.61 to 0.98)	.03	HR, 0.71 (0.56 to 0.91)	.01	
Death ^g	(n = 74) 17.0 (11.0 to 26.0)	(n = 79) 17.0 (11.0 to 24.0)	MDND, 0 (-3.8 to 3.8)	HR, 0.86 (0.61 to 1.21)	.38	HR, 0.93 (0.65 to 1.33)	.69	
Mortality, No./total (%)								
During intensive care unit stay	62/204 (30.4)	66/219 (30.1)	AD, 3 (-9 to 9)	OR, 1.01 (0.67 to 1.53)	.95	OR, 1.10 (0.69 to 1.75)	.68	
During hospital stay	72/364 (19.8)	78/346 (22.5)	AD, -3 (-9 to 3)	OR, 0.85 (0.59 to 1.22)	.37	OR, 0.92 (0.62 to 1.38)	.69	
Length of stay, mean (SD), d								
Intensive care unit ^h	(n = 368) 9.5 (15.6)	(n = 348) 9.6 (13.6)	MD,-0.08 (-2.23 to 2.07)		.94	MD, -0.16 (-2.30 to 1.99)	.88	
Hospital ⁱ	(n = 364) 16.4 (17.5)	(n = 346) 17.3 (18.1)	MD,-0.96 (-3.59 to 1.67)		.47	MD, -1.14 (-3.84 to 1.55)	.41	

Table 4. Primary and Secondary Outcomes in t	the High-Flow Nasal Oxyge	n Group vs the Conventional Ox	ygen Therapy Group					
				Unadjusted		Adjusted		
	High-flow nasal oxygen	Conventional oxygen therapy	Difference (95% CI) ^a	Effect estimate (95% CI)	P value ^b	Effect estimate (95% CI) ^c	P value ^b	
Primary composite outcome	intelline destation	558 (CDA - 558 (SDA	200 - 200 H					
Tracheal intubation or mortality within 30 d, No./total (%)	184/415 (44.3)	166/368 (45.1)	AD, -1 (-8 to 6)	OR, 0.97 (0.73 to 1.29)	.83	OR, 0.94 (0.68 to 1.29)	.69	
Secondary outcomes								
Individual components of the primary composite outcome, No./total (%)								
Tracheal intubation within 30 d	170/415 (41.0)	153/368 (41.6)	AD, -1 (-8 to 6)	OR, 0.98 (0.73 to 1.30)	.86	OR, 0.94 (0.69 to 1.30)	.72	
Mortality within 30 d	78/416 (18.8)	74/370 (20.0)	AD, -1 (-7 to 4)	OR, 0.92 (0.65 to 1.32)	.66	OR, 0.97 (0.65 to 1.46)	.90	
Tracheal intubation rate, No./total (%) ^d	169/415 (40.7)	154/368 (41.8)	AD, -1 (-8 to 6)	OR, 0.95 (0.72 to 1.27)	.75	OR, 0.92 (0.67 to 1.27)	.62	
Admission to intensive care unit, No./total (%)	252/408 (61.8)	214/361 (59.3)	AD, 2 (-4 to 9)	OR, 1.11 (0.83 to 1.48)	.48	OR, 1.04 (0.75 to 1.45)	.81	
Duration of invasive mechanical ventilation after tracheal intubation, median (IQR), d ^e	(n = 169) 15.0 (8.0 to 26.0)	(n = 154) 12.0 (6.0 to 23.0)	MDND, 3.0 (-1.0 to 7.0)	HR, 0.92 (0.71 to 1.20)	.56	HR, 1.01 (0.76 to 1.34)	.96	
Time to event, median (IQR), d								
Tracheal intubation ^f	(n = 169) 1.0 (0 to 3.0)	(n = 154) 1.0 (0 to 3.0)	MDND, 0 (-0.4 to 0.4)	HR, 0.98 (0.78 to 1.21)	.82	HR, 0.92 (0.74 to 1.16)	.49	
Death ⁹	(n = 88) 16.5 (9.0 to 22.5)	(n = 85) 17.0 (11.0 to 24.0)	MDND, 0 (-3.4 to 3.4)	HR, 0.94 (0.68 to 1.29)	.69	HR, 0.94 (0.67 to 1.32)	.74	
Mortality, No./total (%)								
During intensive care unit stay	72/251 (28.7)	65/214 (30.4)	AD, -2 (-10 to 7)	OR, 0.92 (0.62 to 1.38)	.69	OR, 0.98 (0.63 to 1.54)	.94	
During hospital stay	86/405 (21.2)	80/359 (22.3)	AD, -1 (-7 to 5)	OR, 0.94 (0.67 to 1.33)	.73	OR, 0.99 (0.67 to 1.47)	.97	
Length of stay, mean (SD), d								
Intensive care unit ^h	(n = 407) 10.5 (15.6)	(n = 361) 9.6 (14.1)	MD, 0.95 (-1.16 to 3.07)		.38	MD, 0.47 (-1.57 to 2.50)	.65	
Hospital ⁱ	(n = 405) 18.3 (20.0)	(n = 359) 17.1 (18.0)	MD, 1.21 (-1.50 to 3.93)		.38	MD, 0.33 (-2.28 to 2.94)	.80	

Noninvasive oxygen strategies in adult patients with AHRF : A systematic review and meta-analysis (oct 2023)

• 36 trials – 7046 patients - incorporated evidence from COVID 19 trials also

- Helmet CPAP probably reduces mortality compared with standard oxygen therapy (SOT) (231 fewer deaths per 1,000; 95% CI, 126-273 fewer)
- HFNC probably reduces the need for invasive mechanical ventilation(103.5 fewer events per 1,000; 95% CI, 40.5-157.5 fewer)
- All noninvasive oxygenation strategies may reduce the duration of hospitalization as compared with SOT (low certainty)
- Helmet bilevel ventilation (4.84 days fewer) and helmet CPAP (1.74 days fewer) may reduce the duration of ICU stay as compared with SOT

	Benefit Ou	utcomes	Efficacy Outcomes					
	[Risk difference pe	er 1,000 (95% CI)]	[Mean Difference (95% CI)]					
Oxygen Strategy	Death	IMV	Duration of Hospitalization	Duration of ICU	Ventilator-Free Days			
Standard oxygen therapy	300 per 1,000	450 per 1,000						
HFNC	-63	-103.5	-1.35	-0.88	2.53			
	(-102 to -15) ^{a,b}	(-157.5 to -40.5) ^a	(-2.42 to -0.28) ^{a,c}	(-1.92 to 0.16) ^{a,b}	(-0.08 to 5.15) ^{a,c}			
H CPAP	-231 (-273 to -126)ª	-306 (-373.5 to -189) ^{a,d}	-1.42 (-3.77 to 0.93) ^{a,c}	-1.74 (-4.49 to 1.01) ^{a,c}				
H bilevel	–129	-351	-6.17	-4.84	8.51			
	(–195 to –24) ^{a,d}	(-400.5 to -256.5) ^{a,d}	(-10.72 to -1.63 ^{a,b}	(-7.36 to -2.33) ^{a,d}	(2.96 to 14.07) ^{a,c}			
FM bilevel	-36	-99	-1.07	-0.42	-0.82			
	(-84 to 24) ^{a,b}	(-157.5 to -27)ª	(-2.60 to 0.66) ^{a,c}	(-1.56 to 0.73) ^{a,c}	(-4.53 to 2.9) ^{a,c}			
FM CPAP	–9	-76.5	-1.00	-0.68	1.33			
	(–81 to 84) ^{a,c}	(-166.5 to 36) ^{a,e}	(-2.62 to 0.66) ^{a,c}	(-2.3 to 0.94) ^{a,c}	(–3.55 to 6.21) ^{a,c}			

Tyler Pitre et al Chest Journals 2023

Tyler Pitre et al Chest Journals 2023

Effect of Helmet Noninvasive Ventilation vs High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure: The HENIVOT Randomized Clinical Trial

- Patients with mod to severe hypoxemic RF due to covid 19 (P:F <200)
- N = 109
- CPAP with helmet NIV (PEEP/PS 10-12 cm H2o) for atleast 48 hrs
- Primary outcome number of days free of respiratory support within 28 days after enrollment in Helmet vs HFNC (20 vs 18)
- The rate of ET intubation was significantly lower in the helmet group 30% vs 51% (P= 0.03)
- Median number of days free of invasive MV within 28 days was significantly higher in the helmet group – 28 vs 25 (0.04)
- Hospital mortality similar

- Role of NIV in ARDS non-COVID-19 still controversial
- Helmet CPAP showed promising results
- No mortality benefit

ESICM Guidelines on ARDS 2023

- CPAP/NIV can be considered instead of HFNO for the treatment of AHRF due to COVID-19 to reduce the risk of intubation weak recommendation
- No recommendation can be made for whether CPAP/NIV can decrease mortality compared to HFNO in COVID-19

3. Tidal volume

Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome

• 2 groups -> Vt - 12 ml/kg PBW, plateu pressure ≤ 50

Vt – 6 ml/kg PBW, plateu pressure \leq 30

- First primary outcome was death before a patient was discharged home and was breathing without assistance
- Second primary outcome was the number of days without ventilator use from day 1 to day 28
- 861 patients

- Mortality was lower in lower Vt than in the group treated with traditional Vt (31.0 percent vs. 39.8 percent, P=0.007)
- The number of days without ventilator use during the first 28 days was greater in lower Vt group (P=0.007)

Recommendation

- It is recommended to use low tidal volume ventilation strategies (i.e., 4–8 ml/kg PBW), compared to larger tidal volumes to reduce mortality in patients with ARDS***
- It also applies to COVID 19

4 & 5 - PEEP and recruitment manoeuvres

- Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome
- 549 patients with acute lung injury and ARDS
- Receive MV with either lower or higher PEEP levels
- Predetermined combinations of PEEP and fio2

Allowable combinations of PEEP a	nd FiO2†														
Lower-PEEP group															
FiO2	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.8	0.9	0.9	0.9	1.0	
PEEP	5	5	8	8	10	10	10	12	14	14	14	16	18	18-24	
Higher-PEEP group (before pro	otocol change	ed to u	se high	ner leve	ls of P	EEP)									
FiO2	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5-0.8	0.8	0.9	1.0		
PEEP	5	8	10	12	14	14	16	16	18	20	22	22	22–24		
Higher-PEEP group (after prot	ocol changed	to use	e highe	r levels	of PEI	EP)									
FiO2	0.3	0.3	0.4	0.4	0.5	0.5	0.5-0.8	0.8	0.9	1.0					
PEEP	12	14	14	16	16	18	20	22	22	22–24					

Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. (2004). NEJM, 351(4)
- The rates of death before hospital discharge were 24.9 percent and 27.5, lower peep vs higher peep respectively (P=0.48)
- From day 1 to day 28, breathing was unassisted for a mean of 14.5±10.4 days in the lower-PEEP group and 13.8±10.6 days in the higher-PEEP group (P=0.50)

Recommendations ESICM

We are **unable to make a recommendation** for or against routine PEEP titration with a higher PEEP/FiO₂ strategy versus a lower PEEP/FiO₂ strategy to reduce mortality in patients with ARDS. *No recommendation; high level of evidence of no effect.*

This statement applies also to ARDS from COVID-19. No recommendation; moderate level of evidence of no effect for indirectness.

Association of Positive End-Expiratory Pressure and Lung Recruitment Selection Strategies with Mortality in Acute Respiratory Distress Syndrome: A Systematic Review and Network Meta-analysis

(b]ose Dianti <u>1,2</u>, **(b**]Manuel Tisminetzky <u>1,2</u>, Bruno L. Ferreyro <u>1,2,3</u>, **(b**]Marina Englesakis <u>4</u>, **(b**]Lorenzo Del Sorbo <u>1,2,5</u>, **(b**]Sachin Sud <u>6</u>, Daniel Talmor <u>7</u>, Lorenzo Ball <u>8</u>, Maureen Meade <u>9,10</u>, **(b**]Carol Hodgson <u>11,12</u>, **(b**]eremy R. Beitler <u>13</u>, Show All...

- Objectives: To compare the relative effects of different PEEP selection strategies on mortality in adults with <u>moderate to severe ARDS</u>
- 18 randomized trials (2004 2020)
- 4,646 participants

Dianti, et al. (2022). Association of positive end-expiratory pressure and lung recruitment selection strategies with mortality in acute respiratory distress syndrome. AJRCCM, 205(11), 1300–1310.

Dianti, et al. (2022). Association of positive end-expiratory pressure and lung recruitment selection strategies with mortality in acute respiratory distress syndrome. AJRCCM, 205(11), 1300–1310.

- Compared with a lower PEEP strategy, the posterior probability of mortality benefit from a higher PEEP without LRM strategy was 99% (risk ratio [RR], 0.77; 95% [Crl], 0.60–0.96
- The posterior probability of benefit of the esophageal pressure–guided strategy was 87% (RR, 0.77; 95% CrI, 0.48–1.22, moderate certainty)

- The posterior probability of increased mortality from a higher PEEP with prolonged LRM strategy was 77% (RR, 1.06; 95% CrI, 0.89–1.22, low certainty)
- Compared with a higher PEEP without LRM strategy, the posterior probability of increased mortality from a higher PEEP with prolonged LRM strategy was 99% (RR, 1.37; 95% CrI, 1.04–1.81, moderate certainty)
- In patients with moderate to severe ARDS, higher PEEP without LRM is associated with a lower risk of death than lower PEEP. A higher PEEP with prolonged LRM strategy is associated with increased risk of death when compared with higher PEEP without LRM

Dianti, et al. (2022). Association of positive end-expiratory pressure and lung recruitment selection strategies with mortality in acute respiratory distress syndrome. AJRCCM, 205(11), 1300–1310.

	Direct com	parisons		Network Risk Ratio (95% Crl)	Absolute risk difference (95% Crl)	Poste	erior proba	abilities	Certainty
	Patients	Trials			2008 (2)	RR < 1.0	RR > 1.0	ARR > 1%	5.
vs. Lower PEEP strategy									
Pes-guided	49	1		0.77 (0.48, 1.22)	-0.09 (-0.21, 0.09)	0.87	0.13	0.84	Moderate
Higher PEEP without LRM	1,162	4		0.77 (0.60, 0.96)	-0.09 (-0.16, -0.01)	0.99	0.01	0.98	High
Higher PEEP with brief LRM	1,335	4		0.83 (0.67, 1.02)	-0.07 (-0.13, 0.01)	0.96	0.04	0.94	Moderate
Higher PEEP with prolonged LRM	1,900	8	-	1.06 (0.89, 1.22)	0.02 (-0.04, 0.09)	0.23	0.77	0.15	Low
vs. Higher PEEP without LRM strategy									
Pes-guided	200	1		1.00 (0.65, 1.54)	0.00 (-0.11, 0.16)	0.50	0.50	0.44	Moderate
Higher PEEP with brief LRM	0	0		1.07 (0.79, 1.48)	0.02 (-0.08, 0.12)	0.32	0.68	0.25	Low
Higher PEEP with prolonged LRM	0	0		— 1.37 (1.04, 1.81)	0.11 (0.01, 0.21)	0.01	0.99	0.01	Moderate
Additional comparisons									
Higher PEEP with prolonged vs. brief LRM	0	0	+	- 1.27 (0.97, 1.64)	0.09 (-0.01, 0.18)	0.04	0.96	0.03	Low
Pes-guided vs. Higher PEEP with brief LRM	0	0		0.93 (0.55, 1.54)	-0.02 (-0.16, 0.17)	0.61	0.39	0.57	Low
Pes-guided vs. Higher PEEP with prolonged LRM	И 0	0	•_	0.73 (0.45, 1.19)	-0.11 (-0.25, 0.08)	0.90	0.10	0.88	Low
		(.4 1.0	2.0					
		Favo	s treatment Fa	vors comparator					
		-							

Network Risk Ratio (95% Crl)

Lung ultrasound- versus FiO₂-guided PEEP in ARDS patients

Mai S. Salem, Hesham S. Eltatawy, Ahmed A. Abdelhafez and Salah El-din I. Alsherif Department of Anesthesia, Surgical Intensive Care and Pain Medicine, Tanta University Hospitals, Tanta, Egypt

- RCT 2020
- N = 60
- LUS-determined PEEP (group I) and FiO2-determined PEEP (group II)
- LUS-determined PEEP was based on the LUS aeration score
- Primary outcome was P/F ratio
- Secondary outcomes were; static compliance, 28-day mortality, duration of MV, and length of ICU stay

- P/F ratio was 266 ± 44.5 in group I, 233 ± 53.9 in group II (P<0.001)
- Static compliance was 54.8 ± 6.6 in group I, 45.9 ± 3.8 in group II(P<0.001)
- IQR of duration of MV was 4–6 with a median value of 5 in group l, 6–11.7 with a median value of 7.5 in group l
- 28-day mortality was 6.7% in group I, 30% in group II

SOFA score			
Median	1.5	3	< 0.001
IQR	1-2	2-4	
Duration of MV(days)			
Median	8	12	< 0.001
IQR	4-6	6-11.7	
Length of ICU(days)			
Median	8	10	< 0.001
IQR	6-16	0-12	
Organ dysfunction			
Free days			
Median	18	10	< 0.001
IQR	16-19	0-12	
Ventilator free days			
Median	23	20	< 0.001
IQR	22-24	0-22	

Higher vs Lower Positive End-Expiratory Pressure in Patients With Acute Lung Injury and Acute Respiratory Distress Syndrome Systematic Review and Meta-analysis

- To evaluate role of higher vs lower PEEP in adults with acute lung injury or ARDS who are receiving low Vt ventilation
- Randomized trials eligible for this review compared higher with lower levels of PEEP (min difference 3)
- Data from 2299 individual patients in 3 trials (LOVS, EXPRESS, ALVEOLI) were analyzed
- In ALVEOLI and LOVS trial PEEP levels were titrated to oxygenation using PEEP:FIO2 charts

		Trial	
Characteristic	ALVEOLI, ⁸ 2004	LOVS, ⁹ 2008	EXPRESS, ¹⁰ 2008
Inclusion criteria	Acute lung injury with $PaO_2:FIO_2 \leq 300^a$	Acute lung injury with PaO_2 : $FIO_2 \le 250^a$	Acute lung injury with PaO₂:FIO₂ ≤300 ^a
Recruitment period	1999-2002	2000-2006	2002-2005
Recruiting hospitals (country)	23 (United States)	30 (Canada, Australia, Saudi Arabia)	37 (France)
Patients randomized to higher vs lower PEEP	276 vs 273	476 vs 509 ^b	385 vs 383 ^c
Validity Concealed allocation	Yes	Yes	Yes
Follow-up for primary outcome, %	100	100	100
Blinded data analysis	Yes	Yes	Yes
Stopped early	Stopped for perceived futility	No	Stopped for perceived futility
Experimental intervention	Higher PEEP according to FIO2 chart, recruit- ment maneuvers for first 80 patients	Higher PEEP according to FiO ₂ chart, re- quired plateau pressures ≤40 cm H ₂ O, recruitment maneuvers	PEEP as high as possible without increasing the maximum inspiratory plateau pres- sure >28-30 cm H ₂ O
Control intervention	Conventional PEEP according to FiO₂ chart, required plateau pressures ≤30 cm H₂O, no recruitment maneuvers	Conventional PEEP according to FiO₂ chart, required plateau pressures ≤30 cm H₂O no recruitment maneuvers	Conventional PEEP (5-9 cm H ₂ O) to meet oxygenation goals
Ventilator procedures	Target tidal volumes of 6 mL/kg of predicted min, adjusted to achieve arterial pH 7.30- pressure control); oxygenation goals: Pac	body weight; plateau pressures \leq 30 cm H ₂ O (-7.45; ventilator mode: volume-assist control (e D ₂ 55-80 mm Hg and SPO ₂ 88%-95%; standar	with exception as above); respiratory rate ≤35/ except higher PEEP group in LOVS required dized weaning)

	14	All Pa	tients			With	ARDS			Withou	ut ARDS	
	No	. (%)		8	No	. (%)	0	1	No	. (%)	ĸ	
Outcomes	Higher PEEP (n = 1136)	Lower PEEP (n = 1163)	Adjusted RR (95% Cl) ^a	P Value	Higher PEEP (n = 951)	Lower PEEP (n = 941)	Adjusted RR (95% Cl) ^a	P Value	Higher PEEP (n = 184)	Lower PEEP (n = 220)	Adjusted RR (95% Cl) ^a	P Value
Death in hospital	374 (32.9)	409 (35.2)	0.94 (0.86 to 1.04)	.25	324 (34.1)	368 (39.1)	0.90 (0.81 to 1.00)	.049	50 (27.2)	44 (19.4)	1.37 (0.98 to 1.92)	.07
Death in ICU ^b	324 (28.5)	381 (32.8)	0.87 (0.78 to 0.97)	.01	288 (30.3)	344 (36.6)	0.85 (0.76 to 0.95)	.001	<mark>36 (19.6)</mark>	37 (16.8)	1.07 (0.74 to 1.55)	.71
Pneumothorax between day 1 and day 28 ^c	87 (7.7)	75 (6.5)	1.19 (0.89 to 1.60)	.24	80 (8.4)	64 (6.8)	1.25 (0.94 to 1.68)	.13	7 (3.8)	11 (5.0)	0.72 (0.37 to 1.39)	.33
Death after pneumothorax ⁶	43 (3.8)	40 (3.5)	1.11 (0.73 to 1.69)	.63	41 (4.3)	35 (3.7)	1.20 (0.79 to 1.81)	.39	2 (1.1)	5 (2.3)	0.44 (0.08 to 2.35) ^g	.34
Days with unassisted breathing between day 1 and day 28, median (IQR) ^d	13 (0 to 22	2) 11 (0 to 21)	0.64 (-0.12 to 1.39) ^e	.10	12 (0-21)	7 (0-20)	1.22 (0.39 to 2.05) ^e	.004	<mark>1</mark> 7 (0-23)	19 (5.5-24)	−1.74 (−3.60 to 0.11) ^e	.07
Total use of rescue therapies ^f	138 (12.2)	216 (18.6)	0.64 (0.54 to 0.75)	<.001	130 (13.7)	200 (21.3)	0.63 (0.53 to 0.75)	<.001	8 (4.4)	16 (7.3)	0.60 (0.25 to 1.43) ^g	.25
Death after rescue therapy ¹	85 (7.5)	132 (11.3)	0.65 (0.52 to 0.80)	<.001	82 (8.6)	124 (13.2)	0.66 (0.52 to 0.82)	<. <mark>001</mark>	3 (1.6)	8 (3.6)	0.37 (0.10 to 1.46) ^g	.15
Use of vasopressors	722 (63.6)	759 (65.3)	0.93 (0.75 to 1.14) ^g	.49	627 (65.9)	647 (68.8)	0.90 (0.72 to 1.13) ^g	.37	95 (51.6)	111 (50.5)	0.92 (0.56 to 1.50) ^g	.72

 Table 4. Clinical Outcomes in All Patients and Stratified by Presence of ARDS at Baseline

< 10-12 cmH₂O

Advanced Methods for Individualized PEEP Titration

John Groteberg et al critical care

Electrical Impedance Tomography(EIT) in ARDS

- EIT is a non invasive bedside radiation free imaging tool
- Images generated by EIT can help in real time monitoring of pulmonary ventilation

Brief small alternating currents Delivered via electrodes attached to band applied to chest Voltages read by electrodes depends upon resistivity/impedance of lung tissue At end of one breathing cycle Voltages recorded are used to generate a pixel image based on prespecified reconstruction algorithm

Bachmann et al. Critical Care (2018)

Role Of EIT In ARDS

- ARDS is a heterogenous condition with regional difference in ventilation
- Ventilation map can help detect these regional difference
- EIT plethysmography can help assess changes in these areas during recruitment manoeuvre and aid in PEEP titration
- EIT derived changes in lung volume and images have been found to correlate with lung mechanic indices and CT images

Lowhagen K, et al. Acta Anaesthesiol Scand. 2011;55:165–74

Lung Recruitment Assessed by Electrical Impedance Tomography (RECRUIT): A Multicenter Study of COVID-19 Acute Respiratory Distress Syndrome

- Rationale: Defining lung recruitability is needed for safe PEEP selection in mechanically ventilated patients
- **Objectives**: To describe the range of recruitability using EIT, effects of PEEP on recruitability, respiratory mechanics and gas exchange, and a method to select optimal EIT-based PEEP
- Included 108 patients of COVID 19 with mod to severe ards
- EIT-based optimal PEEP was defined as the crossing point of the overdistension and collapse curves during a decremental PEEP trial

PEEP x group interaction effect: collapse, P < 0.001; overdistention, P < 0.001

- Patients were classified as low, medium, or high recruiters Recruitability varied from 0.3% to 66.9% and was unrelated to ards severity
- Median EIT-based PEEP differed between groups: 10 versus 13.5 versus 15.5 cm H_2O for low versus medium versus high recruitability (P < 0.05)

EP VENT 1 & 2

STUDY	EP VENT 1	EP VENT 2
Туре	Single centre Pilot study	Multicentre phase 2 RCT
Population	ALI/ARDS(AECC) N=61	Mod Sev ARDS (P/F<200 Berlin definition) N=202
Intervention	PEEP guided by Pes vs Empirical PEEP FiO2 table PTPinsp <25	PEEP guided by Pes vs High PEEP FiO2 table PTPinsp <20 PTPexp >0
Outcome	Primary : Improvement in P/F	Primary : No. of Deaths at day 28 Days free from MV at day 28
	Secondary : Days free from MV Deaths at day 28 LOS in ICU	Secondary : 60 d mortality 180 d mortality LOS in hospital and ICU

Results	EP VENT 1	EP VENT 2
28 d Mortality	17% v/s 39% p=0.055	32.4% vs 30.6% p=0.88
Ventilator Free days to day 28	11.5d vs 7d p=0.5	15.5d vs 17.5d p=0.93
Hospital LOS to day 28	-	16d vs 15d p=0.58
ICU LOS to day 28	15.5d vs 13d p=0.16	10d vs 9.5d p=0.25
Improvement in P/F	88mmHg in Intervention arm	N/A

Routine use of Pes guided PEEP titration offered no benefit compared to conventional PEEP FiO2 titration Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial

- Randomized patients (n=400)to either standard LTV or a personalized treatment strategy - Based on radiological sub-phenotype (focal or diffuse pathology on cxr)
- Patients with focal ARDS received a Vt of 8 mL/kg, low PEEP, and early prone position if needed

- Patients with non-focal ARDS received a tidal volume of 6 mL/kg, along with recruitment maneuvers and high PEEP
- No difference in 90-day mortality (hazard ratio [HR] 1.01; 95% CI 0.61–1.66; p=0.98)
- Misclassification of patients as having focal or non-focal ARDS by the investigators was observed in 85 (21%) of 400 patients
- Results were "positive" when misclassified patients were excluded(p0.0012)

APRV(Airway Pressure Release Ventilation)

- Delivery of continuous positive airway pressure with a brief release phase
- Hypothesized to improve gas exchange by alveolar recruitment

Study	Population	Intervention	Outcome
Putensen et al.	N=30	APRV	No. of ventilator days 15d vs 21d
2001	Trauma rel. ARDS	PCV	ICU stay 23d vs 30d
Maxwell et al.	N= 63	APRV	No. of ventilator days 15d vs 21d
2016	Trauma rel. ARDS	LTV	Mortality 6.45% vs 6.25%
Zhou et al.2017	Single centre N=138 (~70% Extrapulmonary cause)	APRV LTV	Ventilator free days 19d vs 2d Length of ICU stay 15d vs 20d Mortality 23.9% vs 37.3%

- High PEEP without LRM to be used
- High PEEP with prolonged LRM To be avoided
- High PEEP with brief LRM ?insuff data ?mortality benefit
- Personalized PEEP strategy Pes, EIT, LUS etc

ATS guidelines on ARDS 2024

- We suggest using higher PEEP without lung recruitment maneuvers (LRMs) as opposed to lower PEEP in patients with moderate to severe ARDS (conditional recommendation, low to moderate certainty)
- We recommend against using prolonged LRMs in patients with moderate to severe ARDS (strong recommendation, moderate certainty)

7. Prone positioning

PROSEVA Trial

Study	Population	Intervention	Outcome
Multicentre RCT	N = 466 P:F <150, Fio2 >60%, PEEP≥ , MV <36 hrs	PPV (Atleast 16 hrs) Vs Supine LTV	-28-day mortality 16% vs 32 % -HR for death in prone grp - 0.39 -Unadjusted 90 day mortality - 23.6 % vs 41%(HR - 0.44)

• The criteria for stopping prone treatment - any of the following:

Improvement in oxygenation (defined as a PaO₂:FiO₂ ratio of ≥150 mm Hg, with

- a PEEP of ≤ 10 cm of water and an FiO₂ of ≤ 0.6 ; in the prone group
- had to be met in the supine position at least 4 hours after the end of the last prone session
- Patients in the supine group could not be crossed over to the prone group except as a rescue measure in case of life-threatening hypoxemia

Outcome	Supine Group (N=229)	Prone Group (N=237)	Hazard Ratio or Odds Ratio with the Prone Position (95% CI)	P Value
Mortality — no. (% [95% CI])				
At day 28				
Not adjusted	75 (32.8 [26.4-38.6])	38 (16.0 [11.3-20.7])	0.39 (0.250.63)	<0.001
Adjusted for SOFA score†			0.42 (0.26-0.66)	<0.001
At day 90				
Not adjusted	94 (41.0 [34.6-47.4])	56 (23.6 [18.2-29.0])	0.44 (0.29-0.67)	<0.001
Adjusted for SOFA score*			0.48 (0.32-0.72)	< 0.001
Successful extubation at day 90 — no./total no. (% [95% CI])	145/223 (65.0 [58.7-71.3])	186/231 (80.5 [75.4–85.6])	0.45 (0.29-0.70)	<0.001
Time to successful extubation, assessed at day 90 — days				
Survivors	19±21	17±16		0.87
Nonsurvivors	16±11	18±14		
Length of ICU stay, assessed at day 90 — days				
Survivors	26±27	24±22		0.05
Nonsurvivors	18±15	21±20		
Ventilation-free days				
At day 28	10±10	14±9		< 0.001
At day 90	43±38	57±34		<0.00
Pneumothorax — no. (% [95% CI])	13 (5.7 [3.9-7.5])	15 (6.3 [4.9-7.7])	0.89 (0.39-2.02)	0.85
Noninvasive ventilation — no./ total no. (% [95% CI])				
At day 28	10/212 (4.7 [1.9-7.5])	4/228 (1.8 [0.1-3.5])	0.36 (0.07-3.50)	0.11
At day 90	3/206 (1.5 [0.2-3.2])	4/225 (1.8 [0.1-3.5])	1.22 (0.23-6.97)	1.00
Tracheotomy — no./total no. (% [95% CI])				
At day 28	12/229 (5.2 [2.3-8.1])	9/237 (3.8 [1.4-6.0])	0.71 (0.27-1.86)	0.37
At day 90	18/223 (8.1 (4.5-11.7))	15/235 (6.4 [3.3-9.5])	0.78 (0.36-1.67)	0.59

Claude Guérin et al NEJM 2013

- Guidelines recommend using prone position as compared to supine position for patients with moderate-severe ARDS (defined as PaO2/FiO2 <150 and PEEP > 5 despite optimization of ventilatory setting) to reduce mortality***
- This recommendation applies also to ARDS from COVID-19** suggest awake prone positioning for non-intubated patients to reduce intubation

Awake prone positioning for COVID-19 acute hypoxemic respiratory failure: a randomized, controlled, multinational, open-label meta-trial

- Collaborative meta-trial of six randomized controlled open-label superiority trials
- Adults who required respiratory support with a HFNC for AHRF due to COVID-19 were randomly assigned to awake prone positioning or standard care
- The primary composite outcome was treatment failure, defined as the proportion of patients intubated or dying within 28 days of enrolment
- 1126 patients were enrolled and randomly assigned to awake prone positioning (n=567) or standard care (n=559)

- Treatment failure occurred in 223 (40%) of 564 patients assigned to awake prone positioning and in 257 (46%) of 557 patients assigned to standard care (relative risk 0.86 [95% CI 0.75–0.98])
- The hazard ratio (HR) for intubation was 0.75 (0.62–0.91), and the HR for mortality was 0.87 (0.68–1.11) with awake prone positioning compared with standard care within 28 days of enrolment

Figure 4: Daily mean duration of prone positioning and outcomes in patients allocated to awake prone positioning
8. NMBA

Study/Characteristics	ACURASYS(2010)	ROSE(2019)
Туре	Multicentre RCT Double Blind N=340 P/F<150; PEEP>5 (AECC) Mean PEEP – 9.2 cm H2o	Multicentre RCT Open label N=1006 Mod-sev ARDS(Berlin) P/F or S/F <150; PEEP >8 Mean PEEP 12.6 cm H20
Intervention	Deep sedation + early NMB (178) vs Deep sedation	Deep sedation + early NMB(501) vs Light sedation alone(505)
	ARMA PEEP FIO2 table Proning in – 30%	HIGH PEEP FIO2 table Proning in – 16%
28 day mortality	23.7% vs 33.3%	36.7% vs 37%
90 day mortality	31.6% vs 40.7%(p=0.04)	41.5% vs 42.8% (p=0.93)

Neuromuscular blockade in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials

- Studied RCTs evaluating 28-day mortality in ARDS patients treated with NMBA within 48 h
- From 2675 studies, five RCTs were included in the analysis, for a total of 1461 patients
- Mean PaO2/ FIO2 of 104 ± 35 mmHg

NBMA		A	Contr	lo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Forel 2006	5	18	10	18	9.8%	0.50 [0.21, 1.17]	+
Gainnier 2004	10	28	17	28	17.1%	0.59 [0.33, 1.05]	
Guervilly 2017	3	13	1	11	1.9%	2.54 [0.31, 21.06]	
Moss 2019	184	501	187	505	41.8%	0.99 [0.84, 1.17]	•
Papazian 2010	42	177	54	162	29.4%	0.71 [0.51, 1.00]	-
Total (95% CI)		737		724	100.0%	0.78 [0.58, 1.06]	•
Total events	244		269				(C)
Heterogeneity: Tau ² Test for overall effec	= 0.05; CH t: Z = 1.60	ni ² = 8. 0 (P = 0	.01, df =).11)	4 (P =	0.09); l* =	= 50% (0.01 0.1 1 10 100 Favours NMBA Favours control
Heterogeneity: Tau ² Test for overall effec ay mortality	= 0.05; CH t: Z = 1.60	ni ² = 8.) (P = 0	.01, df =).11)	4 (P =	0.09); 1* =	= 50% (0.01 0.1 1 10 100 Favours NMBA Favours control
Heterogeneity: Tau ² Test for overall effec ay mortality	= 0.05; Cl t: Z = 1.60	ni ² = 8. 0 (P = 0	01, df =).11) Conti	4 (P =	0.09); 1* =	= 50% (0.01 0.1 1 10 100 Favours NMBA Favours control Risk Ratio
Heterogeneity: Tau ² Test for overall effec ay mortality Study or Subgroup	= 0.05; Cl t: Z = 1.60 NBM Events	hi ² = 8.) (P = () A Total	01, df =).11) Contr Events	4 (P =	0.09); 1* =	F 50% (Risk Ratio M-H, Random, 95% CI	0.01 0.1 1 10 100 Favours NMBA Favours control Risk Ratio M-H, Random, 95% Cl
Heterogeneity: Tau ² Test for overall effec ay mortality Study or Subgroup Forel 2006	= 0.05; Cł t: Z = 1.60 NBM Events 5	hi ² = 8. 0 (P = 0 A Total 18	01, df =).11) Contr Events 10	4 (P = rol Total 18	0.09); I* = 	Risk Ratio M-H, Random, 95% Cl 0.50 [0.21, 1.17]	0.01 0.1 1 10 100 Favours NMBA Favours control Risk Ratio M-H, Random, 95% Cl
Heterogeneity: Tau ² Test for overall effec ay mortality Study or Subgroup Forel 2006 Gainnier 2004	= 0.05; Cł t: Z = 1.60 NBM Events 5 14	hi ² = 8. 0 (P = 0 A Total 18 28	01, df =).11) Contr Events 10 21	4 (P =	0.09); l* = Weight 7.9% 20.5%	Risk Ratio M-H, Random, 95% CI 0.50 [0.21, 1.17] 0.67 [0.43, 1.02]	0.01 0.1 1 10 100 Favours NMBA Favours control Risk Ratio M-H, Random, 95% CI
Heterogeneity: Tau ² Test for overall effec ay mortality Study or Subgroup Forel 2006 Gainnier 2004 Guervilly 2017	= 0.05; Cł t: Z = 1.60 NBM Events 5 14 5	hi ² = 8. D (P = 0 A Total 18 28 13	01, df =).11) Contr Events 10 21 2	4 (P =	Weight 7.9% 20.5% 3.2%	Risk Ratio M-H, Random, 95% CI 0.50 [0.21, 1.17] 0.67 [0.43, 1.02] 2.12 [0.51, 8.84]	0.01 0.1 1 10 100 Favours NMBA Favours control Risk Ratio M-H, Random, 95% Cl
Heterogeneity: Tau ² Test for overall effec ay mortality Study or Subgroup Forel 2006 Gainnier 2004 Guervilly 2017 Moss 2019	= 0.05; Cł t: Z = 1.60 NBM Events 5 14 5 213	hi ² = 8. D (P = 0 A Total 18 28 13 501	01, df =).11) Contr Events 10 21 2 216	4 (P = rol Total 18 28 11 505	Weight 7.9% 20.5% 3.2% 38.9%	Risk Ratio M-H, Random, 95% Cl 0.50 [0.21, 1.17] 0.67 [0.43, 1.02] 2.12 [0.51, 8.84] 0.99 [0.86, 1.15]	0.01 0.1 1 10 100 Favours NMBA Favours control Risk Ratio M-H, Random, 95% Cl
Heterogeneity: Tau ² Test for overall effec ay mortality Study or Subgroup Forel 2006 Gainnier 2004 Guervilly 2017 Moss 2019 Papazian 2010	= 0.05; Cł t: Z = 1.60 NBM Events 5 14 5 213 56	A Total 18 28 13 501 177	01, df = 0.11) Contr Events 10 21 2 216 70	rol Total 18 28 11 505 162	Weight 7.9% 20.5% 3.2% 38.9% 29.5%	Risk Ratio M-H, Random, 95% Cl 0.50 [0.21, 1.17] 0.67 [0.43, 1.02] 2.12 [0.51, 8.84] 0.99 [0.86, 1.15] 0.73 [0.55, 0.97]	0.01 0.1 1 10 100 Favours NMBA Favours control Risk Ratio M-H, Random, 95% Cl
Heterogeneity: Tau ² Test for overall effec ay mortality Study or Subgroup Forel 2006 Gainnier 2004 Guervilly 2017 Moss 2019 Papazian 2010 Total (95% CI)	= 0.05; Cł t: Z = 1.60 NBM Events 5 14 5 213 56	A Total 18 28 13 501 177 737	01, df = 0.11) Contr Events 10 21 2 216 70	4 (P = rol Total 18 28 11 505 162 724	Weight 7.9% 20.5% 3.2% 38.9% 29.5% 100.0%	Risk Ratio M-H, Random, 95% Cl 0.50 [0.21, 1.17] 0.67 [0.43, 1.02] 2.12 [0.51, 8.84] 0.99 [0.86, 1.15] 0.73 [0.55, 0.97] 0.81 [0.62, 1.06]	0.01 0.1 1 10 100 Favours NMBA Favours control Risk Ratio M-H, Random, 95% Cl

Ho et al. Journal of Intensive Care (2020)

Ho et al. Journal of Intensive Care (2020)

ATS guidelines on ARDS 2024

• We suggest using neuromuscular blockers in patients with early severe ARDS (conditional recommendation, low certainty of evidence)

- ESICM guidelines 2023
- We recommend against the routine use of continuous infusions of NMBA to reduce mortality in patients with moderate-to-severe ARDS not due to COVID-19

Role of NMB

• NMB is not routinely recommended but can be used to tackle asynchrony – not controlled by sedation

9. ECMO

	CESAR Trial (2009)	EOLIA Trial (2018)
Study	Multicentre RCT	Multicentre RCT
Population	N = 180	N = 249
Intervention	ECMO (24% Did not receive ECMO) Vs CMV(LTV not used in all patients)	ECMO vs CMV(adhere to LTV) Crossover (Rescue ECMO allowed – 28%)
Inclusion Criteria	MV<7d Murray score >3; pH<7.2	MV<7d P/F <50 (3hrs), P/F <80 (6hrs), pH<7.25 (6hrs)
Primary outcome	6 month mortality 47% vs 63%, RR-0.69 (P=0.03)	60 d mortality 35% vs 46%, RR-0.76 (p=0.09) 44% of patients who received Rescue ECMO survived
Cointerventions	PPV(4 vs 42%)	PPV -90%, NMB – 100% used

Meta Analysis ECMO In ARDS – Effect On 30d Mortality

Figure 5: Forest plot of 30-day mortality across all studies of ECMO vs CMV in adults with severe acute respiratory distress syndrome

Role of ECMO

• ECMO can be considered an effective rescue strategy in patients with severe ARDS in ECMO-equipped centres

ESICM Guidelines on ARDS 2023

• Recommend that patients with severe ARDS as defined by the EOLIA trial eligibility criteria, should be treated with ECMO in an ECMO center***

10. Corticosteroids

Dexamethasone in Hospitalized Patients with Covid-19

Author: The RECOVERY Collaborative Group* Author Info & Affiliations

Published July 17, 2020 | N Engl J Med 2021;384:693-704 | DOI: 10.1056/NEJMoa2021436 VOL. 384 NO. 8

- Patients was randomly assigned patients to receive oral or intravenous dexamethasone (at a dose of 6 mg once daily) for up to 10 days or to receive usual care alone
- The primary outcome was 28-day mortality
- 2104 patients were assigned to receive dexamethasone and 4321 were assigned to receive usual care

- Mortality at 28 days was significantly lower in the dexamethasone group than in the usual care group, 482 of 2104 patients (22.9%) and in 1110 of 4321 patients (25.7%), respectively (rate ratio, 0.83; 95% [CI], 0.75 to 0.93; P<0.001)
- The greatest absolute and proportional benefit among patients who were receiving invasive mechanical ventilation
- In the dexamethasone group, the incidence of death was lower among patients receiving invasive MV (29.3% vs. 41.4%; rate ratio, 0.64; 95% CI, 0.51 to 0.81)
- and in those receiving oxygen without invasive MV (23.3% vs. 26.2%; rate ratio, 0.82; 95% CI, 0.72 to 0.94
 The RECOVERY Collaborative Group (2021) "Dexamethasone in hospitalized patients with covid-19," NEJM, 384(8), pp. 693–704. doi: 10.1056/nejmoa2021436.

The RECOVERY Collaborative Group (2021) "Dexamethasone in hospitalized patients with covid-19," NEJM, 384(8), pp. 693–704. doi: 10.1056/nejmoa2021436.

The RECOVERY Collaborative Group (2021) "Dexamethasone in hospitalized patients with covid-19," NEJM, 384(8), pp. 693–704. doi: 10.1056/nejmoa2021436.

Table 2. Primary and Secondary Outcomes and Prespecified Subsidiary Clinical Outcomes.								
Outcome	Dexamethasone Usual Care (N=2104) (N=4321)		Rate or Risk Ratio (95% Cl)≄					
	no	./total no. of patients (%)						
Primary outcome								
Death at 28 days	482/2104 (22.9)	1110/4321 (25.7)	0.83 (0.75-0.93)					
Secondary outcomes								
Discharged from hospital within 28 days	1416/2104 (67.3)	2748/4321 (63.6)	1.10 (1.03–1.17)					
Invasive mechanical ventilation or death†	462/1780 (26.0)	1003/3638 (27.6)	0.93 (0.85-1.01)					
Invasive mechanical ventilation	110/1780 (6.2)	298/3638 (8.2)	0.79 (0.64-0.97)					
Death	387/1780 (21.7)	827/3638 (22.7)	0.93 (0.84-1.03)					
Subsidiary clinical outcomes								
Use of ventilation‡	25/501 (5.0)	65/1034 (6.3)	0.84 (0.54–1.32)					
Noninvasive ventilation	20/501 (4.0)	57/1034 (5.5)	0.77 (0.47-1.26)					
Invasive mechanical ventilation	9/501 (1.8)	19/1034 (1.8)	1.07 (0.49-2.34)					
Successful cessation of invasive mechanical ven- tilation§	160/324 (49.4)	268/683 (39.2)	1.47 (1.20–1.78)					
Renal-replacement therapy¶	89/2034 (4.4)	314/4194 (7.5)	0.61 (0.48-0.76)					

The RECOVERY Collaborative Group (2021) "Dexamethasone in hospitalized patients with covid-19," NEJM, 384(8), pp. 693–704. doi: 10.1056/nejmoa2021436.

Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial

Jesús Villar, Carlos Ferrando, Domingo Martínez, Alfonso Ambrós, Tomás Muñoz, Juan A Soler, Gerardo Aguilar, Francisco Alba, Elena González-Higueras, Luís A Conesa, Carmen Martín-Rodríguez, Francisco J Díaz-Domínguez, Pablo Serna-Grande, Rosana Rivas, José Ferreres, Javier Belda, Lucía Capilla, Alec Tallet, José M Añón, Rosa L Fernández, Jesús M González-Martín for the dexamethasone in ARDS network*

- Multicenter, randomized controlled trial in a network of 17 intensive care units (ICUs)
- N = 277, 139 in dexa group, 138 in control group
- Moderate-to-severe ARDS (defined by P:F ratio of ≤ 200 assessed with a PEEP of ≥ 10 cm H2O and FiO2 of ≥ 0.5 at 24 h after ARDS onset)
- Patients in the dexamethasone group received an IV dose of 20 mg od from day 1 to 5, which was reduced to 10 mg od from day 6 to 10 (1st dose received immediately – not >30 hrs)
- Patients in both groups were ventilated with lung-protective mechanical ventilation
- Primary outcome was the number of ventilator-free days at 28 days
- Secondary outcome was all-cause mortality 60 days after randomization

Villar, J. et al. (2020) "Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial," The Lancet. Respiratory medicine, 8(3), pp. 267–276. doi: 10.1016/s2213-2600(19)30417-5.

	Dexamethasone group (n=139)	Control group (n=138)	Between-group difference (95% CI)	p value	1 (%		Contraction of the second s		-15·3% (·	-25-9	to –
entilator-free days at 28 days	12.3 (9.9)	7.5 (9.0)	4.8 (2.57 to 7.03)	<0.0001	ival (75 -		·	~		
ll-cause mortality at day 60	29 (21%)	50 (36%)	-15·3% (-25·9 to -4·9)	0.0047	SUN						
2U mortality	26 (19%)	43 (31%)	-12·5% (-22·4 to -2·3)	0.0166	y of	50 -					
lospital mortality	33 (24%)	50 (36%)	-12·5% (-22·9 to -1·7)	0.0235	pilit						
Actual duration of mechanical ventilation in ICU survivors, days	14-2 (13-2)	19·5 (13·2)	-5·3 (-8·4 to -2·2)	0.0009	Proba	25 -	— Dexam	ethasone	group		
Actual duration of mechanical entilation in survivors at day 60, days	14-3 (13-3)	20·2 (14·0)	-5·9 (-9·1 to -2·7)	0.0004		0	10	20	30	40	_
Adverse events and complications*					Number at risk			Days sir	nce rando	misatior	1
Hyperglycaemia in ICU	105 (76%)	97 (70%)	5·2% (-5·2 to 15·6)	0.33	Dexamethasone	139	128	119	114	112	
New infections in ICU	33 (24%)	35 (25%)	1.6% (-8.5 to 11.7)	0.75	Control	138	123	105	98	94	
Barotrauma	14 (10%)	10 (7%)	2.8% (-4.0 to 9.8)	0.41	Figure 2: Kaplan-N	Aeier si	urvival esti	mates de	uring the	e first 6	0

Villar, J. et al. (2020) "Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial," The Lancet. Respiratory medicine, 8(3), pp. 267–276. doi: 10.1016/s2213-2600(19)30417-5.

Safety and efficacy of corticosteroids in ARDS patients: a systematic review and meta-analysis of RCT data -2022

- Fourteen RCTs (n=1607) were included for analysis
- Corticosteroids were found to reduce the risk of death in patients with ARDS (relative risk (RR)=0.78, 95% confidence interval (CI): 0.70–0.87; P<0.01)
- No significant adverse events were observed, compared to placebo or standard support therapy

Xinyang chang et al 2022

	Corticoste	eroids	Contr	lo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.3.1 Dexamethasone							
Jamatti et al.2021	16	25	15	25	4.2%	1.07 [0.69, 1.65]	
Tomazini et al.2020	85	151	91	148	25.9%	0.92 [0.76, 1.11]	-
villar et al.2020	33	139	50	138	14.1%	0.66 [0.45, 0.95]	
Subtotal (95% CI)		315		311	44.3%	0.85 [0.72, 1.00]	•
Fotal events	134		156				
Heterogeneity: Chi ² = 3.5	7, df = 2 (P =	= 0.17); P	= 44%				
Fest for overall effect: Z =	2.01 (P = 0.	04)					
1.3.2 Methylprednisolon	e						
Bernard et al.1987	30	50	31	49	8.8%	0.95 [0.69, 1.29]	
Drago et al.2015	0	17	2	18	0.7%	0.21 [0.01, 4.10]	() ()
vleduri et al.1998	2	16	5	8	1.9%	0.20 [0.05, 0.81]	
Meduri et al.2007	15	63	12	28	4.7%	0.56 [0.30, 1.03]	
Rezk et al.2013	0	18	3	9	1.3%	0.08 [0.00, 1.32]	
Seam et al.2012	11	55	10	24	3.9%	0.48 [0.24, 0.98]	
Steinberg et al.2006	23	89	26	91	7.2%	0.90 [0.56, 1.46]	
Subtotal (95% CI)		308		227	28.5%	0.70 [0.56, 0.88]	•
Total events	81		89				
Heterogeneity: Chi ² = 12.	.38, df = 6 (P	= 0.05);	I ² = 52%				
Test for overall effect: Z =	3.05 (P = 0.	002)					
1.3.3 Hydrocortisone							
Annane et al.2006	49	85	62	92	16.8%	0.86 [0.68, 1.08]	
Confalonieri et al.2005	0	23	3	23	1.0%	0.14 [0.01, 2.62]	
_iu et al. 2012	2	12	7	14	1.8%	0.33 [0.08, 1.31]	
Fongyoo et al.2016	22	98	27	99	7.6%	0.82 [0.50, 1.34]	
Subtotal (95% CI)		218		228	27.2%	0.79 [0.63, 0.98]	•
Total events	73		99				
Heterogeneity: Chi ² = 3.3	88, df = 3 (P =	= 0.34); P	² = 11%				
Test for overall effect: Z =	2.18 (P = 0.	03)					
fotal (95% CI)		841		766	100.0%	0.79 [0.70, 0.88]	•
Total events	288		344				
Heterogeneity: Chi ² = 20.	.34, df = 13 (P = 0.09); I ^z = 369	6			
Test for overall effect: Z =	4.11 (P < 0.	0001)					UUUS U.1 1 10 2 Envoure (Continentaroide) Envoure (Controll
Fest for subaroup differe	nces: Chi ² =	1.74. df	= 2 (P =)	0.42), P	°= 0%		Favours [Controsteroids] Favours [Control]
ig. 5 The effect of cortic	costeroids o	n Morta	lity at 28	days. S	studies su	ubdivided by cortico	osteroids types

Xinyang chang et al 2022

	Corticoste	Corticosteroids		Control		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.11.1 ≤7 days							
Annane et al.2006	49	85	62	92	16.6%	0.86 [0.68, 1.08]	-
Bernard et al.1987	30	50	31	49	8.7%	0.95 [0.69, 1.29]	+
Confalonieri et al.2005	0	23	7	23	2.1%	0.07 [0.00, 1.10]	
Liu et al. 2012	2	12	7	14	1.8%	0.33 [0.08, 1.31]	
Tongyoo et al.2016	22	98	27	99	7.5%	0.82 [0.50, 1.34]	
Subtotal (95% CI)		268		277	36.7%	0.80 [0.67, 0.96]	•
Total events	103		134				0.120
Heterogeneity: Chi ² = 6.0	6, df = 4 (P =	0.19); P	² = 34%				
Test for overall effect: Z =	2.42 (P = 0.)	02)					
1.11.2 8-14 days							
Drago et al 2015	n	17	2	18	0.7%	0.21 [0.01 4.10]	
Jamatti et al 2021	16	25	15	25	4 2%	1 07 0 69 1 65	
Tomazini et al 2020	85	151	91	148	25.6%	0 92 10 76 1 111	-
Villar et al 2020	33	139	50	138	14 0%	0.66 (0.45, 0.95)	
Subtotal (95% CI)	00	332	00	329	44.5%	0.84 [0.71, 0.98]	•
Total events	134		158				
Heterogeneity: Chi ² = 4.5	$f_{5} df = 3 (P = 1)$	0.21) P	= 34%				
Test for overall effect: Z =	2.15 (P = 0.	03)					
1.11.3 ≥15 davs							
Meduri et al 1998	2	16	5	8	1 9%	0.2010.05.0.811	
Meduri et al 2007	15	63	12	28	4.6%	0.56 [0.30, 1.03]	
Rezk et al 2013	0	18	3	9	1.3%	0.08 [0.00 1.32]	
Seam et al 2012	11	55	10	24	3.9%	0 48 0 24 0 981	
Steinberg et al 2006	23	89	26	91	7.2%	0.90/0.56 1.461	
Subtotal (95% CI)		241		160	18.8%	0.61 [0.44, 0.83]	•
Total events	51		56				
Heterogeneity: Chi ² = 7.6	2. df = 4 (P =	0.11): P	= 48%				
Test for overall effect: Z =	3.13 (P = 0.	002)					
Total (95% CI)		841		766	100.0%	0,78 [0.70, 0.87]	•
Total events	288		348			The feat of shared	
Heterogeneity: Chi ² = 22	45 df = 13 (P = 0.05) = 429	6			
Test for overall effect 7 =	4 31 (P < 0)	0001)	///////////////////////////////////////	10 C			0.005 0.1 1 10 200
Test for subgroup differe	nces: Chi ² =	3.27 df	= 2 (P = 1	19) F	= 38 9%		Favours [Corticosteroids] Favours [Control]
	ness, enr	o Morto	liter at 30	days C	tudios su	, and the deal have the attent	

Role of corticosteroids in ARDS

- Corticosteroid use may be an effective approach to reduce death in ards although empirical use of glucocorticoids remains controversial
- Questions still remain regarding the dosage, optimal corticosteroid agent, and treatment duration in patients

ATS guidelines on ARDS 2024

We suggest using corticosteroids for patients with ARDS (conditional recommendation, moderate certainty of evidence)

Intervention	Population	Precautions	Practical considerations
Corticosteroids	$PaO_2/FiO_2 \leq 300$	 May be associated with increased risk of harm when initiated after > 14 days of mechanical ventilation Monitor more closely for adverse effects in patients with immunosuppressed conditions, metabolic syndrome, or known or increased risk of fungal, parasitic, or mycobacterial infections 	 Optimal regimen, including type of corticosteroid, is unknown For patients with corticosteroid-responsive etiologies, regimen should be tailored to the specific condition For other patients, regimens used in prior RCTs may be used For patients that improve rapidly, consider discontinuation at time of extubation

(Qadir *et al.*, 2024) "An update on the management of adult patients with ards:, 209(1), pp. 24–36. doi: 10.1164/rccm.202311-2011st.

(Qadir *et al.*, 2024) "An update on the management of adult patients with ards:, 209(1), pp. 24–36. doi: 10.1164/rccm.202311-2011st.

Summary

- New definition is more liberal and overcome the drawback of underdiagnosis of ARDS
- Categorising ARDS into different phenotypes ray of hope ->might help in better management of ARDS/ identifying specific pharmacotherapy for ARDS
- HFNO can be used to prevent intubation
- CPAP/NIV role in COVID 19 with AHRF controversial
- Low tidal volume ventilation

- Higher PEEP without lung recruitment maneuvers (LRMs)
- Prolonged RM to be avoided
- Brief RM need strong evidence
- Personalized PEEP strategy
- Proning to be done early after intubation in mod severe ARDS

- NMB can be consider in severe ARDS 1st 48 hrs
- ECMO to be considered as effective rescue strategy in severe ARDS if worsening despite optimization all ventilatory strategies
- Steroids
- Newer therapies like stem cell-based therapy need further evidence

Thank You !