DM Seminar Bronchoscopic Techniques For Evaluation Of Pulmonary Nodules

Dr SRIKANT K.M

Topics To Be Discussed

- Lung nodule management
- Role of non surgical biopsy- When to opt for?
- Diagnostic bronchoscopy techniques
- Current evidence
- Pros and Cons of available techniques

Setting In which pulmonary nodules are found

During Evaluation of respiratory symptoms

Lung cancer screening

Incidental

Wiener D. C et al ., CHEST 2020

Pulmonary Nodule On Imaging The next question?

Should we/when to intervene?

- Fleischer society guidelines
- BTS guidelines
- ACCP guidelines

Nodules detected during lung cancer screening

LUNG RADS scoring

During W/U of respiratory symptoms

Clinical feature/ Management change

Wiener D. C et al ., CHEST 2020

Modalities For Tissue Diagnosis

Surgical resection/Biopsy

Non Surgical Biopsy

- CT-guided Trans Thoracic Needle Biopsy(through the chest wall)
- Bronchoscopic techniques(through the airway)

Katsis et al ., Journal of Thoracic Disease 2020

Non Surgical Biopsy

- Intermediate/High risk of malignancy (patient not fit for surgical biopsy)
- Benign aetiology suspected which would require treatment e.g., PTB, Fungal pneumonia
- Irrespective of risk of malignancy/aetiology if diagnosis desired by patient

Which Procedure To opt For – Trans-thoracic/Bronchoscopic

Which Procedure To opt For – Trans-thoracic/Bronchoscopic

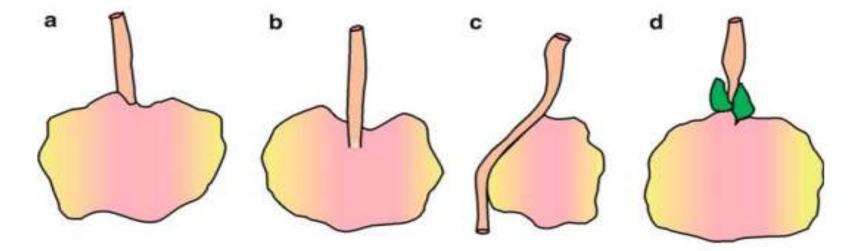


Fig. 2.2 Tumor-bronchus relationship: (a) Type I: bronchus is patent up to the tumor, (b) Type II: the bronchus is contained within the tumor mass, (c) Type III: the bronchus is compressed, narrowed and displaced by the tumor mass, but the bronchial mucosa is intact (d) Type IV in which the proximal bronchus is narrowed by the submucosal and peribronchial spread of the tumor, fibrosis, or enlarged lymph nodes

Bronchoscopic Techniques For Pulmonary Nodule Evaluation

Central lesions	Peripheral lesions
FOB Endobronchial biopsy	Radial EBUS
	Virtual Navigation Bronchoscopy
	Electro Magnetic Navigation
	Bronchoscopic Trans Parenchymal Nodule access
	Cone Beam Computed Tomography
	Robotic Bronchoscopy
	Fluoroscopy Based Navigation
	Ultra Thin Bronchoscope

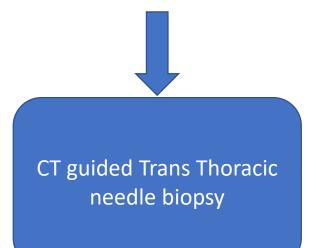
Kurman et al., Semin Respir Crit Care Med 2018;

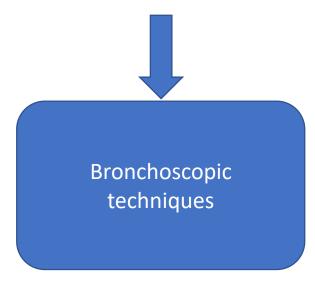
Central Pulmonary Nodule/Lesions

3.2.2.1. In patients suspected of having lung cancer, who have a central lesion, bronchoscopy is recommended to confirm the diagnosis. However, it is recommended that further testing be performed if bronchoscopy results are non-diagnostic and suspicion of lung cancer remains (Grade 1B).

Central Pulmonary Nodule (Endobronchial lesions)

- 35 Studies with central/endobronchial lesion included
- Central lesion identified as one presenting as exophytic growth / submucosal spread or causing extrinsic compression
- 4,507 patients were included in the analysis
- Direct forceps biopsy, brushings, washings and EBNA were the sampling techniques performed


Central(Endobronchial lesions)


- Analysis of data showed overall sensitivity of 88%
- Among the sampling techniques endobronchial biopsy had highest sensitivity(at least 3 samples)
- EBNA used in cases with submucosal tumour spread or peri bronchial tumour increased overall sensitivity

				Sen	sitivity (%	6)	
First Author	Year	No. of Patients ^a	All Methods	Endobr Biopsy	Brush	Wash	EBNA TBNA
Buccheri 96	1991	708		80	35	31	-
Jones ¹²⁷	2001	514	89	72	72	48	-
Oswald ⁷⁷	1971	434	. e	61	-	-	-
Lam ¹⁰²	1983	329	94	82	74	76	-
Pilotti ⁷³	1982	286		-	78	*	-
Gellert104	1982	218		78	-	+	-
Zavala ¹⁰⁹	1975	193	94	97	93	- 1	(÷
Govert 94	1996	177	85	81	48	43	-
Mak ⁹⁸	1990	125	87	76	52	50	-
Saita ¹⁰⁰	1989	105	2 A	48	30	*	-
Popp ⁹⁷	1991	99	24	93	79	-	-
Karahalli ¹²⁶	2001	98	90	83	68	32	69
Chaudhary74	1978	95	64	76	53	78	-
Schenk ⁷²	1987	91	71	56	40	29	45
Utz	1993	88		-	-	-	36
Win ¹²⁴	2003	78	85	61	27	45	42
Stringfield107	1977	78	64 - C	85	-	-	5÷
Wagner ⁷¹	1989	72	67	58	39	35	36
McLean ⁹²	1998	71	14 A A A A A A A A A A A A A A A A A A A	82	-	-	-
Kvale ¹⁰⁸	1976	71	54	71	77	63	÷
Bilaceroglu93	1997	68	96	-	66	-	90
Govert ⁹¹	1999	57	95	74	-	63	82
Sing ⁷⁰	1997	53	-		64	-	-
Gay ⁹⁹	1989	53	32	(14)	-	-	23
Chopra ⁷⁵	1977	51	34	66	72	51	-
Zisholtz ¹⁰³	1983	51	73	67	65	44	32
Gaber ¹²⁵	2002	39	90	79	74	54	54
Castella ⁹⁵	1995	39	1	-	-	-	87
Cox ¹⁰¹	1984	33	94	84	83	76	-
Dasgupta ⁹⁰	1999	32	97	-		-	78
Hsu ¹²³	2004	24	-	222	2	2	71
Bungay ⁸⁹	2000	24	92	0.20	÷	-	0.06
Baaklini ⁸⁸	2000	22	82	-	-	2	1.0
McDougall ¹⁰⁵	1981	16	-	50	23	2	1.0
Radke ¹⁰⁶	1979	15	87	-	-	12	
Summary		4,507	88	74	61	47	56

Rivera et al ., CHEST 2013

Peripheral Pulmonary Nodule evaluation

Trans Thoracic Needle Aspiration/Biopsy –Role in peripheral pulmonary nodule

Study	Population	Outcome	Results
Systematic Review	48 articles 10,383 lesions	Diagnostic accuracy Complications	92.1% Pneumothorax 20.5% (ICTD requiring 7.3%) Haemorrhage 2.8%

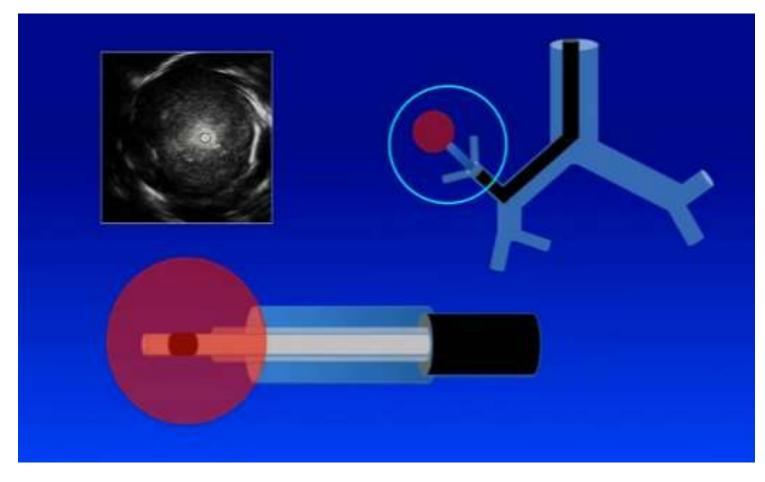
Size/Nature of lesion	<2cm	<1cm	GGO
Diagnostic accuracy	92.8%	92.6%	92.5%

DiBardino DM et al., J Thorac Dis 2015

Disadvantage Of TTNB

- Complications
- Inability to perform simultaneous mediastinal staging
- Risk factors associated with increased incidence of pneumothorax include – Old age > 60 yr, presence of emphysema, deeper location, need to traverse fissure, smaller lesion size, number of times pleura was punctured

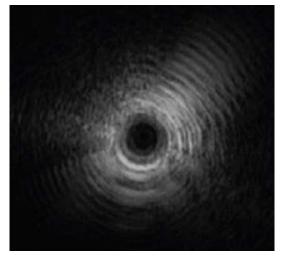
Peripheral Pulmonary Nodule – Bronchoscopic techniques

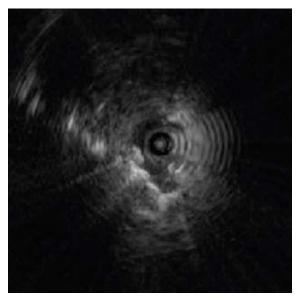

Central lesions	Peripheral lesions
FOB Endobronchial biopsy	Radial EBUS
	Virtual Navigation Bronchoscopy
	Electro Magnetic Navigation
	Bronchoscopic Trans Parenchymal Nodule access
	Cone Beam Computed Tomography
	Robotic Bronchoscopy
	Fluoroscopy Based Navigation
	Ultra Thin Bronchoscope

Kurman et al., Semin Respir Crit Care Med 2018;

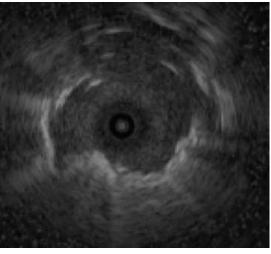
Radial Endo Bronchial Ultra Sound(r-EBUS)

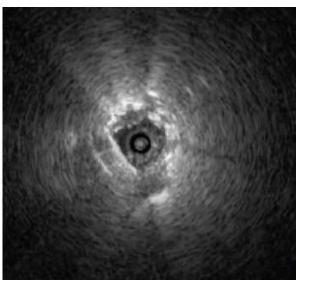
- r-EBUS employs flexible catheter that houses rotating 20 MHz US transducer
- 360° image of airway wall and surrounding structure is produced by US
- r-EBUS probe can be advanced directly or through guide sheath
- Once lesion is identified radial probe is removed and biopsy instrument are introduced


Radial Endo Bronchial Ultra Sound(r-EBUS)


Once within the lesion hyperechoic line represents junction b/w normal lung and lesion

Type of US image generated depends upon Location of lesion Nature of lesion


Radial Endo Bronchial Ultra Sound(r-EBUS) images


Normal

Eccentric solid lesion

Concentric solid lesion

GGO

Diagnostic Yield Of r-EBUS

Study	Population	Intervention	Outcome
Retrospective review	467 cases with Peripheral pulmonary lesions	Only r-EBUS for diagnosis	96% nodules identified Diagnostic yield – 69% Complication rate Pneumothorax – 2.8% ICTD required – 1.7%

	1-2cm	2.1-3cm	3.1-4cm	4.1-5cm	>5cm
Diagnostic(%)	83(58)	99(72)	54(77)	41(87)	35(88)

Diagnostic yield increased with increasing size of lesion

Factors affecting yield from r-EBUS

Diagnostic yield with concentric view – 84%

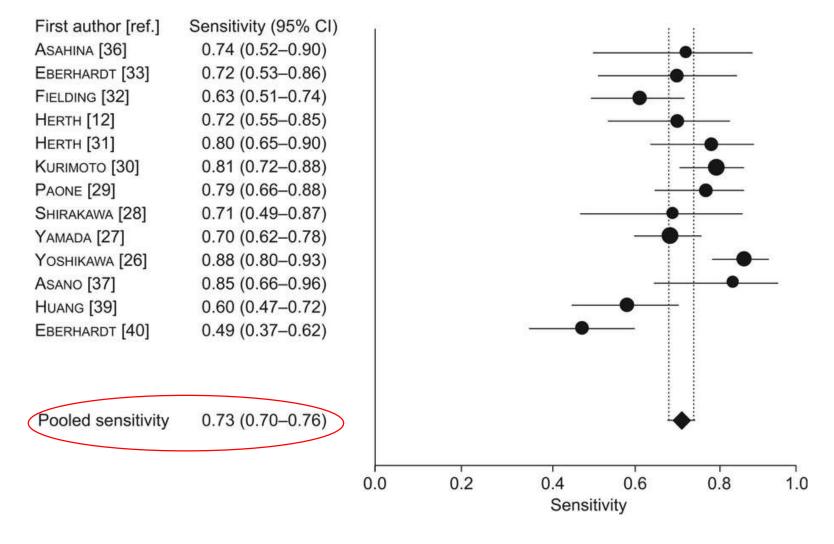
Diagnostic yield with eccentric view - 48%

Diagnostic yield with guided sheath – 72%

Diagnostic yield with 4mm bronchoscope – 70%

Sampling instruments used – TBNA + CDP v/s CDP – 78.4% v/s 60.6%

Factors affecting yield from r-EBUS


Factors	Chavez e 2015		Tamiya e 2013		Yamada e 2007		Umeda 2014		Okachi e 2016		Minezawa 2015		Yoshikawa 2007		Kurimot 200	o et al., 4 ^{4]}	Fielding of 2008	
	Diagnostic rate (%)	Ρ	Diagnostic rate (%)	P	Diagnostic rate (%)	Ρ	Diagnostic rate (%)	P	Diagnostic rate (%)	Ρ	Diagnostic rate (%)	P	Diagnostic rate (%)	P	Diagnostic rate (%)	P	Diagnostic rate (%)	P
Probe position																		
Within	68	0.001	92.1	0.004	83	<0.001	80.9*	<0.0001	77.1	<0.001	20	32	- 32	141	87	<0.0001	12	- 53
Adjacent/invisible	54		60.0		61/4		7.7*		68.9/19.4		÷				42			
Bronchus sign																		
Positive			1 C		71	0.211	74.2	0.0002	68.8	0.005	82	+	67.3	<0.01		0	- 3	- 63
Nogativo	0.20				45		44.0		41.9		11		0		12		10	
Lesion size by diameter (mm)																		
≥20, ≤30	71	0.179	74.1	0.534	91*	<0.001		*	71,3*	0.031	82.6	0.01	75.6*	<0.01	77	0.99/0.41	- ee	+2
<20	62		80,5		68ª				55.6'		63.8		29.7		76/76/69*	/0.96		
Consistency																		
Solid	68	1.000	91.7	0.007	÷.	±.:	71.6	0.017	68.6	0.061	73.2	0.24	67	<0.05	13	52	12	22
GGO (pure/ part-solid)	67		62.5				52.8		48.4/42.9		66.7		35		3		S.	
Lobe location																		
Upper (right/left)	66	0.803	82.4	0.382	60/76	0.66	65.3	0.23	65.6	0.662	71.4	0.82	48.6/68.2	<0.05	-40°	0.003	1.2	
Middlo/lingula	73		80.0		67		84.2		70.6		73,11		90/80		54-100		1	
Lower	67		70.8		67/65		64.4		60.0				54.8/72.2					
Relationship with pleura																		
Not touching	77	0.001		14	(4)				940 -	10.0	÷	14		141	÷.	10 A	74	<0.01
Touching/ within 10 mm*	55		5		32		2		8		8		<i>.</i> *:		10		35	
Visibility under fluoroscopy																		
Cloarly visiblo	1.1		2	14		11 C			1	100	81.9	0.01	4	121	67	0.96	14	+
Vaguo/invisiblo			×.								63.6		100		74		1.0	
Relationship between lesion and bronchus																		
A	141	14	2	22	33	22	23	20	33	22	83.7	0.001	33	243	52		Si	- 33
B	190		100		(4)		- C		(2)		65.3		(+)		10		28	
c	-				2				-		28.6		61		12		- S	
SUV																		
-2.8					-		46.8	<0.0001	-		-	1.7						-
≥2.8			1		- 12		75.5								- Q		1	

Concentric view most
important factor
affecting the yield

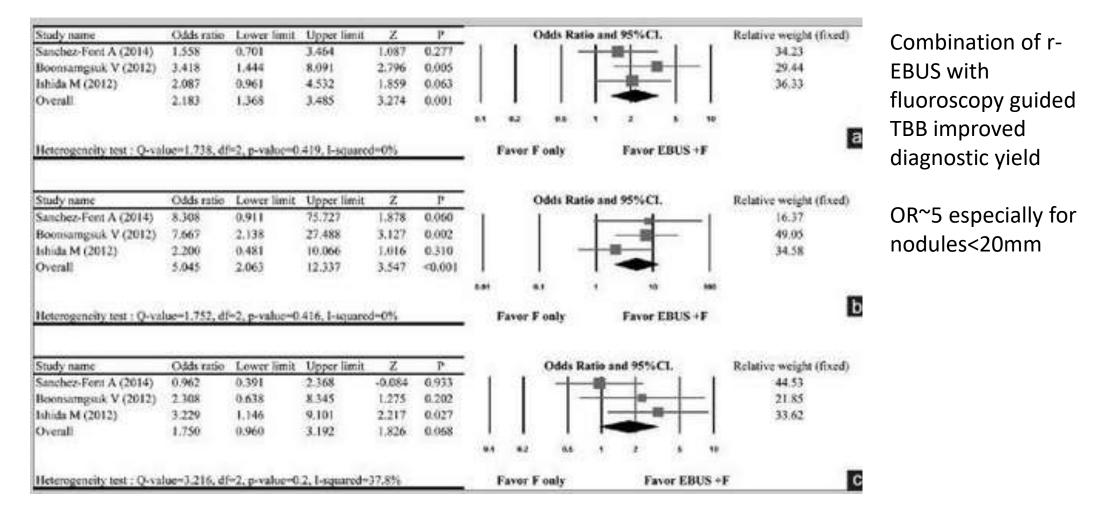
*15-30 mm, *215 mm, Within and adjacent, *1/20 mm, *20 mm, *20 mm, *20 mm, *210 mm

Zhang et al ., Endosc US 2017

Diagnostic Yield Of r-EBUS

Pooled pneumothorax rate of 1%

Steinfort D P et al., ERJ 2011


Diagnostic Yield Of r-EBUS

-Inverse Weighted Diagnostic Yield Overall and by Modality

Technology	Studies, No.	Weighted Proportion, %	95% CI	Q Statistic	Q P Value
VB	10	72.0	(65.7-78.4)	21.0	.01
ENB	11	67.0	(62.6-71.4)	13.3	.21
GS	10	73.2	(64.4-81.9)	63.8	< .0001
U	11	70.0	(65.0-75.1)	15.2	.12
R-EBUS	20	71.1	(66.5-75.7)	84.2	< .0001
All	39	70.0	(67.1-72.9)	119.4	< .0001

Wang Memoli et al., CHEST 2013

Metaanalysis r-EBUS+ Fluoro guided TBB V/s Fluoro TBB

Jian Y et al ., Ann Thorac Med 2017

Diagnostic Yield Of r-EBUS

Study	Population	Intervention	Outcome
Prospective, Randomized trial	N=197 Lung nodule 1.5- 5cm	85 Std Bronch-Fluoro 112 Thin Bronch-rEBUS	Diagnostic yield 37.7% v/s 49.1% (p=0.11) 46 patients who had non diagnostic report in Std arm crossed over 7 of them were diagnosed

Bivaria	Bivariate Analyses						
Factors	Bronchoscop	ic Diagnosis					
	No. (%)	P Value					
Lobulated							
No (n = 142)	142 (50.0)	.008					
Yes (n = 55)	55 (29.1)						
Size of lesion							
15-25 mm (n = 65)	20 (30.8)	.002					
26-35 mm (n = 62)	27 (43.6)						
36-50 mm (n = 70)	40 (57.1)						
R-EBUS imaging							
Ecentric (n = 61)	19 (31.2)	.014					
Concentric (n = 113)	57 (50.4)						

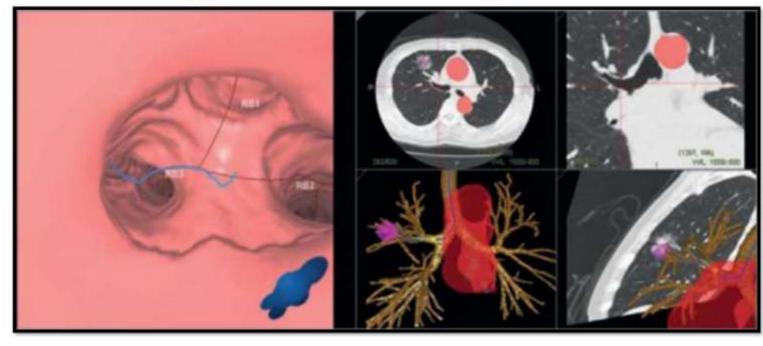
Multivariable Logistic Regression Model						
Factors	OR	95% CI				
Study arm (TB-EBUS vs SB-F)	1.74	0.87-3.46				
Lobulated (no vs yes)	3.35	1.51-7.43				
Size of lesion	1.06	1.02-1.09				

Tanner N T et al., CHEST 2018

r-EBUS

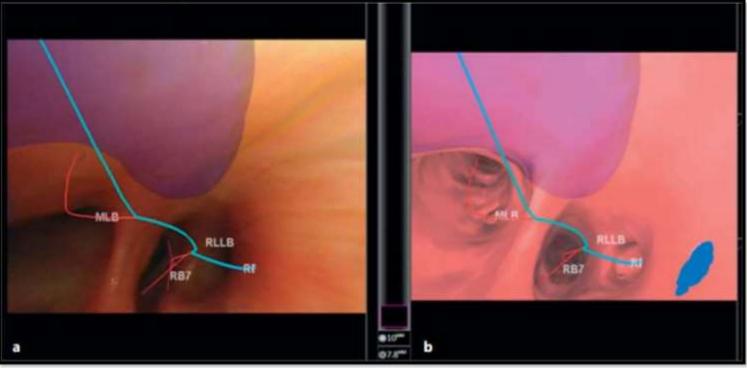
Advantages	Disadvantages
Comparatively safe and feasible technology	Precise localization of eccentrically located nodule is difficult
Real time visualisation feasible prior to biopsy	Lacks navigation platform
Yield better than conv. bronchoscopy	Ground glass nodules are difficult to visualise

- 3 dimensional images of tracheobronchial tree are generated from helical CT scan data obtained from patient
- Starting point and target point are selected on CT
- VBN software creates a virtual bronchoscopic route to the lesion
- During bronchoscopy the navigation system guides the user to make correct turns on the way to target lesion


Currently available VBN systems include
Bf-NAVI

LungPoint DirectPath

VBN consists of three phases
Planning phase
Guidance phase
Biopsy phase


Planning Phase	Guidance Phase	Biopsy Phase
CT images are acquired according to a specific protocol Images are utilised by specialized software to create virtual bronchoscopic pathway to target lesion	Virtual images of airway are synchronised with real time images during bronchoscopy	Lesion sampled either as it is or after confirmation with r-EBUS and fluoroscopy

Lungpoint Planning Screen

- Target site is marked
- Virtual pathway to lesion is generated

LungPoint Guidance Screen

Real time and
virtual images
are displayed
side by side to
guide the user
to target

Asano F et al ., Respiration 2014

VBN Evidence Pooled analysis of data

First author	Year	Study design	VBN system	Bronchoscope external diameter	Confir- mation of arrival	Lesion size selection	Le- sions, n	Diag- nostic yield		Diagnostic yield for lesions <2 cm	Compli- cations, n	The second second second	Complications	Overall diagnostic yield 73.8%
Shinagawa [16]	2004	Pro	Not used	2.8 mm	CT	<2 cm	26	65.4%	26	65.4%	0	0.0%	None	-
Asahina [26]	2005	Pro	Not used	4.0 or 5.3 mm	EBUS	≤3 cm	30	63.3%	18	44.4%	0	0.0%	None	
Asano [11]	2006	Pro	Bf-NAVI	2.8 mm	CT	≤3 cm	38	81.6%	26	80.8%	n/a	n/a	n/a	
Shinagawa [17]	2007	Pro	Bf-NAVI	2.8 mm	CT	<2 cm	71	70.4%	71	70.4%	1	1.4%	1 PTX	Complicatio
Tachihara [29]	2007	Pro	Bf-NAVI	2.8 or 5.2 mm	Flu	≤3 cm	96	62.5%	77	54.5%	0	0.0%	None	rate 1%
Asano [10]	2008	Pro	Bf-NAVI	4.0 mm	EBUS	n/a	32	84.4%	15	73.3%	0	0.0%	None	
Eberhardt [33]	2010	Pro	LungPoint	2.8 mm	Non-Flu	n/a	25	80.0%	n/a	n/a	1	4.0%	1 PTX (0 CTI)	
Omiya [30]	2010	Retro	Bf-NAVI	2.8 and 4.0 mm	Flu	≤3 cm	37	75.7%	13	76.9%	n/a	n/a	n/a	
Iwano [31]	2011	Retro	Not used	2.8 mm	Flu	n/a	122	78.7%	30	73.3%	n/a	n/a	n/a	
Oshige [27]	2011	Pro	Bf-NAVI	4.0 or 5.9 mm	EBUS	n/a	57	84.2%	22	72.7%	0	0.0%	None	
Ishida [24]	2011	RCT	Bf-NAVI	4.0 mm	EBUS	≤3 cm	99	80.8%	58	75.9%	0	0.0%	None	
Asano [32]	2013	RCT	Bf-NAVI	2.8 mm	Flu	≤3 cm	167	67.1%	114	64.9%	4	2.4%	1 PTX (0 CTI), 2 Hemo, 1 Brad	
Tamiya [28]	2013	Pro	LungPoint	4.0 mm	EBUS	≤3 cm	68	77.9%	27	74.1%	n/a	n/a	n/a	
Summary							868	73.8%	497	67.4%	(1.0%		

Studies of VBN for the diagnosis of PPLs

Brad = Bradycardia; CTI = chest tube insertion; Flu = fluoroscopy; Hemo = hemorrhage; n/a = not available; Pro = prospective study; PTX = pneumothorax; Retro = retrospective study.

Asano F et al ., Respiration 2014

VBN Evidence

Study	Population	Intervention	Outcome
RCT Ishida et al, 2011	N= 200 PPL<3cm	VBN assisted group v/s Non VBN assisted group 4mm bronchoscope EBUS-GS plus fluoro used	Diagnostic yield 80.4% v/s 67.4%(p=0.03) Higher yield in lesion <20mm
RCT Asano et al, 2013	N=350 PPL<3cm	VBN assisted group v/s Non VBN assisted group 2.8mmbronchoscope Fluoro used	Diagnostic yield 67.1% v/s 59.9%(p=0.173) Complication rate 1%

Factors affecting diagnostic yield in VBN

- Yield was low in left lower lobe sup seg lesions
- Yield was low in non solid lesions
- Yield was low in eccentric lesions

Advantages Of VBN

- Technically Simple procedure
- Safe
- Diagnostic yield better than conventional bronchoscopy

Limitations

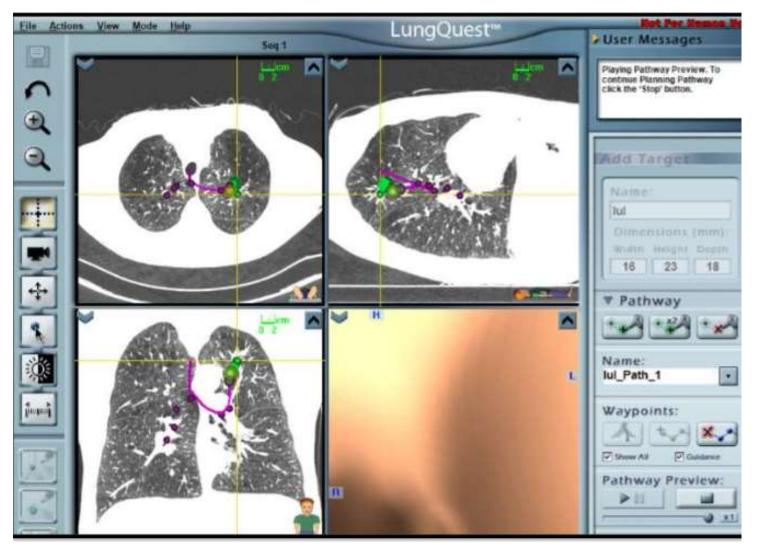
• Pre planned images are used to reach the lesion(No real time navigation)

Electro-magnetic Navigational Bronchoscopy

- Involves creating electromagnetic field around the chest which is utilized to localize or guide a endoscopic tool
- Two systems of EMN available are Super dimension system

SpinDrive system

Becker H D et al., Respiration 2003

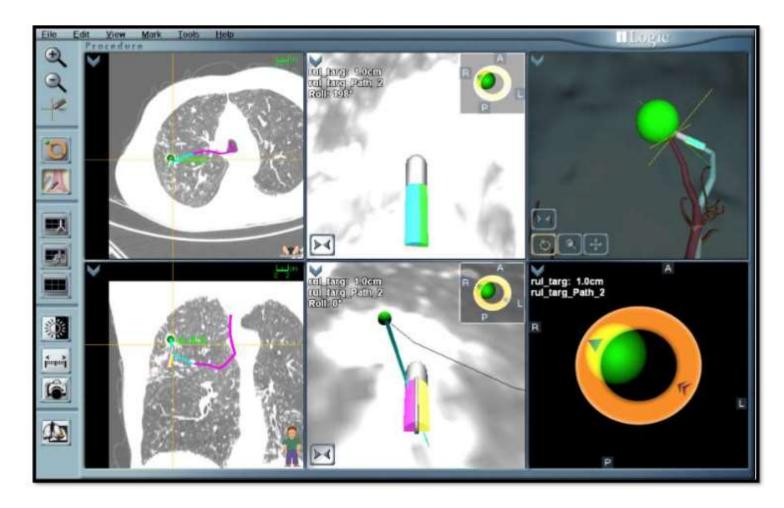

Components Of Electro-magnetic Navigational Bronchoscopy

- Virtual bronchoscopy planning software
- Location board which generates electromagnetic field
- Extended working channel
- Eight way steerable catheter
- Locatable guide containing sensors

Electro-magnetic Navigational Bronchoscopy Planning phase

- CT scan obtained with specific slice thickness is loaded into navigation software
- Axial, sagittal, coronal and virtual endobronchial views are generated
- 6-7 easily locatable registration points are marked

Electro-magnetic Navigational Bronchoscopy


Electro-magnetic Navigational Bronchoscopy Navigation phase

- Extended working channel and locatable guide are inserted through working channel of bronchoscope
- CT images and real time bronchoscopic images are matched by a process called registration
- Registration is measured as AFTRE(Average fiducial target registration error) and should be <5mm
- Bronchoscope is wedged into the subsegment leading to the lesion

Electro-magnetic Navigational Bronchoscopy Navigation phase

- Extended working channel and locatable guide are slowly advanced by keeping the selected way point in the centre of circle shown on tip view
- Locatable guide can be steered to obtain correct orientation
- Once LG tip is in close proximity to lesion, it is removed
- EWC position can be confirmed with fluoroscopy/R-EBUS and sampling done

Electro-magnetic Navigational Bronchoscopy Navigation phase

Electro-magnetic Navigational Bronchoscopy Evidence

Review

Respiration

Respiration 2014;87:165-176 DOI: 10.1159/000355710 Received: January 2, 2013 Accepted after revision: September 14, 2013 Published online: January 3, 2014

Diagnostic Yield and Safety of Electromagnetic Navigation Bronchoscopy for Lung Nodules: A Systematic Review and Meta-Analysis

Gregoire Gex^a Jacques A. Pralong^a Christophe Combescure^b Luis Seijo^d Thierry Rochat^a Paola M. Soccal^{a, c}

^a Division of Pulmonology, Department of Medical Specializations, ^bDivision of Clinical Epidemiology, Department of Community Medicine, and ^cDivision of Thoracic Surgery, Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland; ^dPulmonary Department, Fundación Jimenez Diaz-CIBERES, Madrid, Spain

15 Trials with 1033 lung nodules included

GEX G et al ., Respiration 2014

Electro-magnetic Navigational Bronchoscopy

Study, first author	Number/ total	Diagnostic yield (95% CI)	Forest plot
Becker, 2005 [3] Hautmann, 2005 [13] Gildea, 2006 [14] Schwarz, 2006 [15] Makris, 2007 [16] Eberhardt, 2007 [17] Eberhardt, 2007 [18] Wilson, 2007 [19] Bertoletti, 2009 [20] Eberhardt, 2009 [20] Eberhardt, 2009 [21] Lamprecht, 2009 [22] Seijo, 2010 [23] Mahajan, 2011 [24] Lamprecht, 2012 [26] Pearlstein, 2012 [25]	18/30 11/16 32/56 9/13 25/40 52/93 23/39 35/40 151/271 33/54 38/55 10/13 34/51 24/49 94/112 67/101	60.0 (40.6; 77.3) 68.8 (41.3; 89.0) 57.1 (43.2; 70.3) 69.2 (38.6; 90.9) 62.5 (45.8; 77.3) 55.9 (45.2; 66.2) 59.0 (42.1; 74.1) 87.5 (73.2; 95.8) 55.7 (49.6; 61.7) 61.1 (46.9; 74.1) 69.1 (55.2; 80.9) 76.9 (46.2; 95.0) 66.7 (52.1; 79.2) 49.0 (34.4; 63.7) 83.9 (75.8; 90.2) 66.3 (56.2; 75.4)	
Pooled (random effects) $I^2 = 66\%$		64.9 (59.2; 70.3)	—
			50.0% 100.0%

Electro-magnetic Navigational Bronchoscopy

Reported significant predicting factors in univariate analysis

Location in lower lobe [18] Size of the nodule [23] Bronchus sign [23] AFTRE [16] Nodule visualization with radial-probe EBUS [18, 21] Catheter suction technique versus forceps biopsies [21]

Reported significant predicting factors in multivariate analysis

Bronchus sign [23]

¹ Distance between the tip of the sensor and the center of the nodule.

Pneumothorax occurred in 3.1% patients 1.6% requiring ICTD

Table 5. Study level characteristics associated with significant modification of ENB's performance

		Studies, n	Pooled outcome (95% CI)	P values
			diagnostic yield	1
General	yes	9	69.2% (60.6-76.7)	0.02
anesthesia	no	7	57.5% (53.2-61.8)	
			sensitivity for malignancy	
ROSE	yes	4	80.2% (72.1-86.4)	0.006
	no	10	66.3% (60.3-71.8)	
			diagnostic yield	
Fluoros-	yes	6	56.3% (51.5-60.9)	0.006
copy	no	10	68.8% (61.3-75.4)	

EMN – NAVIGATE Trial

Study	Population	Characteristics	Outcome
Prospective , Multicentre cohort study	29 sites / n = 1157 patients	Median lesion size 20mm ENB using Superdimension system Fluoroscopy – 90% R-EBUS – 57%	12 month diagnostic yield 73% Pneumothorax rate 2.9 %

Electro-magnetic Navigational Bronchoscopy

Benefits	Drawbacks
Effective	Expensive
Safe	?Safety in patients with pacemaker/defibrillator
	CT to body divergence (movement of nodule with respiration)

Ultra Thin Bronchoscope

- Smaller variants of flexible bronchoscope ranging in size from 2.8-3.5mm
- By virtue of their smaller diameter can be inserted beyond subsegmental bronchi
- Have better manoeuvrability and wider reach

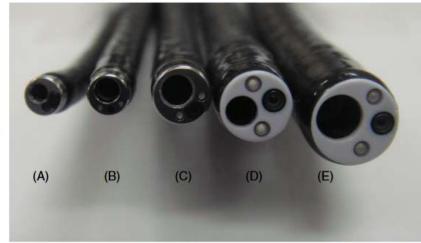


Figure 1 Flexible bronchoscopes. (A) A 2.8-mm bronchoscope with a 1.2-mm channel; (B) a 3.0-mm bronchoscope with a 1.7-mm channel; (C) a 4.0-mm bronchoscope with a 2.0-mm channel; (D) a 4.8-mm bronchoscope with a 2.0-mm channel; and (E) a 5.9-mm bronchoscope with a 3.0-mm channel.

Ultra Thin Bronchoscope

Original Research Thoracic Oncology

Use of an Ultrathin vs Thin Bronchoscope Check for updates for Peripheral Pulmonary Lesions A Randomized Trial

Masahide Oki, MD; Hideo Saka, MD; Furnihiro Asano, MD; Chiyoe Kitagawa, MD; Yoshihito Kogure, MD; Akifumi Tsuzuku, MD; and Masahiko Ando, MD

Study	Population	Intervention	Outcome
RCT	N=356 Nodule <30 mm	Thin bronchoscope(4mm) v/s Ultra thin bronchoscope(3mm) EBUS/Fluoro/VBN guidance used	Diagnostic yield Procedure duration Complication

OKI M et al .. CHEST 2019

Ultra Thin Bronchoscope

Variables	UTB Group (n	= 177)	Thin Bronchosco (n = 179		P Value	P Value fo Interaction
Total	124/177 (70.1)		105/179 (58.7)		.027	
Lesion size in the largest diameter on CT scan			-			
≤ 20 mm	64/102 (62.7)	P004	52/101 (51.5)	P = .027	.120	P = .664
$>$ 20 to \leq 30 mm	62/75 (82.7)		53/78 (67.9)		.041	
Lesion nature						
Malignant	111/142 (78.2)	P < .001	99/140 (70.7)	P < .001	.173	P = .172
Benign	13/32 (40.6)		6/37 (16.2)		.032	
Unknown	0/3 (0)		0/2 (0)		1222	
Lobar location						
Upper lobe	56/85 (65.9)	P = .244	61/97 (62.9)	P = .212	.757	P = .089
Other	68/92 (73.9)		44/82 (53.7)		.007	
Lesion location from the hilum						
Intermediate	29/40 (72.5)	P = .701	26/37 (70.3)	P = .107	>.999	P = .163
Peripheral	95/137 (69.3)		79/142 (55.6)		.019	101 01040000
Locational relationship with pleura						
Apart from the pleura	73/102 (71.6)	P = .608	67/105 (63.8)	P = .096	.368	P = .448
Abutting on the pleura	51/75 (68.0)		38/74 (51.4)		.046	
Bronchus sign						
Present	97/130 (74.6)	P = .028	87/133 (65.4)	P = .002	.109	P = .549
Absent	27/47 (57.4)	-	18/46 (39.1)		.098	
Appearance on CT scan				1		
Solid	107/148 (72.3)	P = .141	94/153 (61.4)	P = .067	.051	P = .784
Part-solid nodule	17/29 (58.6)		11/26 (42.3)	-	.285	

Overall yield 70.1% v/s 58.7% Procedure duration Complication

Favoured Ultra thin bronchoscope arm

Bronchoscopic Trans parenchymal Nodule Access(BTPNA)

- Newer modality for nodules without air bronchus sign or nearby patent airway
- BTPNA generates a route from airway to nodule across parenchyma avoiding vessels after analysing the CT
- Point of Entry(POE) in airway is identified using BTPNA software
- During bronchoscopy POE is reached under VB guidance
- Coring needle is used to penetrate the wall and avascular track to nodule is created

Bronchoscopic Trans parenchymal Nodule Access(BTPNA)

- Sheath is introduced under fluoroscopic guidance to the lesion
- Biopsy forceps are introduced to sample the lesion

Gompelmann et al., JTO 2019

Bronchoscopic Trans parenchymal Nodule Access(BTPNA) Feasibility Studies

Study	Population	Device	Outcome
Herth F J et al., Thorax 2015	N=12 Nodules of size 10mm to 40mm 1cm from pleural surface	Archimedes VBN system	Adequate biopsy in 10 patients(83%) No adverse events
Harzheim D et al., Respiration 2016	N=6	Archimedes VBN system	Adequate biopsy in 5/6 2 pneumothorax 1 requiring ICTD

Trans Bronchial Access Tools(TBAT)

- Tool similar to BTPNA
- Uses ENB to generate virtual pathway to lesion across parenchyma
- Multicentre trial utilizing above modality is ongoing EAST 2 trial

Katsis et al ., Journal of Thoracic Disease 2020

- Fluoroscopy can be utilized for real time sampling of radiopaque lesions
- However localization of small and ground glass nodules is difficult
- Cone beam CT is a variant of CT which utilizes cone shaped x ray beam and two dimensional detectors
- CBCT enables acquiring of more volumetric data with fewer rotations
- Use of ENB to navigate to lesion plus use of fluoro and CBCT to confirm position within target lesion be combined greater diagnostic yield can be achieved

ORIGINAL INVESTIGATION

Cone-Beam CT With Augmented Fluoroscopy Combined With Electromagnetic Navigation Bronchoscopy for Biopsy of Pulmonary Nodules

Michael A. Pritchett, DO, MPH,*† Stéphanie Schampaert, PhD,‡ Joris A.H. de Groot, PhD,‡ Charles C. Schirmer, MD,§ and Imramsjah van der Bom, PhD‡

Single centre study

OPEN

CBCT with fluoroscopy combined with ENB

Feasibility and efficacy study

Prittchett et al ., J Bronchol Intervent Pulmonol 2018

- Procedure was done under GA
- From baseline CT target lesion was characterized
- CT data was loaded onto EMN system
- CBCT was acquired post intubation, in which lung nodule was highlighted in a process called segmentation
- Bronchoscope was introduced into airway and navigated towards nodule using EMN
- Nodule segmentation was visualized in an overlay with live fluoroscopy
- Final position was confirmed with fluoroscopy

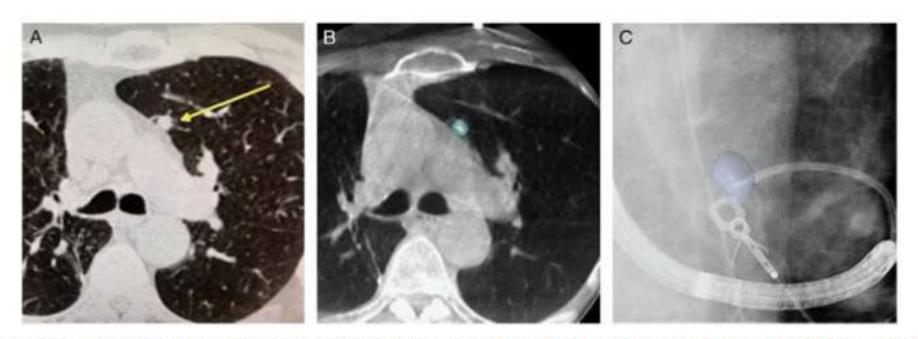


FIGURE 1. Illustration of the different imaging sources involved using CBCT with AF during ENB-guided biopsy proce dures. CT data were acquired before the procedure (Yellow arrow shows the target nodule) (A). Intraoperative CBCT data were acquired and 3-dimensional nodule segmentation was performed (B). Three-dimensional nodule segmentation was visualized in overlay with live fluoroscopy: AF (C). AF indicates augmented fluoroscopy; CBCT, cone-beam computed tomography; ENB, electromagnetic navigation bronchoscopy.

TABLE 3. Diagnostic Performance of ENB and CBCT With Augmented Fluoroscopy

	Charles Francesco and and a
Dragnostic	Performance
as suggested as	

	Diagnostic Yield (95% CI)	Diagnostic Accuracy (95% CI)*
All lesions (n = 92) (mm)	83.7% (74.8%-89.9%)	93.5% (86.5%-97.0%)
Lesions ≤ 10 (n = 19)	84.2% (62.4%-94.5%)	89.5% (68.6%-97.1%)
Lesions ≤ 20 (n = 65)	83.1% (72.2%-90.3%)	90.8% (81.3%-95.7%)
Lesions > 20 (n = 27)	96.3% (81.7%-99.8%)	100% (87.5%-100%)
Minimum sensitivity for malignancy [†]	91.3% (82.3%-96.0%)	
Maximum sensitivity for malignancy ¹	95.5% (87.5%-98.4%)	
Minimum prevalence of malignancy [‡]	71.7% (61.8%-79.9%)	
Maximum prevalence of malignancy [†]	75.0% (65.3%-82.7%)	
Minimum negative predictive value	79.3% (61.6%-90.2%)	
Maximum negative predictive value	89.7% (73.6%-96.4%)	

*Diagnostic accuracy represents the malignant and benign lesions as well as the indeterminate lesions confirmed as benign with clinical and radiographic follow-up divided by the total number of lesions biopsied.

[†]Minimum sensitivity and maximum prevalence were based on the assumption that patients with uncompleted follow-up (n = 3) actually had lung cancer (ie, were false negative).

[‡]Minimum sensitivity and prevalence were based on the assumption that patients with uncompleted follow-up (n = 3) actually had lung cancer (ie, were false negative).

CBCT indicates cone-beam computed tomography; CI, confidence interval; ENB, electromagnetic navigation bronchoscopy.

Robotic Bronchoscopy

- Robotic bronchoscope consists of robotic arms that contain rotatory pulleys that drive the bronchoscope
- Available robotic system Auris monarch and Intuitive

Robotic arm

Endoscope attached

Prittchett et al ., J T O 2018

Robotic Bronchoscopy

- Robotic scope is propelled using a hand held controller
- Scope has an outer and inner sheath, has optical capabilities and a separate suction channel
- EMN is used for guidance

Prittchett et al ., J T O 2018

Data On Robotic Bronchoscopy

	Population	Outcome	Adverse events
Single centre Feasibility study Rojas solano et al ., J Bronchol Intervent Pulmonol 2018	N=15 Peripheral lung nodules with bronchus sign (size -2.6cm)	Biopsy sample obtained in 93% patients	Nil
Feasibility study Fielding D et al ., CHEST 2018	N=30 Nodule size 12.5mm +/- 4.3mm with bronchus sign	Diagnostic yield – 83%	Nil

Robotic Bronchoscopy

Advantage	Drawbacks
Direct visualisation of peripheral airways and biopsy tools	Limited data
Precise control of biopsy instruments	Cost
	Availability and learning curve

Role Of Cryo Biopsy

 Larger sample and due to deeper effect lesion adjacent to airway can be sampled

Study	Population	Outcome
Schumann et al ., ERJ 2014	N=31 1.2mm Cryoprobe used	Larger sample size (yield 74.2%) 11.17mm2 v/s 4.69mm2 1 moderate bleed
Herath S et al ., Respirol 2018	N=6 1.9mm Cryoprobe used	Larger sample size No complication
Kho et al ., ERJ 2019	N=114 1.9mm Cryoprobe used	Diagnostic yield in eccentric lesion better with cryobiopsy 75% v/s 48.8% Moderate bleed in 8%

Meta analysis/Pooled analysis of bronchoscopy procedures for diagnosis of pulmonary nodules

Study	Sites/Patients	Yield/Sensitivity
2012 Meta analysis ¹	39 studies / 3004 patients	Overall -70% >2cm – 81% <2cm – 61% Pneumothorax rate – 1.5%
2013 ACCP guidelines ²	35 studies / 4507 patients	Central lesion – 88%
	34 studies / 5742 patients	Peripheral lesion – 78%
	10 studies / 1367 patients	< 2cm – 34% >2cm – 63%

Weng memoli et al . , CHEST 2012
Rivera et al ., CHEST 2013

Diagnostic Yield Of bronchoscopy procedures

-Inverse Weighted Diagnostic Yield Overall and by Modality

Technology	Studies, No.	Weighted Proportion, $\%$	95% CI	Q Statistic	Q P Value
VB	10	72.0	(65.7-78.4)	21.0	.01
ENB	11	67.0	(62.6-71.4)	13.3	.21
GS	10	73.2	(64.4-81.9)	63.8	< .0001
U	11	70.0	(65.0-75.1)	15.2	.12
R-EBUS	20	71.1	(66.5-75.7)	84.2	< .0001
All	39	70.0	(67.1-72.9)	119.4	< .0001

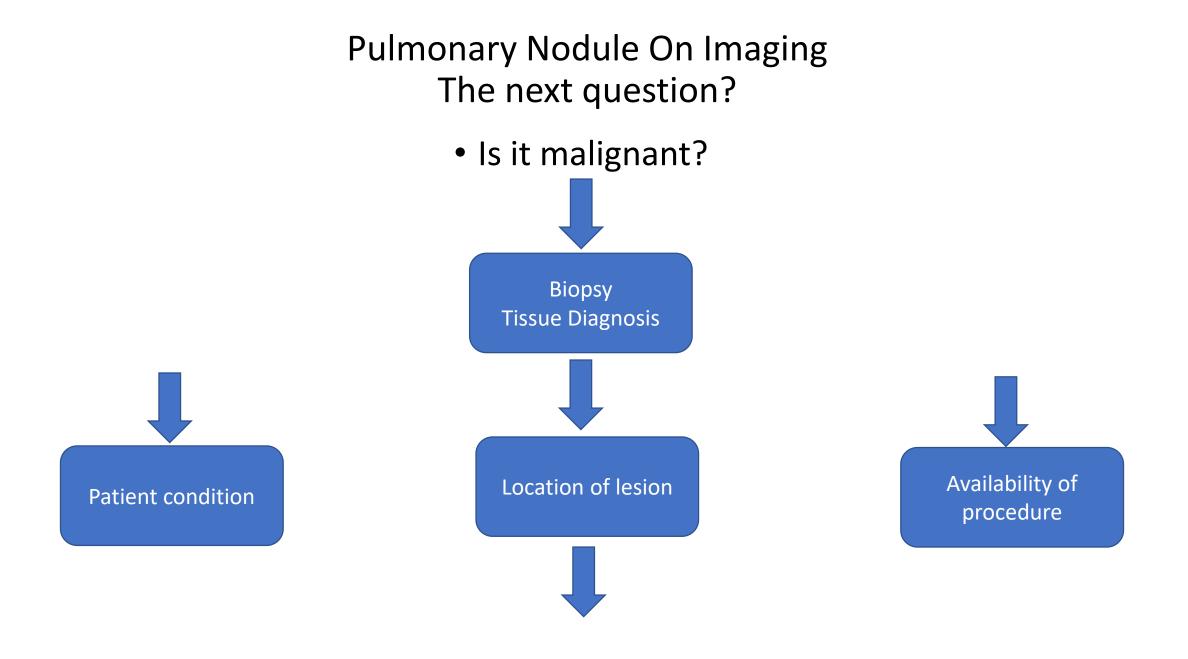
Wang Memoli et al., CHEST 2013

Analysis of bronchoscopy procedures for diagnosis of pulmonary nodules

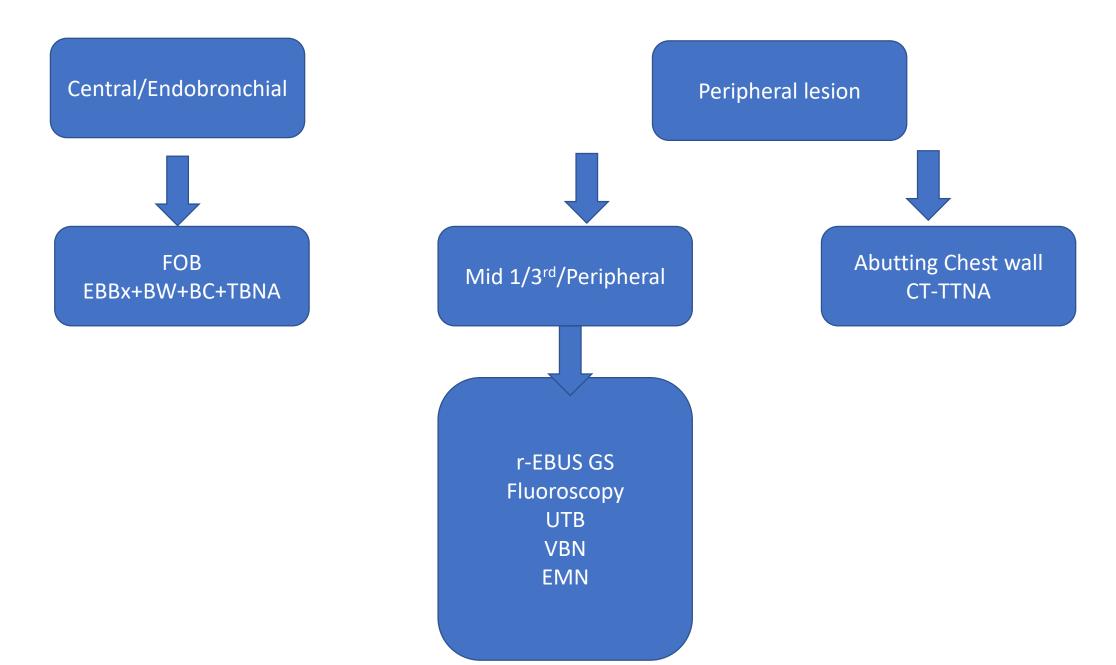
Study	Sites / Patients	Yield / Sensitivity
AEGIS Trial ¹	28 sites / 639 patients	Overall – 69% < 2cm – 59% 2-3cm – 62% >3cm – 78%
AQuIRE Registry ²	15 sites / 531 patients	Overall -64%

1 Silvestri et al . , NEJM 2015 2 Ost et al ., AJRCCM 2015

Bronchoscopic techniques for evaluation of GGO


Study	Characteristics	Outcome
Ikezawa et al ., Resp 2014	67 GGN Mean size 21mm	75% identified with EBUS 73% of these diagnosed
Ikezawa et al ., Ann Thorac Med 2017	169 GGN Mean size 23mm VBN Fluoro used for navigation	92% identified with EBUS 69% of these diagnosed

Bronchoscopic Sampling Techniques


	Study	Comparison
Conventional Bronchoscopy	Rivera et al ., CHEST 2013	TBNA v/s Forceps biopsy v/s brushing 65% v/s 57% v/s 54%
	Mondoni M et al ., ERJ 2016	TBNA – 53%
Guided Bronchoscopy	Chao et al ., CHEST 2009 Chen et al ., Ann Am Thorac Soc 2014 Ost D E et al ., AJRCC 2016	TBNA use provided 17% higher yield Yield with TBNA was higher TBNA added 9.5% to diagnostic yield

Bronchoscopic techniques for pulmonary nodules

	Navigation(Get to the lesion)	Confirm position in the lesion	Real time sampling
FB	-	+	+
R-EBUS	-	+	-
VBN	+	-	-
ENB	+	-/+	-
BTPNA	+	-/+	-
CBCT + Aug Fluoro	+	+	+
Robotic bronchoscopy	+	+	+

Pulmonary Nodule On Imaging

Conclusion

- Bronchoscopy is procedure of choice for central/endobronchial lesions
- Yield of bronchoscopy overall is between 50-70% for peripheral nodules
- Yield from various procedure depends on patient selection, characteristic of lesion
- Most of the evidence is from high volume centres with expertise ? generalisability