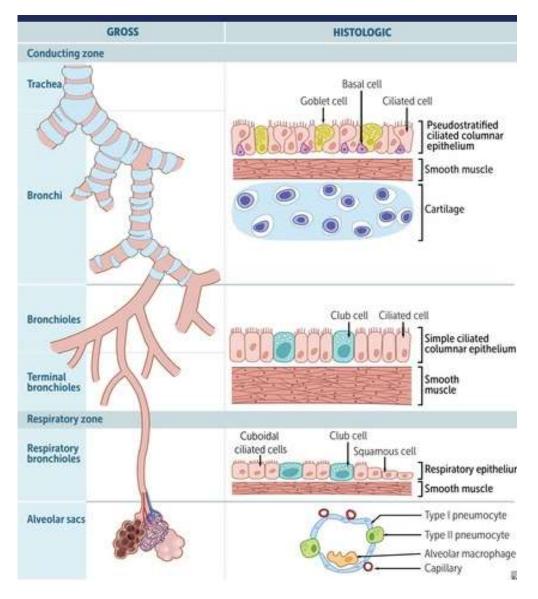

# Approach To Bronchiolar Disorders

DM Seminar Dr Srikant K M 31/07/20

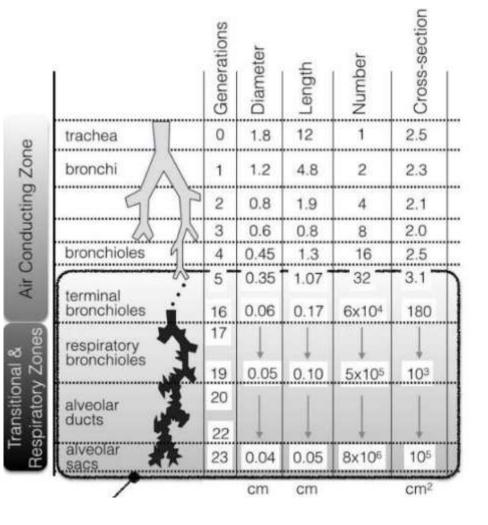
#### Topics to be discussed


- Bronchiole anatomy and physiology
- Classification of bronchiolar disorders
- Clinical, Physiological and Radiological assessment of bronchiolar disorders
- Individual bronchiolar disorders and management
- Algorithm for approach to bronchiolar disorders
- Conclusion

#### **Bronchioles : Anatomy**



- Small airways of internal diameter 2mm or less
- Extend from eight generation of conducting airways till respiratory bronchioles


#### Bronchiole : Histology



- Lack cartilage and mucus glands
- Are lined by surfactant which reduces surface tension

### Large Airways v/s Small Airways

|                                    | Large airway | Small airway |
|------------------------------------|--------------|--------------|
| Cartilage and Mucus glands         | +            | -            |
| Cross sectional Area               | Lesser       | Greater      |
| Flow                               | Turbulent    | Laminar      |
| Resistance affected by gas density | +            | -            |
| Surfactant lining                  | -            | +            |



Peter Macklem, AJRCCM 1998

#### Bronchiolar disorders- importance?

Confusing Terminology

Multiple classifications

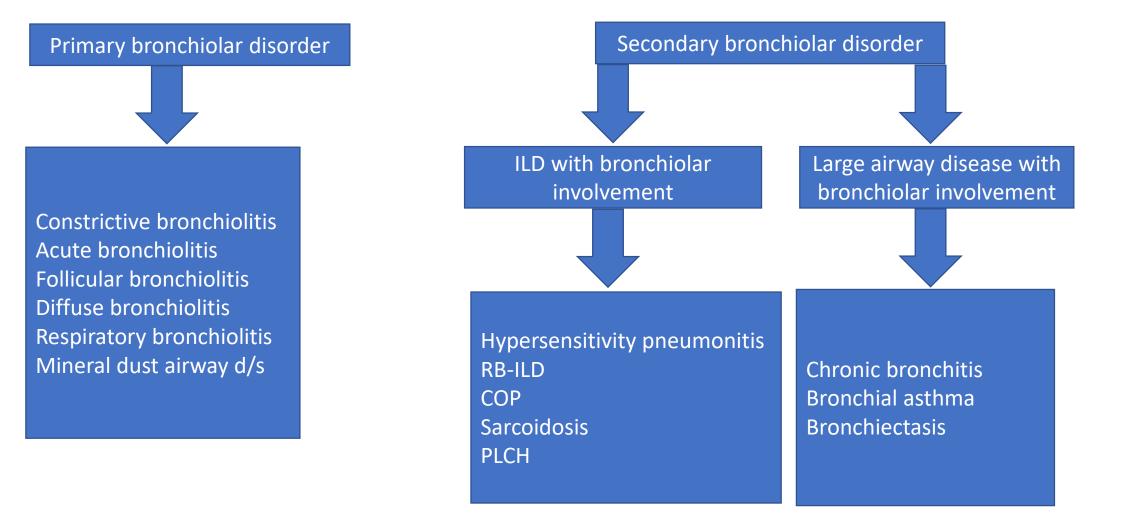
Non specific/disproportionate symptoms

Diverse histopathological and radiological presentation

Difficult assessment

### Terminology

Synonyms Bronchiolar disorders = Small airway disease = Peripheral airway disease Obliterative bronchiolitis = Constrictive bronchiolitis


Similar terms different meaning Bronchiolitis obliterans ≠ Bronchiolitis obliterans syndrome

#### Bronchioles : Silent/Quiet zone Difficult to assess

- Routine pulmonary function test fail to pick up bronchiole involvement at an early stage
- Bronchioles (<2mm) are beyond the resolution of HRCT chest
- Due to patchy involvement, bronchiole involvement may be missed on TBLB

J Mead et al.,N Engl J Med 1970 Peter Macklem, AJRCCM 1998

#### **Classification of Bronchiolar Disorders**



### **Etiological** Classification Of Bronchiolar Disorders

#### Classification

Inhalation Bronchiolitis (NO2, SO2, Diacetyl, chemical and incinerator fly ash)

Infectious and Postinfectious Bronchiolitis (viral, mycoplasma, mycobacterial)

Post transplant associated Bronchiolitis (HSCT, lung transplant)

CTD associated Bronchiolitis (RA, Sjogren's syndrome)

Drug Induced Bronchiolitis (Busulfan, gold, penicillamine)

Cryptogenic forms

Miscellaneous (paraneoplastic pemphigus, Diffuse idiopathic NE cell hyperplasia)

### <u>Histopathological</u> Classification of Bronchiolar disorders

#### Classification

Cellular Bronchiolitis

- Acute/neutrophilic or Chronic/Lymphocytic (Based on cell type)
- Granulomatous or Follicular (Based on organisation of cells)

Proliferative bronchiolitis

Constrictive bronchiolitis

Peribronchiolar fibrosis and bronchiolar metaplasia

#### When to suspect a bronchiolar disorder ?

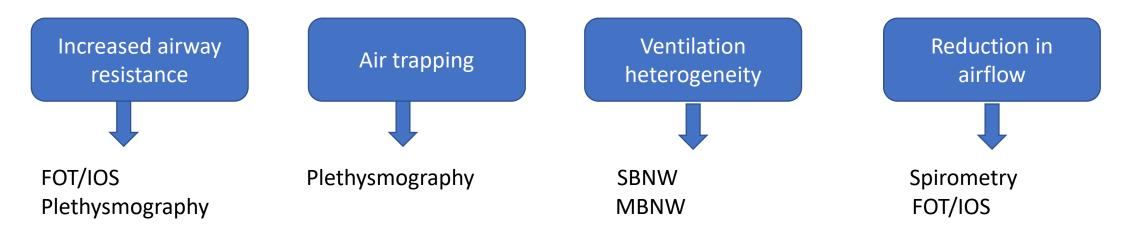
History and Clinical Features (Non Specific)

- Respiratory symptoms cough and dyspnoea (acute/insidious onset)
- History pertinent to aetiology <u>C</u>TD(RA and Sjogren's synd.) <u>D</u>rug history( d- penicillamine, busulfan and gold) <u>E</u>xposure history – inhalational occupational/environmental/smoking <u>O</u>rgan transplant

• Abnormal physical examination – normal/wheeze/crackles

#### Bronchiolar disorders – Chest radiograph

- Normal or
- Non specific findings Hyperinflation/Nodular or reticulonodular opacities


#### Bronchiolar disorders - PFTs

Spirometry (Non specific)

- Normal
- Obstructive pattern constrictive bronchiolitis
- Restrictive pattern RB, RBILD, BOOP, HP

### Basis for Physiological Assessment of Small Airways

- Small airway dysfunction leads to reduction in airflow and increase in airway resistance
- Earlier closure results in Air trapping and abnormal distribution of ventilation



Macklem et al ., Am J Respir Crit Care Med 1998

#### Assessment of bronchiolar disorders - Spirometry – Role of FEF 25-75%

- FEV1 reflects large airway obstruction
- MMEF(FEF <sub>25-75%</sub>) postulated as indicator for small airway disease(reduced)<sup>1</sup>
- Studies show FEF <sub>25-75%</sub> to be falsely normal in documented airflow limitation<sup>2</sup>
- Also less reproducible and correlate poorly with other markers of small airway disease such as air trapping or histological evidence of small airway inflammation<sup>1</sup>
- FVC dependent, changes with change in lung volume

1.Mcnulty et al., EUR Clin Respir J. 2014 2.Hansen JE et al., CHEST 2006

#### Assessment of bronchiolar disorders – Role of FEF 25-75%

#### Physiologic correlates of distal lung inflammation in asthma

E. Rand Sutherland, MD, MPH, Richard J. Martin, MD, Russell P. Bowler, MD, PhD, Yujun Zhang, PhD, Michael D. Rex, BS, and Monica Kraft, MD *Denver*, *Colo* 

Background: The distal lung is an important site of inflammation in asthma. Maximal midexpiratory flows and the ratio of maximal:partial flows are purported to reflect distal lung function.

Objective: We obtained contemporaneous transbronchial biopsy, spirometry, and plethysmography to describe more accurately the relationship between physiology and distal lung inflammation in asthma. Abbreviations used FEF<sub>25-75</sub>: Forced expiratory flow at 25% to 75% of forced vital capacity FVC: Forced vital capacity M:P: Maximal:partial V<sub>s</sub>: Volume of inflammatory cells per surface area of alweolar tissue Poor correlation
 with histologically
 evident small
 airway
 inflammation

Sutherland et al., American Academy of Allergy, Asthma and Immunology, 2004

#### Assessment of bronchiolar disorders – Role of FEF 25-75%

# Discriminating Measures and Normal Values for Expiratory Obstruction\*

James E. Hansen, MD; Xing-Guo Sun, MD; and Karlman Wasserman, PhD, MD

Objectives: To develop mean and 95% confidence limits for the lower limit of normal (LLN) values for forced expiratory volume in 3 s (FEV<sub>3</sub>)/FVC ratio for Latin, black, and white adults; to ascertain comparative variability of the FEV<sub>1</sub>/FVC ratio, the FEV<sub>3</sub>/FVC ratio, and forced expiratory flow, midexpiratory phase (FEF<sub>25-75</sub>) in never-smoking adults; to evaluate their utility in measuring the effect of smoking on airflow limitation; and to develop and use the fraction of the FVC that had not been expired during the first 3 s of the FVC (1 – FEV<sub>3</sub>/FVC) to identify the growing fraction of long-time-constant lung units.

Design: Analysis of the Third National Health and Nutrition Examination Survey (NHANES III) database of never-smokers and current smokers.

Participants: A total of 5,938 adult never-smokers and 3,570 current smokers from NHANES III with spirometric data meeting American Thoracic Society standards.

Measurements and results: After establishing new databases for never-smokers and current smokers, we quantified the mean and LLN values of FEV<sub>3</sub>/FVC in never-smokers, and identified spirometric abnormalities in current smokers. When associated with older age, FEV<sub>3</sub>/FVC decreases and  $1 - \text{FEV}_3/\text{FVC}$  increases as FEV<sub>1</sub>/FVC decreases. On average, using these measurements, the condition of current smokers worsened about 20 years faster than that of never-smokers by middle age. If < 80% of the mean predicted FEF<sub>25-75</sub> was used to identify abnormality, over one quarter of all never-smokers would have been falsely identified as being abnormal. Using 95% confidence limits, 42% of 683 smokers with reduced FEV<sub>1</sub>/FVC and/or FEV<sub>3</sub>/FVC would have been judged as normal by FEF<sub>25-75</sub>.

Conclusions:  $FEV_1/FVC$ ,  $FEV_3/FVC$ , and  $1 - FEV_3/FVC$  characterize expiratory obstruction well. In contrast,  $FEF_{25=75}$  measurements can be misleading and can cause an unacceptably large number of probable false-negative results and probable false-positive results.

(CHEST 2006; 129:369-377)

• High false negative rates

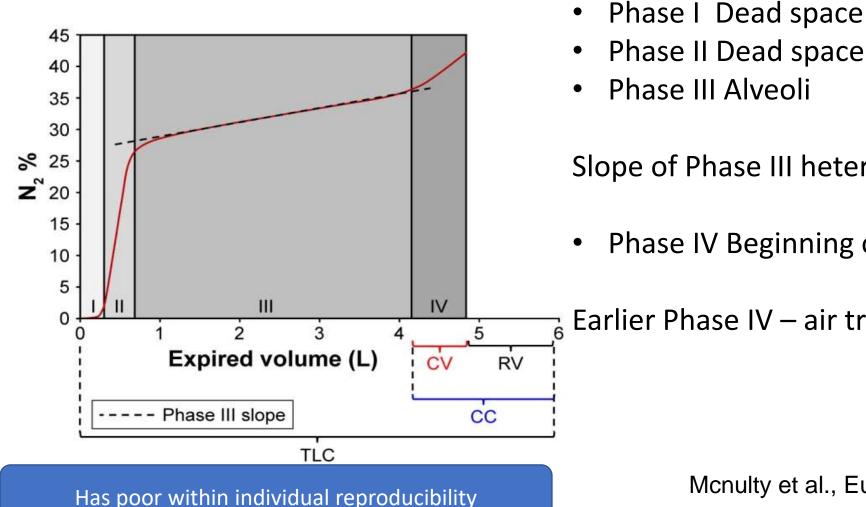
Hansen JE et al., CHEST 2006

#### Assessment of bronchiolar disorders - Plethysmography

Residual volume is an important measure of small airway dysfunction indicates air trapping

Measurement of RV and RV/TLC is a useful marker of air trapping and hyperinflation

Airway resistance can be measured at mouth using volume and pressure


However is not specific for small airway disease, effort dependent and time consuming

#### Physiological assessment of bronchiolar disorders

#### Single breath nitrogen washout

- Involves inhaling 100% oxygen from RV to TLC
- Exhaled volume of gas and N2 concentration are plotted on a graph
- Airway disease cause increase in <u>slope of phase III</u> of SBNW curve
- Airway disease cause increase in <u>CV and CC</u>
- However not specific for small airway disease

#### Single Breath Nitrogen Washout



Phase II Dead space + alveoli Phase III Alveoli Slope of Phase III heterogeneity in ventilation Phase IV Beginning of small a/w closure Earlier Phase IV – air trapping, inc. RV

### Single Breath Nitrogen Washout

#### Does the nitrogen single-breath washout test contribute to detecting pulmonary involvement in rheumatoid arthritis? A pilot study

Check for updates

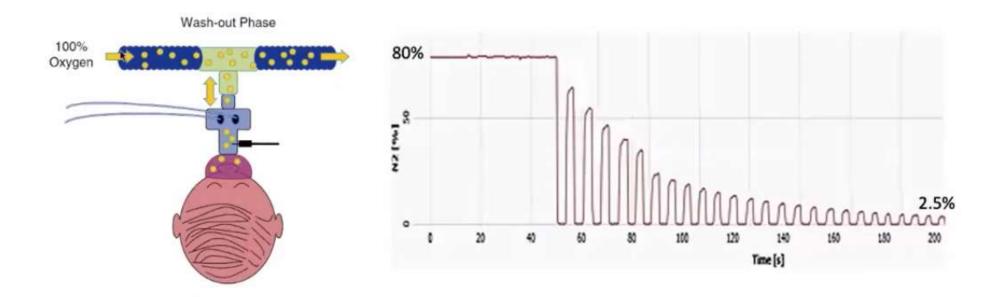
Elizabeth Jauhar Cardoso Bessa<sup>1</sup>, Felipe de Miranda Carbonieri Ribeiro<sup>2</sup>, Geraldo da Rocha Castelar Pinheiro<sup>1</sup> and Agnaldo José Lopes<sup>1,3,4\*</sup><sup>®</sup>

#### Abstract

**Objective:** There has been growing interest in studying small airway disease through measures of ventilation distribution, thanks to the resurgence of the nitrogen single-breath washout (N<sub>2</sub>SBW) test. Therefore, this study evaluated the contribution of the N<sub>2</sub>SBW test to the detection of pulmonary involvement in patients with rheumatoid arthritis (RA).

**Results:** Twenty-one patients with RA underwent clinical evaluation, pulmonary function tests (PFTs), including the N2<sub>5</sub>BW test, and computed tomography (CT). The main tomographic findings were air trapping and bronchiectasis (57.1% and 23.8% of cases, respectively). According to the phase III slope of the N<sub>2</sub>SBW (phase III slope), 11 and 10 patients had values < 120% predicted and > 120% predicted, respectively. Five patients with limited involvement on CT had a phase III slope > 120%. The residual volume/total lung capacity ratio was significantly different between patients with phase III slopes < 120% and > 120% (P = 0.024). Additionally, rheumatoid factor positivity was higher in patients with a phase III slope > 120% (P = 0.021). In patients with RA and airway disease on CT, the N<sub>2</sub>SBW test detects inhomogeneity in the ventilation distribution in approximately half of the cases, even in those with normal conventional PFT results.

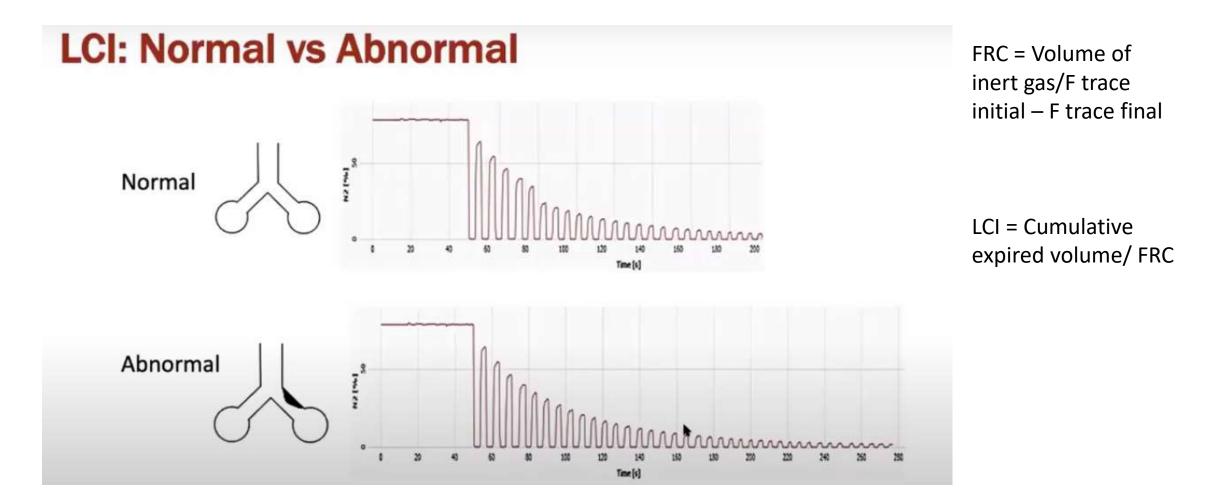
Keywords: Rheumatoid arthritis, Pulmonary function test, Small airway disease, Computed tomography


In 21 patients of RA with predominant airway involvement(80%) SBNW was able to detect ventilation heterogeneity in approximately half of the cases

#### Physiological assessment of bronchiolar disorders Multiple Breath Nitrogen Washout

- Involves inhaling 100% O2 from FRC at fixed tidal volume and rate
- Test continues till N2 concentration in exhaled breath is <2.5%
- Speed and efficiency of gas mixing are dependent on tidal volume, frequency and ventilation heterogeneity

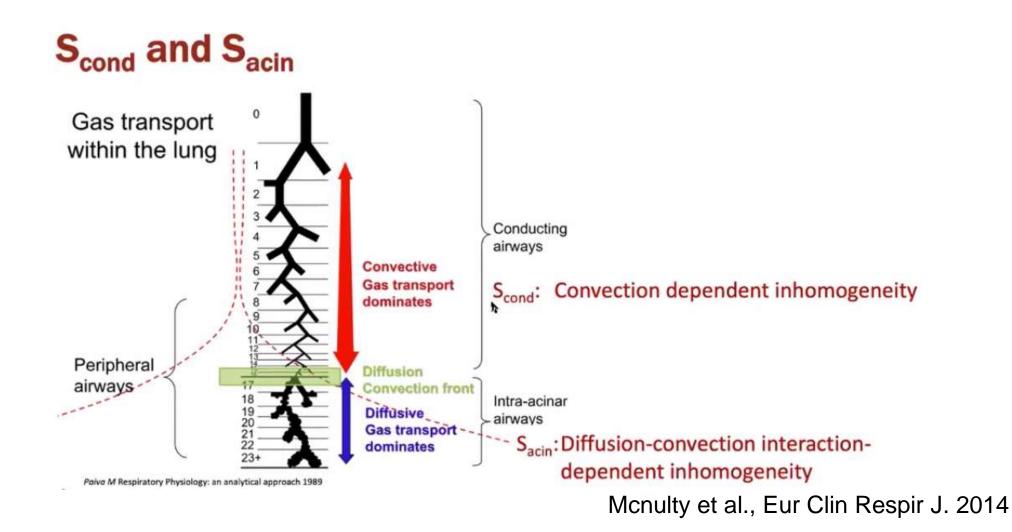
Physiological assessment of bronchiolar disorders Multiple Breath Nitrogen Washout


## N<sub>2</sub> MBW Technique



#### Multiple Breath Nitrogen Washout

- LCI is used as a measure of efficiency of gas mixing
- LCI is defined as number of FRC equivalents required to bring the tracer gas concentration in exhaled breath to <2.5%
- LCI is directly proportional to ventilation heterogeneity


#### Multiple Breath Nitrogen Washout



### Multiple Breath Nitrogen Washout Localizing site of ventilation heterogeneity

- Slope of phase III in MBNW changes in every breath
- This slope is normalized for mean expired nitrogen concentration
- During initial phases this slope depends on diffusion convection(DCDI) and later just on convection(CDI)
- The quantification of CDI component S<sub>cond</sub> and DCDI component S<sub>acin</sub> can help in locating site of pathology

#### Multiple Breath Nitrogen Washout



#### Physiological assessment of small airways- MBW in BOS



#### ORIGINAL ARTICLE BRONCHIOLITIS OBLITERANS SYNDROME

# Lung clearance index in detection of post-transplant bronchiolitis obliterans syndrome

Madeleine Driskel <sup>1,2</sup>, Alex Horsley <sup>3</sup>, Laurice Fretwell<sup>4</sup>, Nigel Clayton<sup>1</sup> and Mohamed Al-Aloul<sup>2</sup>

Affiliations: <sup>1</sup>Lung Function Laboratory, Manchester University NHS Foundation Trust, Manchester, UK. <sup>2</sup>Cardiothoracic Transplant Unit, Manchester University NHS Foundation Trust, Manchester, UK. <sup>3</sup>Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK. <sup>4</sup>School of Human Sciences, University of Derby, Derby, UK.

#### ABSTRACT

Background: Long-term outcomes after lung transplantation are often limited by the development of obliterative bronchiolitis (OB), which is clinically defined using spirometry as bronchiolitis obliterans syndrome (BOS). Lung clearance index (LCI), derived from multiple breath washout (MBW) testing, is a global measure of ventilation heterogeneity that has previously been shown to be a more sensitive measure of obstructive small airway diseases than spirometry. We aimed to assess the feasibility of LCI in adult lung transplant patients and to compare LCI to BOS grade.

Methods: 51 stable adult double-lung transplant recipients performed sulfur hexafluoride MBW in triplicate on a single occasion, using a closed-circuit Innocor device. BOS grades were derived from serial spirometry according to International Society for Heart and Lung Transplantation criteria and, where available, high-resolution computed tomography (HRCT) evidence of OB was recorded.

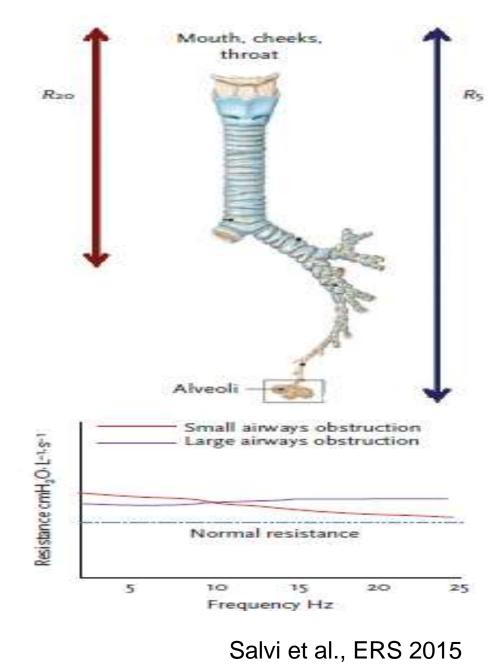
**Results:** LCI was successfully performed in 98% of patients. The within-visit coefficient of variation for repeat LCI measurements was 3.1%. Mean LCI increased significantly with BOS grades: no BOS (n=15), LCI 7.6; BOS-0p (n=16), LCI 8.3; BOS-1 (n=11), LCI 9.3; BOS-2-3 (n=9), LCI 13.2 (p<0.001). 27 patients had HRCT within 12 months. LCI in those with HRCT evidence of OB was higher than those without OB (11.1 *versus* 8.2, p=0.006). 47% patients displayed abnormal LCI (>7) despite a normal forced expiratory volume in 1 s (FEV<sub>1</sub>) (>80% of baseline).

**Conclusions:** LCI measurement in lung transplant recipients is feasible and reproducible. LCI increased with increasing BOS grade. A significant proportion of this cohort had abnormal LCI with preserved FEV<sub>1</sub>, suggesting early subclinical small airway dysfunction, and supporting a role for MBW in the early identification of BOS.

Driskel et al., et al., ERJ 2019

### Physiological assessment of bronchiolar disorders – Forced Oscillation Technique / IOS

- Use of sound waves superimposed on tidal breathing to measure mechanical properties of lung
- Mechanical properties are represented by resistance and reactance
- Resistance at higher frequencies 20Hz indicate contribution of proximal airway
- Resistance at lower frequencies 5Hz indicate contribution of whole lung
- Difference b/w R20 and R5 (R5-R20) indicates resistance offered by small airways


Salvi et al., ERS 2015

#### Forced Oscillation Technique / IOS

Large airway obstruction resistance is high at higher frequency

In small airway disease resistance is higher at low/ smaller frequency

Difference b/w two frequencies give information regarding small airway involvement



### Physiological assessment of bronchiolar disorders – Forced Oscillation Technique / IOS

- Evidence largely restricted to smaller observational studies
- In a study of 32 asthmatic subjects CT imaging data was used to estimate resistance and its comparison with resistance measured by FOT showed good correlation

#### Physiological assessment of bronchiolar disorders Forced Oscillation Technique/IOS

- Reactance indicates inertial and elastic properties of lung
- Difference b/w inspiratory and expiratory reactance at lower frequencies can help in detecting expiratory flow limitation(EFL) ( $\Delta$  X5)
- EFL leading to air trapping is a common feature in small airway involvement

#### Clinical Application Of FOT/IOS in Small airway disease

#### Clinical Significance of Forced Oscillation Technique for Evaluation of Small Airway Disease in Interstitial Lung Diseases

Masashi Mikamo<sup>1</sup> • Tomoyuki Fujisawa<sup>1</sup> • Yoshiyuki Oyama<sup>1</sup> • Masato Kono<sup>1</sup> • Noriyuki Enomoto<sup>1</sup> • Yutaro Nakamura<sup>1</sup> • Naoki Inui<sup>2</sup> • Hiromitsu Sumikawa<sup>3</sup> • Takeshi Johkoh<sup>4</sup> • Takafumi Suda<sup>1</sup>

#### ABSTRACT

*Purpose* Small airway disease (SAWD) in patients with interstitial lung disease (ILD) is often assessed by highresolution computed tomography (HRCT). However, frequent HRCT examinations result in a high level of radiographic exposure. This study investigated the utility of the forced oscillation technique (FOT) to evaluate SAWD in patients with ILD.

Methods Broadband FOT using a commercially available

device (MostGraph-01) and pulmonary function tests (PFT) were performed in 90 patients with ILD. HRCT images taken within 3 months were reviewed. The patients were divided into two groups according to the presence or absence of SAWD findings detected by HRCT. Clinical characteristics, PFT, and FOT between the two groups were compared.

*Results* Of the 90 patients with ILD, 19 were classified as having SAWD findings (the presence group) and 71 as not having SAWD findings (the absence group). There were no significant differences in parameters of PFT between the

of reactance at 5 Hz (X5), resonant frequency (Fres), and low-frequency reactance area (ALX) than did the absence group. A within-breath change analysis demonstrated that the change in X5, Fres, and ALX between expiration and inspiration ( $\Delta$ X5,  $\Delta$ Fres,  $\Delta$ ALX, respectively) was significantly different between the groups. A univariate analysis revealed that X5, Fres, ALX,  $\Delta$ X5,  $\Delta$ Fres,  $\Delta$ ALX were significantly associated with the presence of SAWD findings. Multivariate analysis validated that Fres was related

to the presence of SAWD findings.

*Conclusions* The FOT may be useful in detecting and evaluating SAWD in patients with ILD. Trial registration: UMIN 000020733.

Keywords Interstitial lung disease · Small airway disease · Forced oscillation technique · Reactance

Abbreviations

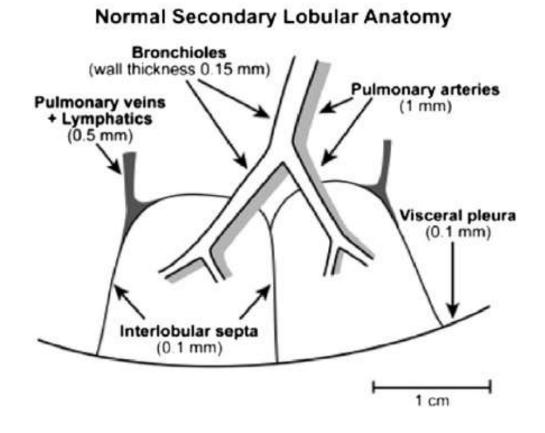
ALX A low-frequency reactance area AUC Area under the curve FOT parameters differed in ILD patients with Small airway involvement diagnosed with HRCT

Mikamo et al., Lung 2016

### Exhaled Nitric Oxide

- NO is produced by resident epithelial cells and inflammatory cells
- Measured during tidal exhalation
- FeNO exhibits flow rate dependency, at low flow FeNO reflects contribution of central airways and at higher flow represent alveolar contribution
- Raised alveolar FeNO is found to correlate with other measures of small airway dysfunction(in asthmatics)<sup>2</sup>

FeNO has largely been evaluated in asthma Role in other small airway diseases is not known


1 Mcnulty et al., EUR Clin Respir J. 2014 2 Veen et al., ERJ 2006

# Physiological Assessment of bronchiolar disorders challenges

- Most of the available tests are not specific for small airway involvement
- Due to their vast number, significant amount of small airways must be affected for detecting a abnormality in the tests
- Evidence limited to mostly asthma, COPD
- Lack of reference values for newer tests

Stockley et al., Int J Chron Obstruct Pulmon Dis. 2017

#### Radiological features of bronchiolar disorders



Any alteration in three components of secondary pulmonary lobule

- Centrilobular structure
- Lobular parenchyma
- Interlobular septa

Lead to abnormalities being detected on HRCT

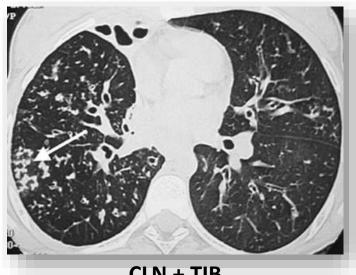
Bronchioles are component of centrilobular structure

Devakonda et al., CHEST 2010

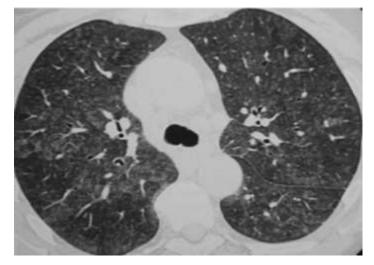
## Radiological features of bronchiolar disorders

- Normal bronchioles are outside the resolution of HRCT chest
- However when diseased, bronchioles can be identified by direct and indirect signs
- HRCT chest with inspiratory and expiratory cuts is required for assessment of small airway disorders

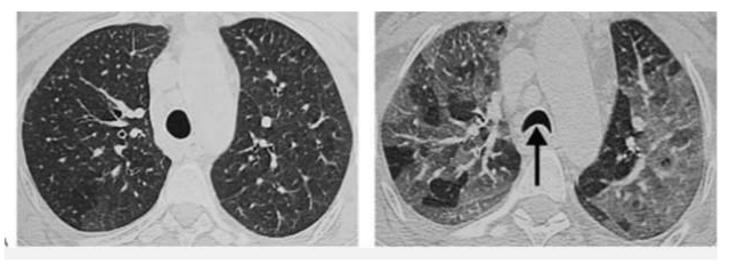
### Radiological signs in bronchiolar diseases


| Direct Signs                                                          | Indirect signs            |
|-----------------------------------------------------------------------|---------------------------|
| Bronchiolectasis                                                      | Mosaic perfusion          |
| Bronchiole wall thickening                                            | Sub segmental atelectasis |
| Centrilobular Nodules + TIB<br>(inspissation of secretions)           |                           |
| Centrilobular GGOs<br>(peribronchiolar and perivascular inflammation) |                           |

Devakonda et al., CHEST 2010


#### Radiological Patterns in bronchiolar diseases

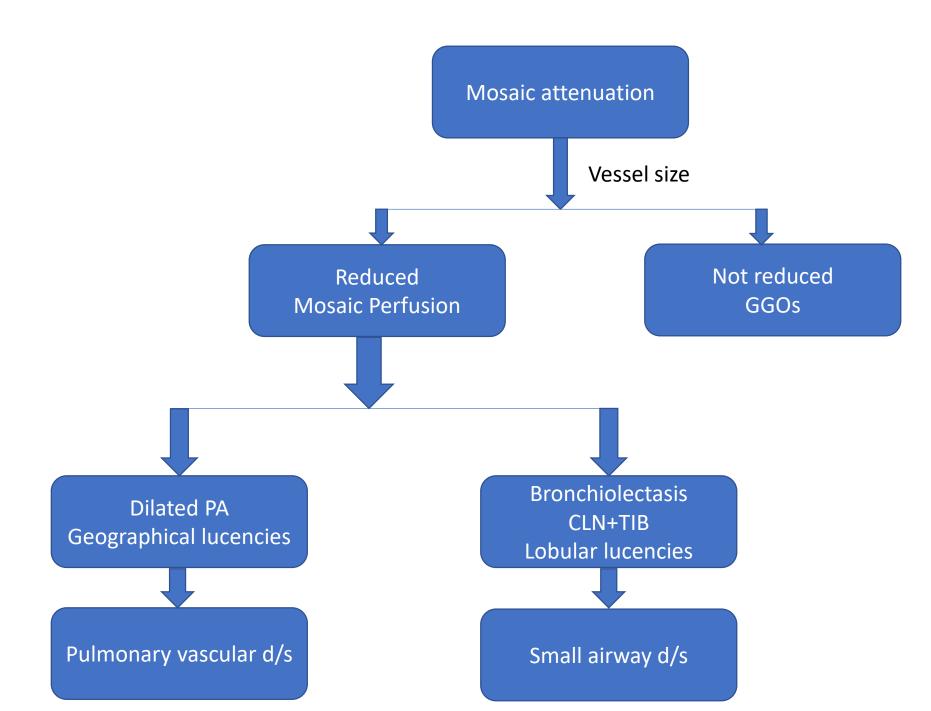



#### Radiological Patterns in bronchiolar diseases



CLN + TIB




**CL GGOs** 



**MOSAIC PERFUSION - AIR TRAPPING** 

## Differential diagnosis based on radiological pattern

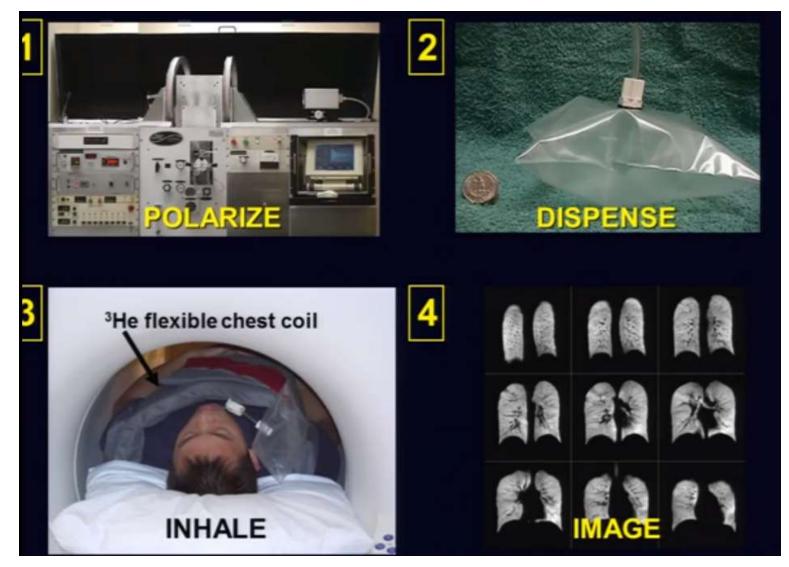
| CLN + TIB                                                                                    | CL GGOs                                                   | Mosaic perfusion                 |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------|
| Focal :<br>Infectious bronchiolitis<br>UL : M Tb<br>ML : NTM                                 | UL : RB/RBILD                                             | HP<br>Constrictive bronchiolitis |
| Diffuse :<br>ABPA<br>Diffuse pan bronchiolitis<br>Diffuse aspiration bronchiolitis<br>CF,PCD | HP<br>Follicular bronchiolitis<br>Mineral dust airway d/s |                                  |



## Radiological signs in bronchiolar diseases

 Features of primary airway or parenchymal involvement may be seen on HRCT

Bronchiectasis, emphysema, consolidation etc.


Devakonda et al., CHEST 2010

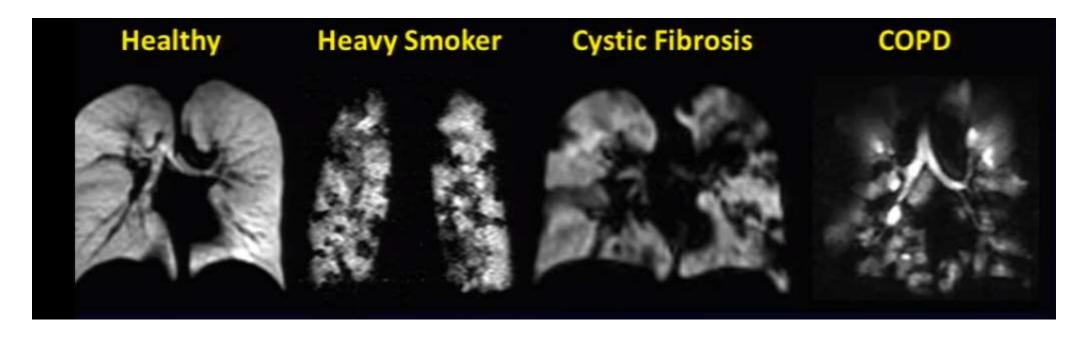
#### Radiological Assessment Of Small Airways Hyperpolarized Gas (<sup>3</sup>He and <sup>129</sup>Xe) MRI

- Conventional proton based MRI is not useful in routine lung imaging
- Suffers from drawbacks d/t low proton density and motion artefacts resulting in low resolution
- Hyperpolarization(alignment of nuclear spins) helps overcome these drawbacks
- Hyperpolarized noble gases act as external gaseous contrast media which help in imaging airways and distal airspaces

Kern et al ., Br J Radiology 2018 W Mcnulty et al., Eur Clin Respir J 2014

## Hyperpolarized Gas MRI protocol




Gives information on

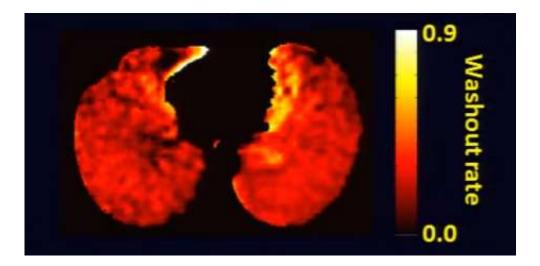
- 1. Ventilation
- 2. Microstructure of lungs

Kern et al ., Br J Radiology 2018

## Hyperpolarised Gas MRI – Distribution of ventilation

• Static Imaging : Look for distribution of gas following deep inhalation Defects in distribution indicate ventilation heterogeneity

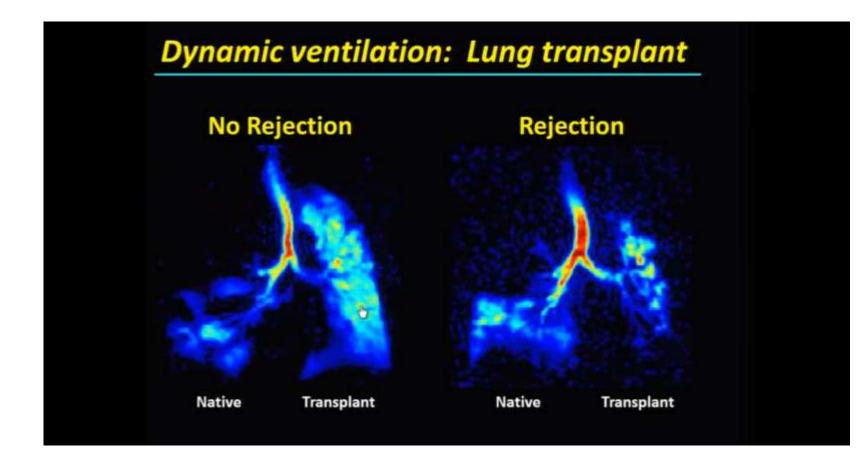



Kern et al ., Br J Radiology 2018

## Hyperpolarised Gas MRI – Distribution of ventilation

• Dynamic imaging –

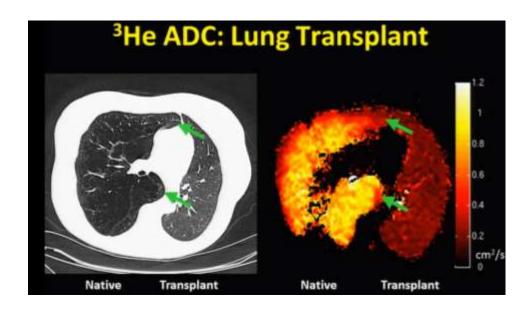
Repeated acquisition following gas administration


Gives information on ventilation, areas of gas trapping, gas washout rate



Areas of differential He clearance have been seen to correlate with air trapping seen on CT

Deppe et al ., ISMRM 2011


Hyperpolarised Gas MRI – Distribution of ventilation Clinical application – Post Lung Transplant



Salerno et al ., RSNA 2001

#### Hyperpolarized Gas MRI – other sequences

• Apparent diffusion co efficient(ADC) gives information on status of distal airspaces



Higher ADC values correspond to tissue destruction

#### Nuclear medicine techniques Gamma scintigraphy

- Gamma ray emitting radio nuclides are used to image the lung as they decay
- Distribution of radio nuclides gives information regarding ventilation
- Being a 2 dimensional technique exact localization is difficult

W Mcnulty et al., Eur Clin Respir J 2014

#### SPECT

- 3-d imaging modality for assessment of regional lung ventilation
- SPECT can be used to image ventilation using either radiolabelled gases or ultrafine particles (Technegas)
- Technegas is Technetium labelled ultrafine carbon particle which has high peripheral deposition
- It impacts and does not move peripherally if there is narrowing of airways
- This heterogeneity in its deposition can be picked up with SPECT

### SPECT

• Ventilation heterogeneity in a asthmatic patient post methacholine challenge

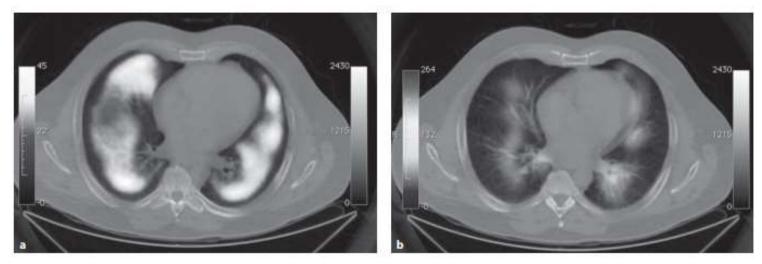



Fig. 2. a SPECT/CT fusion Technegas imaging of an asthmatic patient at baseline. Ventilation is mildly heterogeneous. The lack of apparent ventilation to the lung periphery is likely due to insufficient resolution to detect low ventilation. b Ventilation imaging postmethacholine challenge when FEV<sub>1</sub> was reduced by approximately 20%. Note the reduction in ventilated volume and more heterogeneous distribution, which is based on small airway function.

#### Gregory King, Respiration 2012

#### SPECT

 V/Q SPECT has been used in COPD patients to assess ventilation heterogeneity

- Regional distribution of ventilation and perfusion can be assessed using radioisotopes
- In smaller studies Krypton, Technetium labelled albumin and NN<sub>13</sub> have been used to assess ventilation and perfusion defects in asthma patients
- Using modelling techniques site of ventilation defect can be deduced proximal/ distal airway

### Assessment techniques for small airway

|                                            | Measures                                                                    | Pros                                                                  | Disadvantages                                               |
|--------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|
| Spirometry                                 | FEV1, FEF 25-75%                                                            | Simple to perform<br>Reproducible                                     | Insensitive to early change<br>Effort dependent             |
| FOT/IOS                                    | R5-R20<br>Δ X5                                                              | Non invasive<br>Effort independent                                    | Equipment availability<br>Reference values not<br>available |
| Inert gas washout                          | Closing capacity and volume<br>Phase III slope, Sacin, Scond                | Sensitive to early changes                                            | Difficult to perform<br>Specialized equipment               |
| FENO                                       | Exhaled nitric oxide                                                        | Easy and quick to perform                                             | Affected by smoking                                         |
| HRCT                                       | Direct and indirect signs                                                   | Widely available<br>Quick and easy to perform                         | Unable to visualize small airways directly                  |
| Nuclear medicine<br>techniques(PET, SPECT) | Ventilation<br>V/Q                                                          | Ventilation heterogeneity<br>V/Q                                      | Expensive<br>Radiation<br>Exact anatomic localization X     |
| Hyperpolarised MRI                         | Static ventilation<br>Dynamic ventilation<br>Apparent Diffusion Coefficient | Ventilation heterogeneity<br>Lung microstructure<br>No radiation dose | Expensive<br>Research application<br>Availability           |

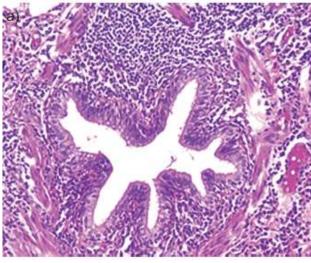
## Bronchiolar diseases : Role of lung biopsy

- Conditions in which clinical details radiological findings sufficient for diagnosis : Subacute HP
- Bronchoalveolar lavage in infectious etiology
- TBLB in post transplant bronchiolitis (at least 5 sample)
- SLB in rest of the conditions

#### Bronchiolar diseases : Role of Cryo biopsy

# OPEN Cryobiopsy in the diagnosis of bronchiolitis: a retrospective analysis of twenty-three consecutive patients

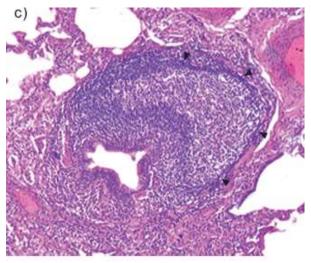
Syakirin Sirol Aflah Syazatul<sup>1,2,7</sup>, Sara Piciucchi<sup>3,7</sup>, Sara Tomassetti<sup>4</sup>, Claudia Ravaglia<sup>1</sup>, Alessandra Dubini<sup>5</sup> & Venerino Poletti<sup>1,6</sup>


Bronchiolitis manifests as a variety of histological features that explain the complex clinical profiles and imaging aspects. In the period between January 2011 and June 2015, patients with a cryobiopsy diagnosis of bronchiolitis were retrospectively retrieved from the database of our institution. Clinical profiles, imaging features and histologic diagnoses were analysed to identify the role of cryobiopsy in the diagnostic process. Twenty-three patients with a multidisciplinary diagnosis of small airway disease were retrieved (14 females, 9 males; age range 31–74 years old; mean age 54.2 years old). The final MDT diagnoses were post-infectious bronchiolitis (n = 5), constrictive bronchiolitis (n = 3), DIPNECH (n = 1), idiopathic follicular bronchiolitis (n = 3), Sjogren's disease (n = 1), GLILD (n = 1), smoking-related interstitial lung disease (n = 6), sarcoid with granulomatous bronchiolar disorder (n = 1), and subacute hypersensitivity pneumonitis (n = 2). Complications reported after the cryobiopsy procedure consisted of two cases of pneumothorax soon after the biopsy (8.7%), which were successfully managed with the insertion of a chest tube. Transbronchial cryobiopsy represents a robust and mini-invasive method in the characterization of small airway diseases, allowing a low percentage of complications and good diagnostic confidence. Retrospective study of 23 patients

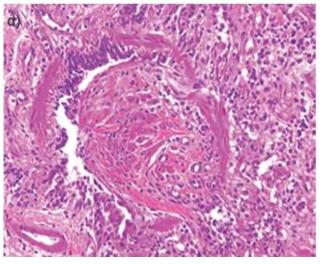
Diagnosis achieved through MDT


Complications in 2 patients in form pneumothorax

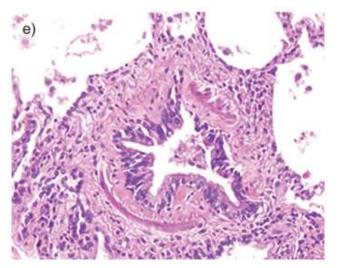
Syazatul et al ., Sci Rep. 2020


### Histopathological patterns in bronchiolitis




#### **CELLULAR BRONCHIOLITIS**




#### **GRANULOMATOUS BRONCHIOLITIS**



FOLLICULAR BRONCHIOLITIS



#### **PROLIFERATIVE BRONCHIOLITIS**



#### **CONSTRICTIVE BRONCHIOLITIS**

## Individual disorders

## **Proliferative Bronchiolitis**

| Condition                                                                                                                                  | Aetiology                                                                                                                                                                                                                                 | Clinical Feature                  | PFT and Radiology                                                                                                                  | Histopathology                                                                                              | Treatment       |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------|
| Pathological<br>pattern of<br>intrabronchiolar<br>polyps composed of<br>myofibroblastic<br>tissue that occlude<br>the lumen from<br>within | <ul> <li>-Cryptogenic</li> <li>-Secondary to</li> <li>variety of</li> <li>insults</li> <li>Post <ul> <li>infection</li> </ul> </li> <li>Toxins</li> <li>CTD</li> <li>Aspiration</li> <li>Post <ul> <li>obstruction</li> </ul> </li> </ul> | Subacute<br>dyspnoea and<br>cough | Restrictive pattern<br>↓ DLCO<br>Mosaic perfusion<br>Peripheral patchy<br>pleural based<br>consolidation(if<br>alveolar involvt +) | Intrabronchiolar<br>polyps composed<br>of granulation<br>tissue which may<br>extend into<br>alveolar spaces | Glucocorticoids |

C Ravaglia et al., Semin Respir Crit Care Med 2020

## **Constrictive Bronchiolitis**

| Condition                                                                                               | Aetiology                                                                                                                                                                                                               | <b>Clinical Feature</b>              | PFT and Radiology                                    | Histopathology                                                                                                                             | Treatment                           |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Narrowing of<br>bronchiolar lumen<br>due to extrinsic<br>compression by<br>fibroinflammatory<br>process | <ul> <li>Chronic<br/>rejection<br/>post lung<br/>transplant</li> <li>Chronic<br/>GVHD post<br/>allogenic<br/>HSCT</li> <li>Acute/chron<br/>ic chemical<br/>exposure</li> <li>CTD</li> <li>Post<br/>Infective</li> </ul> | Progressive<br>dyspnoea and<br>cough | Obstructive pattern<br>(w/o BDR)<br>Mosaic perfusion | Cellular infiltrates in<br>bronchiolar wall<br>Bronchiolar smooth<br>m/s hypertrophy<br>Obliteration/narrow<br>ing of bronchiolar<br>lumen | Treatment of<br>underlying<br>cause |

C Ravaglia et al., Semin Respir Crit Care Med 2020

#### **Constrictive Bronchiolitis - Aetiology**

#### Inhalational injury

Irritant gases(chlorine, ammonia)

Toxic fumes(nitrogen oxides)

Mineral dust

Volatile flavouring agents(diacetyl)

Vaping

| Post Transplant |
|-----------------|
| Bone marrow     |
| Lung            |
| Heart-Lung      |

#### **Post Infectious**

Virus(RSV, adenovirus, influenza)

Bacterial (Mycoplasma, Bordetella)

Idiopathic

Cryptogenic

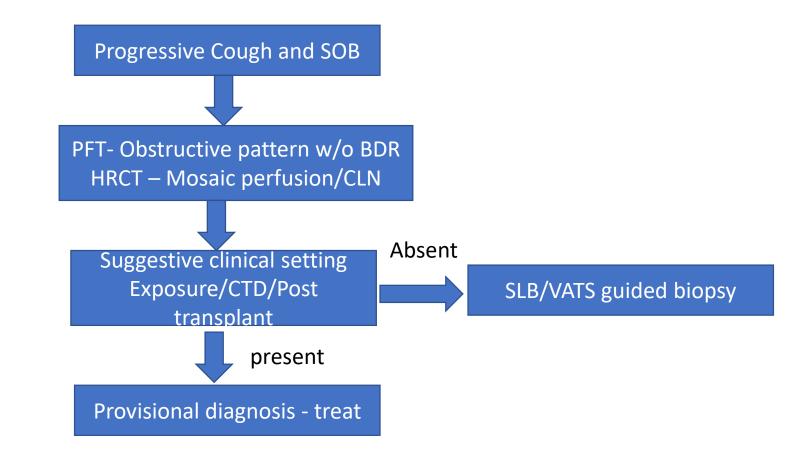
**CTD** associated

Paraneoplastic pemphigus

Diffuse idiopathic NE cell hyperplasia

Swaminathan et al., ATS Annals 2019

**Drug induced** 


Penicillamine

Busulfan, Sulfasalazine

Nimesulide, Rituximab

Gold

#### **Constrictive Bronchiolitis - Diagnosis**



# Constrictive Bronchiolitis – Treatment(Non transplant)

| Modality                                                                           | Drug                                                                              | Evidence                                                                                                        |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Symptom based and Supportive treatment                                             | Inhaled bronchodilator<br>Cough suppressants<br>Vaccination and rehabilitation    | -                                                                                                               |  |
| Cessation of culprit drugs and exposure                                            | -                                                                                 | -                                                                                                               |  |
| Macrolide antibiotics                                                              | Erythromycin 400-600mg/d for 6<br>months<br>Azithromycin 250 mg/d for 6<br>months | Small case series show<br>stabilization in lung function <sup>1</sup>                                           |  |
| Corticosteroids                                                                    | Glucocorticoids                                                                   | Case series show no benefit in<br>non rheumatic disease associated<br>constrictive bronchiolitis <sup>1,2</sup> |  |
| Other immunosuppressants                                                           | Methotrexate/Cyclophosphamide<br>/Etanercept                                      | Not shown to be associated with improvement in lung function <sup>1,2</sup>                                     |  |
| 1Callahan et al ., Mayo clinic proc. 2019<br>2 Parambil et al . , Respirology 2009 |                                                                                   |                                                                                                                 |  |

#### Constrictive Bronchiolitis – Post Transplant

Bronchiolitis obliterans v/s Bronchiolitis obliterans syndrome

The International Society for Heart and Lung Transplantation (ISHLT) has proposed the term bronchiolitis obliterans syndrome (BOS) for patients with clinical manifestations compatible with bronchiolitis obliterans but without histopathological confirmation

A  $\geq$ 20% drop in forced expiratory volume in the first second (FEV<sub>1</sub>) from a stable post -transplant baseline, persistent over  $\geq$ 3 weeks and not explained by other reversible pathologies

Burgel et al ., Eur Respir Rev 2013

#### Constrictive Bronchiolitis – Post Transplant

| Parameter                           | Constrictive bronchiolitis post lung<br>transplant | Constrictive bronchiolitis post<br>allogenic HSCT |
|-------------------------------------|----------------------------------------------------|---------------------------------------------------|
| Risk factors                        |                                                    |                                                   |
| Immunology                          | HLA mismatch                                       | GVH disease                                       |
| CMV Infection                       | Yes                                                | Not established                                   |
| Community acquired viral infections | Suspected                                          | Suspected                                         |
| GERD                                | Yes                                                | Not established                                   |
| Prevalence                          | 9% at 1 year<br>38% at 5 year<br>58% at 10 year    | 5.5% - 14%                                        |

### Constrictive Bronchiolitis Treatment(Transplant related)

| Aetiology | Treatment                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Post HSCT | Inhaled LABA+ICS(High dose) <sup>2</sup><br>Treatment of underlying GVHD <sup>1</sup><br>FAM therapy (Fluticasone/Azithromycin/Montelukast) <sup>3</sup><br>Prophylactic azithromycin not to be used post HSCT <sup>4</sup> |

Burgel et al . , Eur Respir Rev 2013
 Bergeron et al . , Am J Respir Crit Care Med. 2015
 Norman et al ., Bone Marrow Transplant. 2011 Oct
 Bergeron et al . , JAMA 2017

#### Constrictive Bronchiolitis Treatment(Transplant related)

| Aetiology            | Treatment                                                                                                                                                                                                                                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Post Lung Transplant | Azithromycin prophylaxis <sup>1</sup><br>Long term azithromycin treatment (250mg x 5d f/b 250mg thrice a wk) <sup>2</sup><br>Adjustment of maintenance immunosuppression (Tac/ MMF based) <sup>3</sup><br>Montelukast / Sirolimus/ Everolimus (salvage therapies) |

1.Vos R et al . , Eur Respir Journal 2011
 2.Corris PA et al . , Thorax. 2015
 3.Hayes D et al ., J Cardiothorac Surg. 2011

## Follicular Bronchiolitis

| Condition                                                                                         | Aetiology                                                                | Clinical<br>Feature                                            | PFT and Radiology                                                                           | Histopathology                                                                                                                                   | Treatment                    |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Pathological<br>pattern of<br>hyperplastic<br>lymphoid<br>follicle along<br>wall of<br>bronchiole | <ul> <li>CTD</li> <li>Immunodeficiency synd.</li> <li>Primary</li> </ul> | Progressive<br>cough and<br>dyspnoea<br>Recurrent<br>pneumonia | Nonspecific PFT<br>Centrilobular<br>nodules with ill<br>defined GGOs<br>(cotton in bud app) | Hyperplastic<br>lymphoid follicle<br>along wall of<br>bronchiole that<br>encroach or<br>obliterate lumen<br>Sparing of<br>interlobular<br>septum | Treat<br>underlying<br>cause |

Tashtoush et al ., J Clin Diagn Res 2015

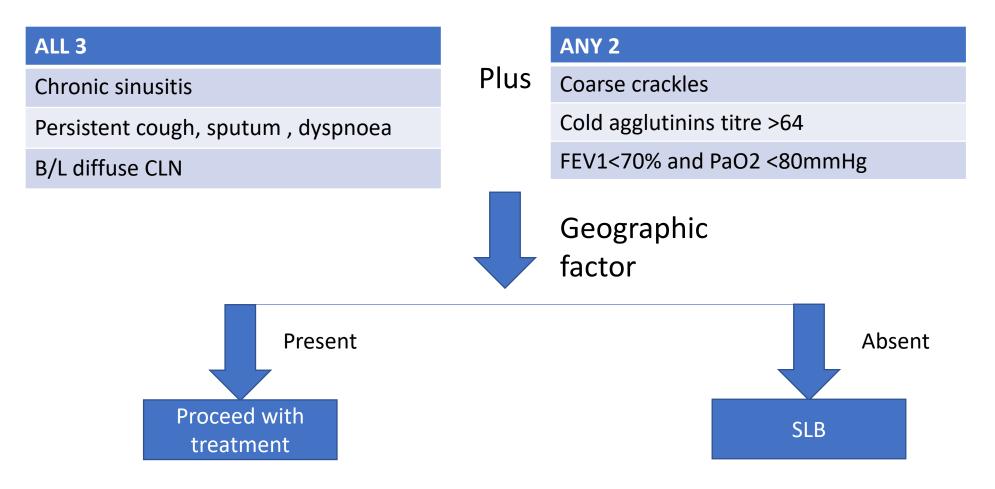
## Follicular Bronchiolitis

#### Clinico-pathological subtypes of Follicular Bronchiolitis

| Groups |                                            | Features                        | Treatment             |
|--------|--------------------------------------------|---------------------------------|-----------------------|
| 1      | CTD related – RA and Sjogren's synd.       | Features of CTD/Prog. SOB/cough | Immunosuppression     |
| 2      | Immunodeficiency associated – HIV and CVID | Recurrent pneumonia/Prog. SOB   | ART/IVIg              |
| 3      | Primary/Idiopathic                         | SOB/cough                       | Steroids/macrolides * |

Tashtoush et al ., J Clin Diagn Res 2015 \* Case reports

## **Respiratory Bronchiolitis**


| Condition                                            | Aetiology | Clinical Feature                                                                  | PFT and Radiology                                    | Histopathology                                                                                                                                                                              | Treatment            |
|------------------------------------------------------|-----------|-----------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Common form of<br>bronchiolitis caused<br>by smoking | Smoking   | Asymptomatic<br>Cough and<br>dyspnoea if<br>associated with<br>RBILD              | UL predominant<br>III defined CL GGOs                | Pigmented<br>macrophages within<br>lumen of respiratory<br>bronchioles with<br>varying degrees of<br>chronic inflammation,<br>peribronchiolar<br>fibrosis and<br>intraluminal<br>mucostasis | Smoking<br>cessation |
| <u>RB</u><br>Inflammation<br>involving<br>bronchiole |           | <u>RB ILD</u><br>Extension of<br>inflammation to<br>parenchyma and<br>interstitum | C Ravaglia et al.,Semin Respir Crit Care Med<br>2020 |                                                                                                                                                                                             |                      |

## Diffuse Pan bronchiolitis

| Condition                                                                                    | Aetiology                                                                                                                    | <b>Clinical Feature</b>                                                | PFT and Radiology      | Histopathology                                                                                          | Treatment                                   |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Rare syndrome<br>characterised by<br>bronchiolar<br>inflammation<br>and chronic<br>sinusitis | Japanese<br>middle aged<br>adults<br>Non smoker<br>?Ass with HLA<br>haplotypes(B54<br>and A11)<br>?Polymorphism<br>in MUC 5B | Cough<br>expectoration(<br>>50ml/d),<br>dyspnoea and<br>sinusitis(75%) | Obstruction<br>CLN+TIB | Lymphoplasmacytic<br>inflammation with<br>foamy<br>macrophages<br>involving wall of<br>resp. bronchiole | Erythromycin<br>400-600mg/d<br>for 6 months |

#### Diffuse Pan bronchiolitis

#### Diagnosis



Ryu et al., Am J Respir Crit Care Med, 2003

# Diffuse Pan Bronchiolitis - Treatment



Cochrane Database of Systematic Reviews

#### Macrolides for diffuse panbronchiolitis (Review)

Lin X, Lu J, Yang M, Dong BR, Wu HM

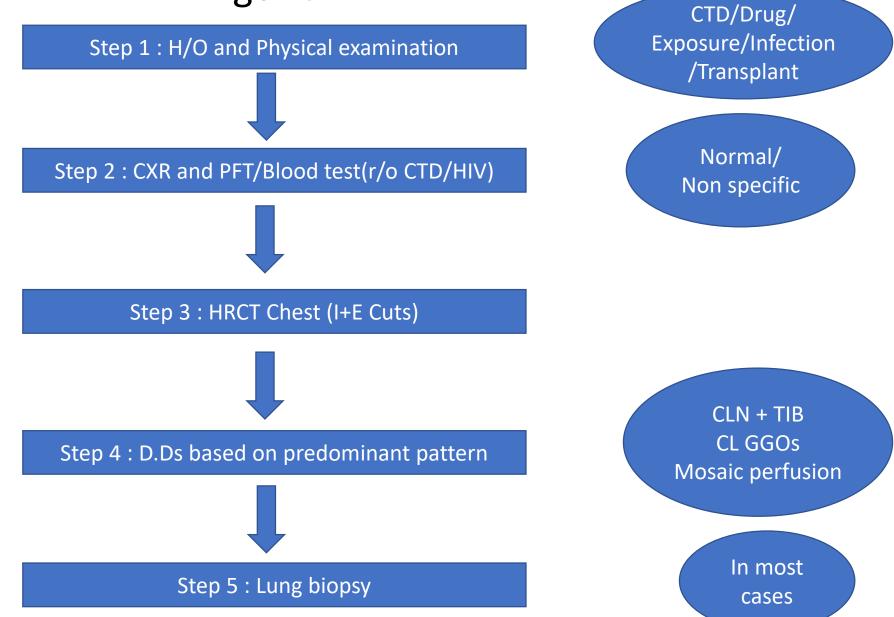
Retrospective studies, Non RCTs and a single RCT show improvement in symptoms, survival and radiology with low dose macrolide therapy for at least 6 months

Erythromycin 400-600mg/d for at least 6 months 1st choiceAzithromycin and clarithromycinAlternativesRhinosinusitis and superadded infections to be addressed

Lin et al ., Cochrane Database Syst Rev. 2015

### Acute Bronchiolitis

| Condition                                                  | Aetiology                                                                                      | <b>Clinical Feature</b>          | PFT and Radiology                                  | Histopathology                                 | Treatment       |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------|------------------------------------------------|-----------------|
| Common in infants<br>and children<br>Uncommon in<br>adults | Infection –<br>viral and non<br>viral<br>Non infectious-<br>Aspiration<br>/toxic<br>inhalation | dyspnoea,<br>wheeze and<br>cough | Restrictive pattern<br>↓ DLCO<br>CLN + TIB (focal) | Neutrophil<br>infiltrate in<br>bronchiole wall | Supportive care |


### Diffuse Aspiration Bronchiolitis

| Condition                                                                      | Aetiology                                                      | Clinical Feature                                                                  | PFT and Radiology           | Histopathology                                                             | Treatment                                |
|--------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------|------------------------------------------|
| Chronic<br>inflammation of<br>bronchioles caused<br>by recurrent<br>aspiration | Recurrent<br>Aspiration d/t<br>GERD<br>Drug abuse<br>Dysphagia | Recurrent<br>episodes of<br>dyspnoea,<br>cough, sputum<br>production and<br>fever | LL predominant<br>CLN + TIB | Chronic<br>inflammation with<br>foreign body giant<br>cells in bronchioles | Prevention of<br>recurrent<br>aspiration |

Risk factor, Recurrent pneumonia, consistent Radiology

Hu et al ., J Bras Pneumol. 2015

## Algorithm



## Conclusion

- Small airway disorders include entities with diverse aetiology, radiological and histological features
- Disproportionate symptoms, normal conventional PFTs and findings on radiology can be initial clue to these disorders
- Multi disciplinary approach in a step wise manner is required to reach a diagnosis
- Emerging diagnostic tests may help in better understanding and identification of these disorders