#### Newer tools for peripheral pulmonary nodule (Archimedes, Cone Beam CT, Robotics, BodyVision)

DM seminar

04.03.2023

## Outline

- Approach to SPN
- Archimedes system
- Cone Beam CT
- Robotics
- BodyVision
- Summary

## Solitary pulmonary nodule

- A pulmonary nodule is defined on imaging as a small (≤30 mm), well-defined lesion surrounded by pulmonary parenchyma
- Morphologically, they are solid or subsolid (pure GGO or part solid) nodules
- Less than 5–10% of nodules were malignant as seen in NLST screened in over fifty thousand participants
- Among 57,496 participants with baseline LDCT scans in the International Early Lung Cancer Action Program, nonsolid (pure ground glass) and part-solid nodules were found in 4.2% and 5.0%, respectively- of which 0.7% and 0.8% were malignant

Henschke et al., International Early Lung Cancer Action Program. CT screening for lung cancer:. AJR. 2016 Dec;207(6):1176-84. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with LDCT screening. NEJM. 2011 Aug 4;365(5):395-409.

## Approach to SPN

- Assessing the risk of malignancy- Brock university model, clinical prediction model and Mayo clinic model
- PANOPTIC (Pulmonary nodule plasma proteomic classifier) trial- 5 clinical factors (Age, smoking status, nodule diameter, shape and location) and 2 plasma proteins (LG3BP and C163A)
- Clinical judgement
- Imaging characteristics

McWilliams et al. Probability of cancer in pulmonary nodules detected on first screening CT. NEJM. 2013 Sep 5;369(10):910-9. Gould Mk et al. A clinical model to estimate the pretest probability of lung cancer in patients with SPN. Chest. 2007 Feb 1;131(2):383-8. Silvestri GA et al. Proteomics biomarker's ability to characterise lung nodules: PANOPTIC trial. Chest. 2018 Sep 1;154(3):491-500.

- Nodule size- as the size of the solid component increases, there is increased risk of malignancy
- Nodule attenuation- (solid vs subsolid vs GGO)
- Growth size- No increase in size over >2 years or rapid increase in <20 days= lesion is likely benign
- Calcification and fat
- Border and location
- Enhancement with contrast

#### PET-CT

- Solid nodules- PET-CT is reliable
- PET demonstrates pooled sensitivity of 89 percent (95% CI, 86-91 percent) and specificity of 75 percent (95% CI, 71-79 percent) for detecting cancer
- Subsolid nodules- GGOs and part solid nodules are not well characterised by PET
- False positive nodules (pneumonia, mycobacterial diseases, sarcoidosis and rheumatoid nodules)
- False negative nodules (less metabolically active tumours)
- Morphologic-metabolic dissociation sign (Invasive mucinous adenocarcinoma)

#### Approach to SPN- INDIVIDUALISED



Gould Mk et al. Evaluation of individuals with pulmonary nodules: When is it lung cancer?: ACCP. Chest. 2013 May 1;143(5):e93S-120S.

## Management options of SPN

- Non surgical biopsy
  - 1) Bronchoscopic techniques
  - 2) Transthoracic needle biopsy
- Surgical biopsy
- PET-CT

#### **ARCHIMEDES SYSTEM**







Archimedes system

Archimedes Lite

Lung Point

# Bronchoscopic trans-parenchymal nodule access (BTPNA)

- Image Guidance for Bronchoscopy and Fused Fluoroscopy
- Real-time navigation
- Side-by-side navigation pairs real time and virtual images
- Navigation guides user to target with 3mm accuracy
- Airway path allows access to lesions without specialized, disposable instruments
- Standard 2 mm working channel compatible with bronchoscopic instruments
- Target is superimposed on virtual, actual bronchoscopic and live fluoroscopic views



Point of entry





Dilating the POE



Introducing the sheath

Sampling



3D View of the lesion





Real bronchoscopic images



Herth et al.(BTPNA): first in human trial for sampling SPN. Thorax. 2015 Apr 1;70(4):326-32.



Harzheim D et al.BTPNA: feasibility and safety in an endoscopic unit. Respiration. 2016;91(4):302-6.

#### Evidence

| Study                                                                                          | Methods                                                                                                                                                                                     | Results                                                                                                                                                                                                  | Comments                                                                                                                                                               |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Strenman et al.</li> <li>CHEST 2015</li> <li>Canine study</li> </ul>                  | <ul> <li>31 inorganic models of<br/>sub-centemetric<br/>pulmonary nodules<br/>were implanted<br/>beyond 7<sup>th</sup> generation<br/>of airways</li> </ul>                                 | <ul> <li>The mean length of<br/>the 31 tunnels was 35<br/>mm (20.5-50.3-mm<br/>range)</li> <li>Mean tunnel creation<br/>time was 16:52 min</li> <li>Diagnostic yield was<br/>90.3% (28 of 31)</li> </ul> | <ul> <li>No pneumothorax</li> <li>Bleeding &lt;2 ml in volume</li> </ul>                                                                                               |
| <ul> <li>Herth et al.</li> <li>Thorax 2015</li> <li>First human trial</li> <li>n=12</li> </ul> | <ul> <li>Nodule size- 10 to 40 mm</li> <li>Archimedes VBN systems</li> <li>POE→ coring needle→ negative suction→ atraumatic balloon dilator→ Tool in lesion confirmation→ Biopsy</li> </ul> | <ul> <li>BTPNA was<br/>successfully completed<br/>in 10 patients (83%)</li> <li>A positive biopsy was<br/>obtained in all 10</li> <li>7/10 nodules were not<br/>visible on fluoroscopy</li> </ul>        | <ul> <li>Done under GA</li> <li>No pneumothorax</li> <li>No bleeding</li> <li>Post-procedure<br/>surgical resection<br/>confirmed the<br/>accuracy of BTPNA</li> </ul> |

| Study                                                                                           | Methods                                                                                                                                                             | Results                                                                                                                                                                                        | Comments                                                                                             |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <ul> <li>Harzheim at al.</li> <li>Respiration 2016</li> <li>n=6</li> </ul>                      | <ul> <li>Prospective, single arm interventional study</li> </ul>                                                                                                    | <ul> <li>The mean length of the tunnels to the nodule was 29 mm (range 11–46)</li> <li>The size of the lesions ranged from 14 to 21 mm</li> <li>Diagnosis was achieved in 5/6 cases</li> </ul> | <ul> <li>Done under GA</li> <li>2 pneumothoraces</li> <li>1 required pigtail<br/>drainage</li> </ul> |
| <ul> <li>Mezalek et al.</li> <li>ERS 2022</li> <li>(N=13)</li> </ul>                            | <ul> <li>A HRCT scan was<br/>performed 1-5 days<br/>before</li> <li>Cytology brush, TBB<br/>and TPNA were<br/>performed using the C<br/>arm verification</li> </ul> | <ul> <li>median size of nodules<br/>was 21 mm (16-31<br/>mm)</li> <li>Biopsy smears were<br/>positive in 100% of the<br/>positive cases</li> </ul>                                             | <ul> <li>Done under GA</li> <li>Training with the<br/>Archimedes system is<br/>emphasised</li> </ul> |
| <ul> <li>Yang et al</li> <li>Frontiers<br/>2023</li> <li>Pilot study in<br/>children</li> </ul> | <ul> <li>Retrospective analysis<br/>of 5 cases</li> </ul>                                                                                                           | <ul> <li>Diagnosis was<br/>achieved in all 5 cases</li> </ul>                                                                                                                                  | <ul><li>Done under GA</li><li>No pneumothorax</li></ul>                                              |



Harzheim D et al. BTPNA: feasibility and safety in an endoscopic unit. Respiration. 2016;91(4):302-6

#### Cone Beam CT

- Cone beam CT (CBCT) is another imaging modality that may improve the diagnostic yield for bronchoscopic lung biopsy
- This modality has previously been widely adopted in many fields of interventional radiology, including intravascular and hepatobiliary interventions
- After image acquisition, the biopsy device location can be reviewed and adjusted to a new target location as needed with repeat scans



Mobile CBCT

![](_page_18_Picture_0.jpeg)

Ceiling mounted CBCT

![](_page_19_Picture_0.jpeg)

Floor mounted CBCT- compatible with Robotics

#### C-arm vs CBCT

| Portable C arms                  | Mobile CBCT                 | Fixed CBCT                   |
|----------------------------------|-----------------------------|------------------------------|
| Inferior image quality           | Superior quality images     | Best image quality           |
| Portable                         | Lower doses, portable       | Central room                 |
| Digital tomosynthesis algorithms | True 3D imaging             | True 3D imaging              |
|                                  | 30 second image acquisition | 5-8 second image acquisition |
|                                  |                             | CT augmented fluoroscopy     |
|                                  |                             | Very expensive               |

#### WORKFLOW

- Isocentre (AP and lateral)
- Perform a test spin
- Breath hold
- 5-8 second spin
- Image acquisition

#### CT-to-body divergence

- CT-to-body divergence is the difference between the static pre-procedural CT and the dynamic breathing lung during bronchoscopic procedure
- How does any VBN platform work?
- Lung volume differences, atelectasis
- Pre-procedural scan timings and differences
- Anatomy alterations (pleural effusions)
- 16 to 18 mm variation is noted
- Hybrid operating rooms (CBCT plus fluoroscopy)

#### CT-to-body divergence

Green- VBN Guided pathway Purple- Actual intraoperative pathway

![](_page_23_Picture_2.jpeg)

Pritchett MA et al. Divergence between preprocedural CT scans and lung anatomy during guided bronchoscopy. JOTD. 2020 Apr;12(4):1595.

#### CT-to-body divergence-atelectasis

![](_page_24_Picture_1.jpeg)

Pritchett MA et al. Divergence between CT and lung anatomy during guided bronchoscopy. JOTD. 2020 Apr;12(4):1595.

#### CT-to-body divergence- how to overcome?

![](_page_25_Picture_1.jpeg)

Lesion identification on CT

Real-time Al tomographic lesion reconstruction with CABT during dynamic registration

Dynamic registration and navigation along planned pathway towards the lesion

Real-time "tool in lesion" confirmation with CABT

Of course, image guided TTNA also overcomes CT-to-body divergence and hence has a superior yield

Pritchett MA et al. Divergence between CT and lung anatomy during guided bronchoscopy. JOTD. 2020 Apr;12(4):1595.

| Study                                                                                                                                                                                       | Methods                                                                                                                                                                                                                                                                                     | Results                                                                                                                                                                    | Comments                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>CBCT plus<br/>augmented<br/>fluoroscopy<br/>plus ENB</li> <li>Pritchett et al.</li> <li>Journal of<br/>Bronchology<br/>and<br/>interventional<br/>pulmonology-<br/>2018</li> </ul> | <ul> <li>Single centre<br/>retrospective analysis<br/>of 75 consecutive ENB<br/>procedures were<br/>analysed and 93<br/>nodules were sampled</li> <li>Median size of the<br/>lesion was 16 mm (7-<br/>55)</li> <li>Bronchus sign in 39%</li> <li>Visible on fluoroscopy-<br/>49%</li> </ul> | <ul> <li>The overall DY by<br/>lesion was lesion of<br/>83.7% [95% CI, 74.8%-<br/>89.9%]</li> <li>Diagnostic accuracy<br/>was 93.5%<br/>(indeterminate lesions)</li> </ul> | <ul> <li>Done under GA</li> <li>Hybrid OR</li> <li>DY was similar in<br/>nodules of size &lt;20<br/>mm (83-84%)<br/>and &gt;20 mm (96.3%)</li> <li>All procedures were<br/>done- BAL, brushing,<br/>TBLBx, needle<br/>aspiration</li> </ul> |
| <ul> <li>Ultrathin<br/>bronchoscopy<br/>plus CBCT plus<br/>VBN- TBLBx</li> <li>2019<br/>Respirology</li> <li>Ali et al.</li> <li>N=40</li> </ul>                                            | <ul> <li>Single centre<br/>prospectively collected<br/>data</li> <li>The median tumor size<br/>was 20 mm (range 9–<br/>30)</li> <li>Solid and GGOs</li> <li>Ultrathin<br/>bronchoscope had an<br/>OD of 2.8 mm</li> </ul>                                                                   | <ul> <li>The overall diagnostic yield was 90.0%</li> </ul>                                                                                                                 | <ul> <li>One case of pneumothorax and one case of lung abscess</li> <li>Done under GA</li> </ul>                                                                                                                                            |

| Study                                                                                                                                                               | Methods                                                                                                                                                                                                                                                                                            | Results                                                                                                                                                                            | Comments                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>CBCT plus<br/>ultrathin<br/>bronchoscope<br/>plus R-EBUS</li> <li>Casal et al.</li> <li>Journal of<br/>thoracic<br/>diseases 2018</li> <li>n=20</li> </ul> | <ul> <li>Prospective single<br/>centre pilot study</li> <li>OD of bronchoscope<br/>was 4.2 mm</li> <li>Needle aspiration,<br/>biopsy, brushings and<br/>BAL were done</li> <li>Median size was 2.1<br/>(range, 1.1–3) cm and<br/>median distance from<br/>pleura was 2.1 (0–2.8)<br/>cm</li> </ul> | <ul> <li>the mean effective dose (E) to patients from CBCT and fluoroscopy ranged from <b>11 to 29 mSv</b></li> <li>Diagnostic yield was 75% (lower due to atelectasis)</li> </ul> | <ul> <li>Median time of the procedure was 62.5 minutes (49-96)</li> <li>One case of pneumothorax</li> <li>Simultaneous staging EBUS was performed if ROSE demonstrated malignant cells</li> </ul>                  |
| <ul> <li>RANB plus<br/>CBCT</li> <li>Benn et al</li> <li>Lung 2021</li> <li>n=52</li> </ul>                                                                         | <ul> <li>Single centre<br/>prospectively collected<br/>data</li> <li>Median nodule<br/>diameter was 17 mm<br/>in axial cuts and 14<br/>mm in coronal cuts<br/>and 17 mm in sagittal<br/>cuts</li> </ul>                                                                                            | <ul> <li>Tissue diagnosis was obtained in 83% (49/59) of biopsied nodules</li> <li>10 nodules were reported as inconclusive</li> </ul>                                             | <ul> <li>Done under GA with special ventilation protocols to avoid atelectasis</li> <li>3 times CBCT spins were done per procedure</li> <li>mean procedure time of 62 ± 24 min</li> <li>Pneumothorax- 2</li> </ul> |

#### Lung Navigation Ventilation Protocol to Optimize Biopsy of Peripheral Lung Lesions

Krish Bhadra, MD,\* Randolph M. Setser, PhD,† William Condra, RT(R),\* and Michael A. Pritchett, DO, MPH‡

*Background:* Computed tomography-to-body divergence caused by respiratory motion, atelectasis, diaphragmatic motion and other factors is an obstacle to peripheral lung biopsies. We examined a conventional ventilation strategy versus a lung navigation ventilation protocol (LNVP) optimized for intraprocedural 3-dimensional image acquisition and bronchoscopic biopsy of peripheral lung nodules.

*Methods:* A retrospective, single center study was conducted in consecutive subjects with peripheral lung lesions measuring <30 mm. Effects of ventilation strategies including atelectasis and tool-in-lesion confirmation were assessed using cone beam computed tomography images. Diagnostic yield was also evaluated. Complications were assessed through 7 days. compared with conventional ventilation. Future prospective studies are necessary to understand the impact of protocolized ventilation strategies for bronchoscopic biopsy of peripheral lung lesions.

**Key Words:** electromagnetic navigation bronchoscopy, cone-beam computed tomography, tomosynthesis, fluoro-scopic navigation, ventilation, lung cancer

(J Bronchol Intervent Pulmonol 2022;29:7-17)

#### BACKGROUND

Despite the continual evolution of navigational bronchoscopy platforms, including endoluminal robotics, fluoroscopic-based electromagnetic navigation and shape sensing platforms, bronchoscopy for the

#### Lung navigation ventilation protocol

- Retrospective single centre trial
- Two groups of 25 consecutive patients with PLLs < 30mm was included
- In the first group, a conventional ventilation protocol was used between December 2017 and March 2018
- In the second group, a dedicated LNVP was used between February and March 2020

#### Lung navigation ventilation protocol

![](_page_30_Figure_1.jpeg)

| Upper and Middle Lobe  | Lower Lobe lung        |
|------------------------|------------------------|
| lung lesions           | lesions                |
| PEEP and APL valve set | PEEP and APL valve set |
| at 10-15 cmH20         | at 15-20 cmH20         |

#### Lung navigation ventilation protocol

- Diagnostic yield was 70% for conventional ventilation and **92%** for LNVP (P=0.08)
- Sensitivity and specificity were 78% and 100%, respectively, for conventional group; 100% and 100%, respectively, for LNVP
- Positive predictive value was 100% for both patient groups
- Negative predictive value was 56% for conventional ventilation and 100% for LNVP
- Atelectasis was more prevalent in the conventional ventilation group, both for dependent atelectasis (R1: 64% and R2: 68% vs. R1: 36% and R2: 16%, *P*=0.00014) and sub-lobar/lobar atelectasis (R1: 48% and R2: 56% vs. R1: 20% and R2: 32%, *P*=0.01)

#### ROBOTICS

- Robotic bronchoscopy has better maneuverability, enabling navigation further into the periphery of the lung, and can remain static once a desired position is reached
- There are currently two companies in the market
- The Monarch (Auris), which was approved by the U.S. Food and Drug Administration in 2018
- Ion (Intuitive) was approved in 2019

#### **MONARCH** system

- The Monarch system robotic arms are operated with a small handheld controller similar to that for a videogame
- The controller guides an outer sheath that is wedged in a proximal position and then steers an inner scope to the biopsy site
- The robotic bronchoscope was able to be advanced farther into the lung periphery compared to a thin bronchoscope despite the scopes having the same outer diameter
- The outer sheath design provides support for the inner scope and allows for improved maneuverability

#### MONARCH system

![](_page_34_Picture_1.jpeg)

C

![](_page_35_Picture_0.jpeg)

#### **Robotic Endoscopic Airway Challenge: REACH Assessment**

#### Alexander C. Chen, MD, and Colin T. Gillespie, MD

Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine/Barnes Jewish Hospital, St. Louis, Missouri; and Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois

*Purpose.* Bronchoscopy for peripheral pulmonary lesions continues to present challenges to clinicians. One potential limitation may be the inability to advance conventional bronchoscopes into close proximity of peripheral lesions before biopsy. This study was performed to assess the reach of a robotic endoscopic system within human cadaveric lungs compared with conventional thin bronchoscopes.

*Description.* All segmental bronchi (RB1 to 10, LB1 to 10) were accessed in two human cadavers using a conventional thin bronchoscope and robotic endoscope of identical outer diameter. Bronchus generation count and insertion depth measured by electromagnetic navigation and external fluoroscopy were recorded.

*Evaluation*. The robotic endoscope was advanced beyond the conventional thin bronchoscope in all segments, particularly in bronchi with increased angulation such as RB1 (mean generation count 8 versus 3.5, respectively) and LB1+2 (mean generation count 8 versus 4.5).

*Conclusions.* The robotic endoscopic system was advanced beyond a conventional thin bronchoscope with identical outer diameter into the periphery of human cadaveric lungs. Improved reach within the lung periphery may address some limitations with contemporary bronchoscopic approaches for peripheral lesion biopsy.

#### **REACH** assessment

- Cadavers-2
- Convectional thin bronchoscope (OD-4.2 mm and working channel of 2 mm)
- Robotic endoscopic system (Outer sheath of 5.9 mm, O.D-4.2 mm and working channel of 2 mm)

| Segment          | CTB Mean | RES Mean | Difference |
|------------------|----------|----------|------------|
| Right upper lobe | 1        |          |            |
| RB1              | 3.5      | 8        | 4.5        |
| RB2              | 7.0      | 9.5      | 2.5        |
| RB3              | 6.5      | 9.5      | 3.0        |
| Right middle lob | e        |          |            |
| RB4              | 7.0      | 9.5      | 2.5        |
| RB5              | 5.5      | 8.5      |            |
| Right lower lobe |          |          |            |
| RB6              | 4.5      | 6.0      | 1.5        |
| RB7              | 3.0      | 8.0      | 5.0        |
| RB8              | 5.0      | 8.0      | 3.0        |
| RB9              | 7.0      | 10.0     | 3.0        |
| RB10             | 6.5      | 9.0      | 2.5        |
| Left upper lobe  |          |          |            |
| LB1+2            | 4.5      | 8.0      | 3.5        |
| LB3              | 5.0      | 7.0      |            |
| Lingula          |          |          |            |
| LB4              | 5.0      | 11.0     | 6.0        |
| LB5              | 7.0      | 9.5      | 2.5        |
| Left lower lobe  |          |          |            |
| LB6              | 4.5      | 7.5      | 3.0        |
| LB7+8            | 5.0      | 8.5      | 3.5        |
| LB9              | 8.0      | 11.0     | 3.0        |
| LB10             | 7.0      | 8.0      | 1.0        |

Table 1. Generation Count

 $CTB = conventional \ thin \ bronchoscope; \qquad RES = robotic \ endoscopic \\ system.$ 

![](_page_38_Picture_0.jpeg)

A- convectional thin bronchoscope

B- Robotic endoscopic system

![](_page_39_Picture_1.jpeg)

- The Ion platform uses an ultrathin robotic catheter with a 3.5-mm outer diameter
- EMN is not required because the catheter is fitted with **shape-sensing technology** to provide accurate positional information
- The catheter is advanced with a trackball and wheel controller
- In order to have such a small outer diameter, the optic is removed once the target is reached, and the catheter (with shape-sensing technology) is used as a guide sheath through which various sampling instruments are introduced

- Plan your procedure with app (PlanPoint software)
- Integration with PACS
- Navigate to the lung (shape sensing technology)
- Confirm the target
- Biopsy

![](_page_41_Picture_6.jpeg)

![](_page_42_Picture_1.jpeg)

| Study                                                                                                                                   | Methods                                                                                                                                                                                                                | Results                                                                                                                                                                                | Comments                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>ACCESS study</li> <li>8 cadavers</li> <li>67 nodules</li> <li>Chen et al.</li> <li>Respiration<br/>2019</li> </ul>             | <ul> <li>Artificial tumour<br/>targets of size 10-<br/>30mm were implanted<br/>into 8 cadavers</li> <li>R-EBUS, fluoroscopy<br/>and EMN were used<br/>simultaneously</li> <li>MONARCH system was<br/>used</li> </ul>   | • The overall DY was<br>97% (65/67)                                                                                                                                                    | <ul> <li>The mean nodule size was 20.4 mm</li> </ul>                                                                                                                                         |
| <ul> <li>Felding et al.</li> <li>Respiration<br/>2019</li> <li>N=29</li> <li>First human<br/>trial to assess<br/>feasibility</li> </ul> | <ul> <li>ION system</li> <li>mean lesion size of<br/>12.2 ± 4.2, 12.3 ± 3.3,<br/>and 11.7 ± 4.1 mm in<br/>the axial, coronal, and<br/>sagittal planes</li> <li>R-EBUS, fluoroscopy<br/>and VNB were allowed</li> </ul> | <ul> <li>TBNA, brushings, BAL<br/>and biopsy were<br/>allowed</li> <li>Nodule was reached in<br/>28/29 cases</li> <li>RUL nodule of size<br/>11.1 mm was not<br/>accessible</li> </ul> | <ul> <li>Done under GA</li> <li>Prior suctioning and clearance of airways was done prior</li> <li>No pneumothorax</li> <li>No bleeding</li> <li>DY was 79.3% (95% CI: 60.3–92.0%)</li> </ul> |

| Study                                                                                                                                                              | Methods                                                                                                                                                                                                                     | Results                                                                                                                                                                                                                                                      | Comments                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>RANB plus<br/>CBCT</li> <li>Benn et al</li> <li>Lung 2021</li> <li>n=52</li> </ul>                                                                        | <ul> <li>Single centre<br/>prospectively collected<br/>data</li> <li>Median nodule<br/>diameter was 17 mm<br/>in axial cuts and 14<br/>mm in coronal cuts<br/>and 17 mm in sagittal<br/>cuts</li> <li>ION system</li> </ul> | <ul> <li>Tissue diagnosis was obtained in 83% (49/59) of biopsied nodules</li> <li>10 nodules were reported as inconclusive</li> </ul>                                                                                                                       | <ul> <li>Done under GA with special ventilation protocols to avoid atelectasis</li> <li>3 times CBCT spins were done per procedure</li> <li>mean procedure time of 62 ± 24 min</li> <li>Pneumothorax- 2</li> </ul> |
| <ul> <li>PRECISE STUDY</li> <li>Abstract</li> <li>Preliminary<br/>data</li> <li>Nashville,<br/>CHEST 2022</li> <li>N=129</li> <li>Multicentre<br/>study</li> </ul> | <ul> <li>median nodule<br/>diameter was 16 mm</li> <li>median generation<br/>location of 7</li> <li>CT Bronchus sign was<br/>present in 25% of<br/>cases</li> <li>ION system</li> <li>SSRAB plus R-EBUS</li> </ul>          | <ul> <li>Diagnostic yield was<br/>104/129 (81%, 95% CI:<br/>73-87%)</li> <li>Subjects with vs.<br/>without a CT bronchus<br/>sign was 26/32 (81%)<br/>and 78/97 (80%)</li> <li>Sensitivity for<br/>malignancy was 84/97<br/>(87%, 95% CI: 78-93%)</li> </ul> | <ul> <li>Median procedure<br/>time was 52 min</li> <li>Pneumothorax- 4%</li> <li>Bleeding- 3%</li> </ul>                                                                                                           |

# BodyVision

- Augmented fluoroscopic navigation enhances nodule as well as airway visualization in an attempt to improve sensitivity of navigation-guided bronchoscopy using AI technology
- Chest tomosynthesis
- Augmented fluoroscopic navigation is designed to minimize CT to body divergence
- There are three available augmented fluoroscopic platforms currently available
- 1) Fluoroscopic navigation
- 2) BodyVision
- 3) SONIALVISION

#### Chest tomosynthesis

- Chest tomosynthesis is a radiographic technique that offers some of the tomographic benefits of CT at a lower radiation dose
- The average effective dose of chest tomosynthesis is 0.15 mSv
- The technology for performing chest tomosynthesis is not widely available
- The technique involves acquiring multiple angular radiographic projections of the chest using a conventional x-ray tube and detector and a special computer-controlled tube mover
- Reconstruction algorithms are then applied to create the image.
- For nodule detection, tomosynthesis is more sensitive than chest radiography but less sensitive than CT
- Approximately one-half of nodules measuring ≥6 mm on CT are detected with tomosynthesis
- Tomosynthesis cannot be used as the primary modality for nodule detection
- However, it may be useful to longitudinally follow known nodules in combination with CT

#### Fluoroscopic navigation

- The first and most established is Fluoroscopic Navigation (SuperDimension-Medtronic), which utilizes digital tomosynthesis by conventional fluoroscopy to visualize and reregister the target nodule location
- Improves positional accuracy of the navigation catheter due to real-time changes
- Assists with path correction if the nodule has changed locations during the procedure

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

Catheter

![](_page_48_Picture_3.jpeg)

![](_page_48_Picture_4.jpeg)

Fiducial marker

## BodyVision

- Another augmented fluoroscopy platform, LungVision (BodyVision), enables enhanced fluoroscopic visualization of airways with predetermined pathways as well as target lesions
- These enhanced views are obtained by utilizing preoperative CT planning software along with fluoroscopic registration

![](_page_50_Picture_0.jpeg)

![](_page_50_Figure_1.jpeg)

![](_page_50_Picture_2.jpeg)

#### SONIALVISION

- SONIALVISION (Shimadzu) was studied in 40 patients with radial EBUS with sheath guide combined with preprocedural chest tomosynthesis to serve as a map
- 4<sup>th</sup> generation of C-arm
- Armed with tomosynthesis
- Focussed on orthopaedic and dental speciality
- R and D into interventional pulmonology is very sparse

![](_page_51_Figure_6.jpeg)

![](_page_51_Picture_7.jpeg)

#### Workflow

![](_page_52_Picture_1.jpeg)

![](_page_52_Picture_2.jpeg)

![](_page_52_Picture_3.jpeg)

![](_page_52_Picture_4.jpeg)

![](_page_52_Picture_5.jpeg)

![](_page_52_Picture_6.jpeg)

| Study                                                                                                                                         | Methods                                                                                                                                                          | Results                                                                                                                                                                                                                        | Comments                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Aboudara et al.</li> <li>2019<br/>Respirology</li> <li>S-ENB (n=101)</li> <li>F-ENB (n=67)</li> </ul>                                | <ul> <li>Retrospective review<br/>of all ENB<br/>(SuperDimension<br/>MedTronic)</li> <li>C-arm LAO and RAO<br/>25°</li> <li>Done for 8-30 seconds</li> </ul>     | <ul> <li>The primary outcome<br/>of diagnostic yield was<br/>significantly higher in<br/>the F-ENB group (79%,<br/>53/67) than the S-ENB<br/>group (54%, 55/101)<br/>(P = 0.0019)</li> </ul>                                   | <ul> <li>Done under GA</li> <li>R-EBUS was allowed</li> <li>TBLBx, brushing, BAL<br/>and needle aspirations<br/>were done</li> </ul> |
| <ul> <li>Cicenia et al.</li> <li>Journal of<br/>bronchology<br/>and<br/>interventional<br/>pulmonology</li> <li>2020</li> <li>N=57</li> </ul> | <ul> <li>Prospective<br/>multicentre study in<br/>the US</li> <li>LungVision system</li> <li>Median and mean<br/>nodule size was 20.0<br/>and 27.6 mm</li> </ul> | <ul> <li>Of the 57 nodules<br/>targeted, 53 nodules<br/>(93%) were<br/>successfully localized<br/>and verified by REBUS</li> <li>The overall diagnostic<br/>yield of nodules<br/>sampled in the study<br/>was 75.4%</li> </ul> | <ul> <li>Done under moderate sedation</li> </ul>                                                                                     |
| <ul><li>Pertzov et al.</li><li>CHEST 2017</li><li>N=27</li></ul>                                                                              | <ul> <li>Single centre<br/>retrospective study</li> <li>LungVision system</li> </ul>                                                                             | <ul> <li>Median lesion size was<br/>25 mm (range 13-50)</li> <li>The overall diagnostic<br/>yield was 74% (20/27)</li> </ul>                                                                                                   | <ul> <li>Done under moderate sedation</li> <li>No pneumothorax</li> <li>No bleeding</li> </ul>                                       |

| Study                                                                                                                                                    | Methods                                                                                                                                                                                                                                                                                                     | Results                                                                                                                                                                                                       | Comments                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Pritchett et al.</li> <li>Journal of<br/>bronchology<br/>and<br/>interventional<br/>pulmonology<br/>2018</li> <li>n=60</li> </ul>               | <ul> <li>Single centre<br/>prospective study</li> <li>CBCT to confirm the<br/>location</li> <li>The average distance<br/>between lesion<br/>location as shown by<br/>LungVision augmented<br/>fluoroscopy and actual<br/>location measured by<br/>CBCT was 5.9mm<br/>(range: 2.1 to 10.0<br/>mm)</li> </ul> | <ul> <li>The median lesion<br/>diameter was 18.0 mm<br/>(range: 7.0 to 48.0<br/>mm)</li> <li>Localization success<br/>was 96.1%</li> <li>Diagnostic yield at the<br/>index procedure was<br/>78.4%</li> </ul> | <ul> <li>Average CT-to-body<br/>divergence was<br/>14.5mm (range: 2.6 to<br/>33.0 mm) from<br/>preprocedure CT to<br/>intraprocedural CBCT<br/>images</li> <li>Done under GA</li> </ul> |
| <ul> <li>Pertzov at al.</li> <li>Thoracic cancer<br/>2021</li> <li>LungVision<br/>navigational<br/>platform plus<br/>cryobiopsy</li> <li>N=63</li> </ul> | <ul> <li>Single centre<br/>prospective study</li> <li>LungVision followed by<br/>brushings, BAL and<br/>biopsy (3-5 forceps<br/>and 2 cryobiopsy)</li> </ul>                                                                                                                                                | <ul> <li>Median nodule size<br/>(IQR) was 25.0 mm<br/>(18–28)</li> <li>Diagnosis was<br/>achieved in 77.8%<br/>(49/63) overall</li> </ul>                                                                     | <ul> <li>Diagnosis was<br/>achieved in 81.8%<br/>(27/33) with the<br/>second-generation<br/>system, 73.3% (22/30)<br/>with the first<br/>generation system</li> </ul>                   |

#### How do we approach any case?

- CT bronchus sign- bronchoscopy
- EBUS-TBNA is simultaneously planned- bronchoscopy
- Pleural or subpleural nodules- TTNA
- Beyond this, it falls into centre experience and available tools
- These systems have a huge learning curve and are still far from perfect
- Patient preferences

#### Available armamentarium- our setup

- Ultrathin bronchoscope
- R-EBUS
- VBN
- Fluoroscopy
- Lung cryobiopsy (eccentric lesion on r-EBUS)
- CBCT?