Recent Advances In Management Of ARDS Dr Srikant K M 12/06/20

Topics To Be Discussed

- ARDS Trend so far
- Available therapies Ventilatory and Non Ventilatory Management
- New data on available therapies
- Newer management strategies
- What we practice what we can change/add
- The way ahead

ARDS – Trend So Far... LUNG SAFE STUDY

Large observational study to understand global impact of severe acute respiratory failure

Study	Population	Outcome - studied
International multicentre prospective cohort study	29,144 ICU patients 459 ICUs 50 countries	Incidence of ARDS in ICU Assessment of clinical recognition of ARDS Clinical outcome of ARDS patients Usage of recommended ventilatory mgt. Use of adjunctive therapies

Results – LUNG SAFE STUDY

- ARDS is common (10% of ICU admissions and 23% of ventilated patients)
- Hospital mortality still remains high

Probability of hospital survival by ARDS severity

1.0Probability of Hospital Survival 0.8 0.6 0.4 ARDS severity Log-rank ARDS severity comparisons Mild P<.001 Overall 0.2 Moderate P = .01 Mild vs moderate P = .003 Moderate vs severe Severe P<.001 Mild vs severe 0 10 15 20 25 28 5 Days

ARDS severity	Hospital Mortality
Mild	34.9%(31.4-38.5)
Mod.	40.3%(37.4-43.3)
Severe	46.1%(41.9-50.4)

Bellani et al. 2016 JAMA

ARDS- Limited Therapies?

Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials

Carolyn S Calfee, Kevin Delucchi, Polly E Parsons, B Taylor Thompson, Lorraine B Ware, Michael A Matthay, and the NHLBI ARDS Network

- Clinical and biological data from ARMA and ALVEOLI trial was analysed
- Latent class modelling was applied to identify subphenotypes based on B/L data
- Association of phenotypes with clinical outcomes was tested

Calfee et al. Lancet 2014

• Based on Baseline data two distinct phenotypes were identified

Phenotype 1	Phenotype 2
Normal/low inflammatory markers	Elevated inflammatory markers
Acidosis absent	+
Shock absent	+

• Phenotypes had different clinically significant outcomes

	ARMA cohort		ALVEOLI cohort			
	Phenotype 1 (n=318)	Phenotype 2 (n=155)	p value	Phenotype 1 (n=404)	Phenotype 2 (n=145)	p value
Mortality (at 90 days)	23%	44%	0.006	19%	51%	<0-001
Ventilator-free days	17-8	7-7	<0.001	18-4	8-3	<0.001
Organ failure-free days	14-5	8-0	<0.001	16-5	8-4	<0.001

Values are estimated means that take into account the uncertainty of class membership.

Calfee et al. Lancet 2014

• Two phenotypes had differential response to level of PEEP applied

ORIGINAL ARTICLE

Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy

Katie R. Famous¹, Kevin Delucchi², Lorraine B. Ware^{3,4}, Kirsten N. Kangelaris⁵, Kathleen D. Liu^{6,7}, B. Taylor Thompson⁸, and Carolyn S. Calfee^{1,7}; for the ARDS Network

Table 4. Interaction between ARDS Subphenotype and Fluid-Management Strategy for the Outcomes of Mortality and Ventilator-Free Days

	Subphenotype 1		Subp		
Fluid-management strategy	Liberal (n = 355)	Conservative (n = 372)	Liberal (n = 142)	Conservative (n = 131)	P Value
60-d mortality, %	24	17	39	49	0.0093
90-d mortality, %	26	18	40	50	0.0039
Ventilator-free days, median	17	21	5	0	0.35

• Differential response to fluid management among two phenotypes

ARDS Sub phenotypes – Clinical relevance

- Various subgroups exist within this broad entity of ARDS
- Respond differently to various management strategy
- Identification of these subgroups can help in better tailoring of treatment precision medicine
- Leading to improved outcomes

ARDS Treatment till few years back..

Prone Position Ventilation - PROSEVA

CESAR - Extra Corporeal Membrane Oxygenation

Ventilatory Management

Role Of NIV - Data from LUNG SAFE STUDY

	Invasive-MV patients (n=353)	NIV patients (n=353)	p-value
ARDS severity at onset, n (%)	(k)	10 S.	
Mild	100 (28.33)	101 (28.61)	1.000
Moderate	184 (52.12)	165 (46.74)	0.195
Severe	69 (19.55)	87 (24.65)	0.127
Patients with PaO ₂ /FiO ₂ ratio < 150 mmHg at ARDS onset,	174 (40.20)	174 (40.20)	1.0000
n (%)	174 (49.29)	174 (49.29)	1.0000
Parameters at ARDS onset, mean±SD			
pH	7.35 ± 0.11	7.38 ± 0.09	0.001
FiO ₂	0.66 ± 0.24	0.60 ± 0.22	0.001
SPO ₂ (%)	94.53 ± 5.51	94.99 ± 3.85	0.660
Total Respiratory Rate (breaths/min)	20.66 ± 6.46	25.63 ± 7.01	<.001
PEEP (cmH ₂ O)	8.09 ± 3.1	7.02 ± 1.95	<.001
Peak Inspiratory Pressure (cmH2O)	26.77 ± 7.66	17.43 ± 7.22	<.001
PaO ₂ (mmHg)	94.64 ± 40.32	87.96 ± 32.55	0.031
PaCO ₂ (mmHg)	46.5 ± 14.41	45.8 ± 17.36	0.320
PaO ₂ /FiO ₂ (mmHg)	157.62 ± 65.58	160.94 ± 64.29	0,492
Tidal Volume (ml/Kg PBW)	7.53 ± 1.75	8.46 ± 2.77	0.001
Minute ventilation (L/min)	9.31 ± 2.90	13.26 ± 5.60	<.001
Base excess (mmol/L)	-0.74 ± 5.93	0.60 ± 6.55	0.002
HCO ₃ (mmol/L)	24.39 ± 5.65	25.4 ± 6.95	0.086
Non-pulmonary SOFA adjusted	3.26 ± 2.82	3.19 ± 2.84	0.423
Δ (%)* PaO ₂ /FiO ₂ ratio	36.31 ± 76.76	28.17 ± 76.77	0.063
Δ (%)* PaCO ₂	-0.3 ± 29.86	3.37 ± 25.92	0.025
Use of vasopressors, n (%)	80 (24.32)	49 (15.03)	0.005
Duration of mechanical ventilation (days), median [IQR]			
all patients	8 [4 - 15]	9 [5 - 13]	0.293
ICU survivors	7 [4 - 14]	10 [7 - 13]	0.744
Length of ICU stay (days), median [IQR]			
all patients	10[6-18]	7 [4 - 12]	<.001
ICU survivors	10 [6 - 19]	7 [4 - 12]	<.001
All-cause in-ICU mortality, n (%)			
all patients	92 (26.06)	99 (28.05)	0.608
matched patients with PaO ₂ /FiO ₂ ratio<150 mmHg	43 (24.71)	63 (36.21)	0.033
All-cause in-hospital mortality, n (%)			
all patients	115 (32.76)	117 (33.24)	0.871
matched patients with PaO2/FiO2 ratio<150 mmHg	55 (31.61)	66 (38.15)	0.224

NIV used in 15% of ARDS patients

NIV use associated with increased mortality esp. in patients with P/F <150 36% Vs 25%(p=0.03)

Role Of NIV In Mild – Mod ARDS

Study	Population	Intervention	Outcome
Prospective observational study	N=41 patients AECC P/F 100-300mmHg	NIV via oronasal mask	Intubation avoided in 18(44%) patients P/F<150 at 1 hr and APACHE II score >17 Associated with NIV failure

Role Of In NIV Mild ARDS - Insufficient Data?

- One small RCT of 40 patients with P/F 200-300mmHg
- Patients randomized to NIV Vs Std O2 therapy via venturi Mask
- Showed No significant reduction in mortality (p=0.09) but decrease in no. of intubations

Zhan Q et al.Crit Care Med, 2012

Early Prone Positioning with NIV Or HFNC

Study	Population	Intervention	Outcome
Multicentre Prospective observational cohort study	N=20 Mod- Sev ARDS	HFNC HFNC+PP NIV NIV+PP (Duration of PP 2hr twice daily)	55%(11) patients avoided intubation P/F< 100 associated with increased risk of failure P/F in NIV+PP>NIV>HFNC+PP>HFNC

Lin Ding et al. Crit Care, 2020

Role Of HFNC - FLORALI Trial

Study	Population	Intervention	Outcome
Multicentre non blinded RCT	N=310 23 ICU Acute hypoxemic RF P/F<300 PaCo2<45 CPE excluded	HFNC(N=106) NIV(N=110) STD O2 Therapy(N=94)	Intubation at Day 28 90 day mortality

Frat et al. N Engl J Med 2015

Results – FLORALI Trial

B/L Characteristics ~65% Cases of CAP

Characteristic	High-Flow Oxygen (N=106)	Standard Oxygen (N = 94)	Noninvasive Ventilatio (N = 110)
Age — yr	61±16	59±17	61±17
Male sex — no. (%)	75 (71)	63 (67)	74 (67)
Body-mass index?	25±5	26±5	26±6
SAPS II:	25±9	24±9	27±9
Current or past smoking - no. (%)	34 (32)	36 (38)	40 (36)
Reason for acute respiratory failure — no. (%)			
Community-acquired pneumonia	71 (67)	57 (61)	69 (63)
Hospital-acquired pneumonia	12 (11)	13 (14)	12 (11)
Extrapulmonary sepsis	4 (4)	5 (5)	7 (6)
Aspiration or drowning	3 (3)	1 (1)	2 (2)
Pneumonia related to immunosuppression	6 (6)	4 (4)	10 (9)
Other	10 (9)	14 (15)	10 (9)
Bilateral pulmonary infiltrates — no. (%)	79 (75)	80 (85)	85 (77)
Respiratory rate — breaths/min	33±6	32±6	33±7
Heart rate — beats/min	105±21	104±16	106±21
Arterial pressure — mm Hg			
Systolic	127±24	130±22	128±21
Mean	\$7±17	89±15	86±16
Arterial blood gas			
pН	7.43±0.05	7.44±0.06	7.43±0.06
Pao, — mm Hg	85±31	92±32	90±36
Fio, §	0.62±0.19	0.63±0.17	0.65±0.15
Pao ₂ :Fio ₂ — mm Hg	157±89	161±73	149±72
Paco ₂ — mm Hg	36±6	35±5	34±6

Outcome	HFNC (106)	NIV(110)	Std O2(94)	p Value
Intubation at D 28	38%	50%	44%	0.18
Intubation at D28 in P/F<200	35%	58%	53%	0.01
Death in ICU	11%	25%	18%	0.047
Mortality at D 90	12%	28%	23%	0.02

NIV duration 8hr(75%) Vt during NIV use 9ml/kg ± 3ml/kg 21% Unilateral infiltrates

Frat et al. N Engl J Med 2015; 372:2185-219

Role Of Non Invasive Modalities In ARDS

Severity Of ARDS	NIV/HFNC
Mild	?Insufficient data – Trial of NIV/HFNC with monitoring
ModSev ARDS	Avoid

Invasive Mechanical Ventilation

The Landmark Trial - ARDSNet (ARMA) Trial

N = 861 ALI/ARDS patients

Randomised to receive

Low Tidal Volume (6ml/kg PBW) v/s Traditional Tidal Volume ventilation (12ml/kg PBW)

Outcome	Low TV Gp	Traditional TV Gp
180 d Mortality	31%	39.8%
Ventilator free days at day 28	12	10

ARR in Mortality ~ 9%

Pplt<30 cm H2O ; PEEP , FiO2 according to ARDSNet table

Brower R G et al. NEJM 2000

Low Tidal Volume Ventilation In ARDS Systematic Review

Low Tidal Volume versus Non–Volume-Limited Strategies for Patients with Acute Respiratory Distress Syndrome

A Systematic Review and Meta-Analysis

Alan Walkley et al. Ann Am Thorac Soc Vol 14, Oct 2017

Refractory Hypoxemia – Options available?

- P/F<150, despite PEEP \geq 5CM H₂O,LTVV and optimisation of ventilator settings
- R/O correctable causes –PTE/VAP/Pneumothorax etc.

OPTIONS

- Alternative ventilator strategies(RM,OLV)
- Prone Position Ventilation
- ECMO
- Pharmacotherapy

Ventilator Strategies – Recruitment Manoeuvre

Brief application of high level of PEEP/CPAP to temporarily increase transpulm. pressure

Rationale : To open derecruited lung areas occurring due to inadequately applied PEEP/loss of PEEP

Used singly/as part of OLV

Recruitment manoeuvre	Procedure
Sustained Inflation	Abrupt increase in airway pressure for given time interval
Sigh breaths	High PEEP upto a specific plateau pressure level for selected number of cycle in CMV
Incremental PEEP	
Staircase RM	

Recruitment Manoeuvres and Outcomes

Ref.	Population	Design	Interventions	Comparison	Outcome
Pelosi et	Patients with	Observational	3 sighs/min at Pplat 45 cm H_2O , V_T to maintain	(1) 1 h of ventilator strategy; (2) 2 h of ventilator strategy; and (3) 1 h of ventilator strategy with	Sigh during protective
al[<u>17]</u>	pulmonary and	study	Pplat \leq 35 cm H ₂ O. PEEP level to keep the lung	three consecutive sighs/min at Plat 45 cm H ₂ O	ventilation improved lung
	extrapulmonary ARDS		open		recruitment
Borges	Patients with	Observational	Stepwise maximum-recruitment strategy with	No comparisons	Stepwise maximum
et al[<u>44]</u>	early ARDS	study	sequential increments in Paw, in 5-cm H_2O steps,		recruitment reverted
			until the detection of $PaO_2 + PaCO_2 = 400 \text{ mmHg}$		hypoxemia and fully
					recruited the lungs
Meade	Patients with	Randomized	Low $V_{T},$ Pplat \leq 30 cm $H_{2}O$ or \geq 40 cm $H_{2}O,$ and	(1) Ventilator strategy with Pplat \leq 30 cm H ₂ O, and conventional PEEP levels; (2) "open lung"	"Open-lung" approach
et al <u>[29]</u>	ARDS	controlled	lower or higher PEEP levels according to	approach with Pplat \leq 40 cm H ₂ O, RM, and higher PEEP levels	improved oxygenation
	$(\text{PaO}_2/\text{FiO}_2 \leq$	trial	PEEP/FiO ₂ table		associated with lower use
	250 mmHg)				of rescue therapies
Hodgson	Patients with	Observational	Staircase RM, Paw set to 15 cm H_2O above the	No comparisons	80% of early ARDS
et al[<u>25]</u>	early ARDS	study	PEEP, which was increased in a stepwise manner to		patients responded to
			20, 30 and then 40 cm $\mathrm{H_{2}O}$ every 2 min, followed		staircase RM
			by PEEP titration		
Hodgson	Patients with	Randomized	Control ventilation strategy compared to staircase	(1) Control group: PCV, Pplat < 30 cm H_2O , $V_T < 6$ mL/kg. FiO ₂ adjusted to SaO ₂ : 90% to 92%;	Staircase RM improved
et al[<u>27]</u>	ARDS	controlled	recruitment maneuver	and (2) Staircase RM: Paw adjusted to 15 cm H_2O above PEEP level, which was increased in a	plasma cytokines,
		trial		stepwise manner to 20, 30 and 40 cm $\rm H_2O$ every 2 min, and then reduced in steps of 2.5 from 25	oxygenation and lung
				to 15 cm H_2O every 3 min until a decrease in $SaO_2 \ge 1\%$	function over 7 d
Morán	Patients with	n Observational	1 Stepwise RM started from plateau pressure/PEEP of	No comparisons	Stepwise RM improved
et al[<u>2</u>	6] early ARDS	study	40/25 cm H ₂ O, 5 cm H ₂ O of PEEP was sequentially	,	oxygenation but caused
			increased until PaO2/FiO2 of 350 mmHg or plateau		hemodynamic instability
			pressure/PEEP of 60/40 cm H_2O		and transient hypoxemia

Santos et al. World J Crit Care Med. 2015 Nov 4

Predicting Recruitability? Which group of patients will benefit

Presence of 2/3 of following(Sens-71 % Sp.- 58 %) 1.P/F<150 at PEEP 5cmH20 2.Decrease in Vd/Vt 3.Increase in Compliance

Gattinoni et al. NEJM 2006

PV Tool Pro (2/3 Criteria)
1.Inflation limb showing upward concavity
2.High compliance above lower inflection point(>50-60ml/cmH2O)
3.Large hysteresis on PV curve(at 20 cmH20)

Assessing response to recruitment? Physiological parameters (So2/P/F/Compliance)

Imaging

P/V curve

Meta analysis – Recruitment Manoeuvres

Table 1. Characteristics of included studies							Table 1. Characteristics of included studies								
Study Popula	Study Population Lung Recruitment Maneuvers						Study Popula	tion					Lung Recruitment	Maneuvers	
First Author, Year (Reference)	Centers (n)	Treatments (n)	Control Subjects (n)	Inclusion Criteria	Maneuver Description	Frequency and Indications	Target V⊤	First Author, Year (Reference)	Centers (n)	Treatments (n)	Control Subjects (n)	Inclusion Criteria	Maneuver Description	Frequency and Indications	Target Vī
Kacmarek, 2016 (<u>21</u>)	20	99	101	Patients with ARDS <48 h, Pa _{O2} /F _{IO2} ratio <200 mm Hg	PCV 15 cm H ₂ O, PEEP 35-45 cm H ₂ O to achieve PIP of 50-60 cm H ₂ O	At randomization	6 ml/kg	Huh, 2009 (<u>17</u>)	1	30	27	Patients with ARDS (duration not specified), Pa ₀₂ /F _{I02} ratio <200 mm Hg	Extended sigh, V _T 25% of baseline, PEEP up to 25 cm H ₂ O, PIP maximum 55 cm H ₂ O	Daily	6 ml/kg
								Xi, 2010 (<u>18</u>)	14	55	55	Patients with ARDS	CPAP 40 cm H ₂ O for 40 s	Every 8 h for up to 5 d	6–8 ml/kg
Hodgson, 2011 (<u>16</u>)	1	10	10	Patients with ARDS <72 h, Pao ₂ /Fio ₂	Staircase recruitment to PIP 55 cm H ₂ O	Daily, oxygen 6 r desaturation or disconnection	6 ml/kg					(duration not specified), Pa ₀₂ /F _{I02} ratio <200 mm Hg			
				mm Hg				Meade, 2008 (<u>19</u>)	30	475	508	Patients with ARDS <48 h,	CPAP 40 cm H_2O for 40 s	At ventilator disconnections, up to four	6 ml/kg
Huh, 2009 (<u>17</u>)	1	30	27	Patients with ARDS	Extended sigh, Vr 25%	Daily 6 r	6 ml/kg					Pao ₂ /Ho ₂ ratio <250 mm Hg		times daily until Fi _{O2} <0.4	
				(duration not specified), Pa ₀₂ /Fi02 ratio <200 mm Hg	of baseline, PEEP up to 25 cm H ₂ O, PIP maximum 55 cm H ₂ O			Amato, 1998 (<u>20</u>)	2	29	24	LIS ≥2.5, PCWP <16, duration of ventilation	CPAP 35-40 cm H ₂ O for 40 s	Ventilator disconnections, desaturations (not clear)	Pressure- targeted modes, 6 ml/kg, Pdrive <20, PIP
Patients of Mod – Sev ARDS included											<1 wk			<40	
Early A	ARDS v	vithin 5-	7d of o	onset											
RM us	ed var	ied								Golig	her et	al. Ann	Am Tho	rac Soc. 2	2017

Meta Analysis RM Results – Mortality

Goligher et al. Ann Am Thorac Soc. 2017

Meta Analysis RM Results – Improvement in oxygenation

	LRMs		erne e d	No LRMs			Mean Difference	0.22	Mean Difference	
Study or Subgroup	Mean [mm Hg] SD [mm	Hgj To	tal Mean [mm H	g] SD [mm Hg]	Total	Weight	IV, Random, 95% CI [mm Hg]	Year	IV, Random, 95% CI [mm Hg]	
Co-intervention with	Co-intervention with higher PEEP									
Amato 1998	220	38	29 13	35 29	24	18.9%	85.00 [66.95, 103.05]	1998		
Huh 2009	160	82	30 14	40 47	498	14.2%	20.00 [-14.28, 54.28]	2008		50 mmHg
Hodgson 2011	230	70	10 14	40 63	10	8.6%	90.00 [31.63, 148.37]	2011		JUIIIIIII
Subtotal (95% CI)	199	19 6	27	50 44	663	81.7%	57.01 [32.72, 81.30]	2010	-	improvement
Heterogeneity: Tau ² = Test for overall effect:	578.07; Chi ² = 28.97, df = Z = 4.60 (P < 0.00001)	4 (P <	0.00001); <i>f</i> ² = 86%	2						in RM group
No co-intervention w	ith higher PEEP									
Xi 2010	142	61	55 12	25 46	55	18.3%	17.00 [-3.19, 37.19]	2010		
Subtotal (95% CI) Heterogeneity: Not ap Test for overall effect:	plicable Z = 1.65 (P = 0.10)		55		55	18.3%	17.00 [-3.19, 37.19]		•	
Total (95% CI) Heterogeneity: Tau ² =	575.99; Chi ² = 37.15, df =	6 5 (P <	82 0.00001); <i>1</i> ² = 87%	9	718	100.0%	49.67 [27.75, 71.59]	s	+	
Test for overall effect:	Z = 4.44 (P < 0.00001)		2 2 2 2						-100 -50 0 50 100	
Test for subgroup diffe	erences: Chr = 6.16, df =	(P = 0)	01), /~= 83.8%						Favours no LRMs Favours LRMs	

Goligher et al. Ann Am Thorac Soc. 2017

Meta Analysis RM Results – Incidence Of Barotrauma

Goligher et al. Ann Am Thorac Soc. 2017

Open Lung Ventilation Approach

LTVV +Recruitment Manoeuvre + Optimize PEEP

- Combination of LTV + RM + Subsequent titration of PEEP
- Hypothesized to reduce volutrauma/barotrauma and atelectrauma
- Hence postulated to further capitalize on benefit afforded by LTV

Is RM and High PEEP Beneficial – Individual Patient Data Meta analysis

Higher vs Lower Positive End-Expiratory Pressure in Patients With Acute Lung Injury and Acute Respiratory Distress Syndrome

Systematic Review and Meta-analysis

All Patients						With	ARDS	Without ARDS					
	No). (%)	8		No.	(%)		ê.	No	. (%)		1	
Outcomes	Higher PEEP (n = 1136	Lower PEEP) (n = 1163)	Adjusted RR (95% CI) ^a	<i>P</i> Value	Higher PEEP (n = 951)	Lower PEEP (n = 941)	Adjusted RR (95% CI) ^a	P Value	Higher PEEP (n = 184)	Lower PEEP (n = 220)	Adjusted RR (95% CI) ^a	P Value	
Death in hospital	374 (32.9)	409 (35.2)	0.94 (0.86 to 1.04)	.25	324 (34.1)	368 <mark>(39.1)</mark>	0.90 (0.81 to 1.00)	.049	50 (27.2)	44 (19.4)	1.37 (0.98 to 1.92)	.07	
Death in ICU ^b	324 (28.5)	381 (32.8)	0.87 (0.78 to 0.97)	.01	288 <mark>(30.3)</mark>	344 <mark>(36.6)</mark>	0.85 (0.76 to 0.95)	.001	36 (19.6)	37 (16.8)	1.07 (0.74 <mark>t</mark> o 1.55)	.71	
Pneumothorax between day 1 and day 28 ^c	87 (7.7)	75 (6.5)	1.19 (0.89 to 1.60)	.24	80 (8.4)	64 (6.8)	1.25 (0.94 to 1.68)	.13	7 (3.8)	11 (5.0)	0.72 (0.37 to 1.39)	.33	
Death after pneumothorax	c 43 (3.8)	40 (3.5)	1.1 <mark>1</mark> (0.73 to 1.69)	.63	41 (4.3)	35 (3.7)	1.20 (0.79 to 1.81)	.39	2 (1.1)	5 (2.3)	0.44 (0.08 to 2.35) ⁹	.34	
Days with unassisted breathing between day 1 and day 28, median (IQR) ^d	13 (0 to 2	2) 11 (0 to 21)	0.64 (-0.12 to 1.39) ^e	.10	12 (0-21)	7 (0-20)	1.22 (0.39 to 2.05) ^e	.004	17 (0-23)	19 (5.5-24)	-1.74 (-3.60 to 0.11) ^e	.07	
Total use of rescue therapies!	138 (12.2)	216 (18.6)	0.64 (0.54 to 0.75)	<.001	130 (13.7)	200 (21.3)	0.63 (0.53 to 0.75)	<.001	8 (4.4)	16 (7.3)	0.60 (0.25 to 1.43) ⁹	.25	
Death after rescue therapy ¹	85 (7.5)	132 (<mark>11.</mark> 3)	0.65 (0.52 to 0.80)	<.001	82 (8.6)	124 (13.2)	0.66 (0.52 to 0.82)	<.001	3 (1.6)	8 (3.6)	0.37 (0.10 to 1.46) ^g	.15	
Use of vasopressors	722 (63.6)	759 (65.3)	0.93 (0.75 to 1.14) ⁹	.49	627 (65.9)	647 (68.8)	0.90 (0.72 to 1.13) ⁹	.37	95 (51.6)	111 (50.5)	0.92 (0.56 to 1.50) ^g	.72	

Reduction in mortality and improvement in ventilator free days in ARDS Gp

Briel et al. JAMA 2010

ART (Alveolar Recruitment in ARDS Trial)

Study	Population	Intervention	Outcome
Multicentre RCT 120 sites	N=1010 ModSev. ARDS <72 Hr	501- OLV 509 – LTV	28 d Mortality 6 month Mortality 28 d Ventilator free Days Barotrauma
70 Ling recruitment PEEP litration New recruitment 60 AP=15cmH,0 45 45 40 45 45 45 30 25 23 45 10 20 37 14 0 4 8 12 16 20 24	Waiotenance wentSation with optimal PEEP		Cavalcanti et al. JAMA 2017

Results – ART Trial

Table 2. Outcomes Among Patients Treated With Lung Recruitment Maneuver With Positive End-Expiratory Pressure (PEEP) vs Low-PEEP Strategy Lung Recruitment Maneuver With PEEP Type of Effect Estimate **Titration Group** Low-PEEP Group **Effect Estimate** Outcome (n = 501)(n = 509)(95% CI) P.Value Primary Outcome Death ≤28 d, No. of events/total No. (%) 277/501 (55.3) 251/509 (49.3) HR 1.20 (1.01 to 1.42) .041 Secondary Outcomes Death, No. of events/total No. (%) In intensive care unit 303/500 (60.6) 284/509 (55.8) RD 4.8 (-1.5 to 11.1) .13 In hospital 319/500 (63.8) 301/508 (59.3) 4.5 (-1.7 to 10.7) .15 RD Within 6 mo^a 327/501 (65.3) 305/509 (59.9) HR 1.18 (1.01 to 1.38) .04 Length of stay, d intensive care unit, mean (SD) 18.2 (22.4) 19.2 (25.9) MD: -1.0 (-4.0 to 2.0) .51 Median (IQR) 12.0 (5.0 to 23.0) 14.0 (7.0 to 23.0) MD .74 Hospital, mean (SD) 25.5 (32.3) 26.2 (31.7) -0.7 (-4.6 to 3.3) Median (IQR) 15.0 (5.0 to 32.0) 18.0 (7.0 to 35.0) No. of ventilator-free d from d 1 to d 28, 5.3 (8.0) 6.4 (8.6) MD -1.1 (-2.1 to -0.1) .03 mean (SD), d Median (IQR) 0.0 (0.0 to 11.0) 0.0 (0.0 to 14.0) Pneumothorax requiring drainage ≤7 d, 16/501 (3.2) 6/509 (1.2) RD 2.0 (0.2 to 3.8) .03 No./total No. (%) Barotrauma ≤7 d, No./total No. (%) 28/501 (5.6) 8/509 (1.6) RD 4.0 (1.5 to 6.5) .001

Higher mortality in OLV group

Increased incidence of pneumothorax in OLV group

Cavalcanti et al. JAMA 2017

Recent Meta analysis - OLV

OLV did not produce significant effect on mortality

Cui Y et al. Respiration 2019

OLV In ARDS PLHARP 2 Trial

Study	Population	Intervention	Outcome
Multicentre RCT 35 ICU	N=115 ModSev. ARDS <72 Hr	58- OLV 57 – LTV	No difference in mortality No difference in Ventilator free Days Lower requirement of rescue therapy
Meta analysis – High PEEP v/s Low PEEP in ARDS patient on LTVV

No. of Centers	ARDS Severity (Pa _{O2} /FIO2)	Intervention	Control	Mortality Outcome Assessments	Study, First Author, Year (Reference)	No. of Centers	ARDS Severity (Pa _{O2} /F _{IO2})	Intervention	Control	Mortality Outcome Assessments
2	<200	V⊤ < 6 ml/kg body weight	Vt 12	1. 28 d	Mercat et al., 2008 (24)	37	<300	PEEP titrated to Pplat 30 cm H ₂ O	PEEP 5-9 cm H ₂ O to meet	1. 28 d
		Pressure control	ml/kg	ml/kg	*	O ₂ goals	2. 60 d			
		Ventilation < 40 cm H_2O PEEP at Pflex+2 cm H_2O	control ventilation	2. Hospital						3. Hospital to Day 60
		Recruitment maneuvers	PEEP set		Talmor et al	1	<300			1 28 d
			to O ₂ goals	3. ICU	2008 (23)			PEEP to keep end- expiratory TPP within 0–10 cm H ₂ O	Lower PEEP/Fi _{O2} chart	
23	<300	Higher PEEP/Fi _{O2} chart Recruitment maneuvers in first 80 patients enrolled	Lower PEEP/Fi _{O2} chart	Death before discharge home, up to Day 60				Inspiratory TPP < 25 cm H_2O	Pplat < 30 cm H ₂ O	2. 180 d
			Pplat < 30 cm H ₂ O					Using esophageal balloon		
8	<200	V 1 5–8 ml/kg ideal body weight	V⊤ 9–11 ml/kg	1. ICU	. Hodgson <i>et al.,</i> 2011 (<u>9</u>)	1	<200	Stepwise recruitment w/ PEEP to 30 cm H ₂ O Then decremental PEEP to	Lower PEEP/Fi _{O2} chart	Hospital
		Pressure control ventilation PEEP at Pflex+2	PEEP ≥5 cm H ₂ O to O ₂ goals	2. Hospital				O ₂ desaturation		
			02800.5		Kacmarek et al.,	20	<200	Stanuica race literaat with	Lower	1. 28 d
30	<250	High PEEP/FIO2 chart	Lower	1. Hospital Decep/Fi _{O2} 2. 28 d	2016 (<u>10</u>)			PEEP to 35–45 cm H ₂ O	PEEP/Fi _{O2} chart	2. 60 d
		Pplat < 40 cm H ₂ O	chart					Then decremental PEEP to		3. ICU
		Recruitment maneuvers	Pplat < 30 cm H ₂ O	3. ICU				best dynamic compliance		4. Hospital
	No. of 2 2 23 8 30	No. of CentersARDS Severity (Pao2/Fio2)2<200	No. of CentersARDS Severity (Pao2/FiO2)Intervention2<200	No. of CentersARDS Severity (Pao,/Fio,)InterventionControl2<200	No. of Centers ARDS Severity (Pao,/Fio,) Intervention Control Mortality Outcome Assessments 2 <200	No. of Centers ARDS Severity (Pao_2/Fio_2) Intervention Control (Peao_2/Fio_2) Mortality Outcome Assessments Study, First Author, Year (Reference) 2 <200	No. of 	No. of Severity (Pao,/Fo,) ARDS Severity (Pao,/Fo,) Intervention Control Mortality Outcome Assessment (Reference) No. of Centers (Reference) ARDS Centers (Reference) 2 <200	No. of Centers ARDS (Pao,/Fig.) Intervention Control (Pao,/Fig.) More all (Pao,/Fig.) No. of Centers ARDS (Centers) Intervention 2 <200	No. of Centers ABDS Servity (Pao,/Fo,) Intervention Control Mortality Assessments Study, First Reference) No. of Centers ABDS Servity (Pao,/Fo,) Intervention Control 2 <200

Walkey A J et al. Ann Am Thorac Soc. 2017

Result Meta analysis – Outcome Of Mortality

Walkey A J et al. Ann Am Thorac Soc. 2017

Result Meta analysis – Improvement In Oxygenation

Walkey A J et al. Ann Am Thorac Soc. 2017

Role Of RM/OLV In ARDS

- Benefit in mortality conflicting(?Mod- Sev ARDS)
- Improvt. In oxygenation +
- Reduced need of rescue therapies

Other Ventilator Strategies – Optimisation/Titration of PEEP

- PEEP FiO2 table
- PEEP according to PV loop analysis
- Transpulmonary Pressure guided
- Based on optimisation of Driving Pressure
- Based on Stress Index
- EIT guided
- Based on Dead space fraction

PEEP Titration with Oesophageal Balloon Catheter

Principle

- TPP is pressure needed to open up the alveoli
- TPP needs to be positive during the breathing cycle to prevent atelectrauma
- Airway pressure measured by ventilator may be influenced by chest and abdominal wall compliance
- Pleural pressure measured by oesophageal catheter can give reliable measure of TPP and help in PEEP titration

EP VENT 1 & 2

STUDY	EP VENT 1	EP VENT 2
Туре	Single centre Pilot study	Multicentre phase 2 RCT
Population	ALI/ARDS(AECC) N=61	Mod Sev ARDS (P/F<200 Berlin definition) N=202
Intervention	PEEP guided by Pes vs Empirical PEEP FiO2 table PTPinsp <25	PEEP guided by Pes vs High PEEP FiO2 table PTPinsp <20 PTPexp >0
Outcome	Primary : Improvement in P/F	Primary : No. of Deaths at day 28 Days free from MV at day 28
	Secondary : Days free from MV Deaths at day 28 LOS in ICU	Secondary : 60 d mortality 180 d mortality LOS in hospital and ICU

Results	EP VENT 1	EP VENT 2
28 d Mortality	17% v/s 39% p=0.055	32.4% vs 30.6% p=0.88
Ventilator Free days to day 28	11.5d vs 7d p=0.5	15.5d vs 17.5d p=0.93
Hospital LOS to day 28	-	16d vs 15d p=0.58
ICU LOS to day 28	15.5d vs 13d p=0.16	10d vs 9.5d p=0.25
Improvement in P/F	88mmHg in Intervention arm	N/A

Routine use of Pes guided PEEP titration offered no benefit compared to conventional PEEP FiO2 titration

Driving pressure guided ventilation

- LTVV derived from PBW does not take into account the area of lung available for ventilation
- Stress and Strain experienced not only influenced by V_T but also C_{RS}
- Thus normalizing V_T to C_{RS} and using the ratio as an index to indicate the functional size of the lung may provide a better predictor of outcomes in patients with ARDS than V_T alone
- This ratio is termed the driving pressure ($\Delta P = V_T/C_{RS}$) and can be routinely calculated ($\Delta P = P_{plat} PEEP$)

Retrospective Analysis of 9 RCTs In ARDS Δ P<15

Amato et al. NEJM 2015

Alternative Modes Of Ventilation HFOV

- Based on principle of using very small tidal volume oscillating around a very high mean airway pressure
- Hypothesised to prevent both volutrauma and atelectrauma

Study	Population	Intervention	Result
OSCAR Trial Young D et al(2013)	N = 795 Mod- Sev ARDS P/F<200	N=398 HFOV arm N=397 Conv Ventilation	30 d Mortality 41.7% v/s 41.1% p=0.85
OSCILLATE Trial Ferguson et al.(2013)	N=548 ModSev ARDS P/F<200	N=275 HFOV arm N=273 LTV arm	In Hospital Mortality 47% v/s 35% p=0.005 NNH = 8

Higher Mean Airway Pressure>30 mmhg Sedative and NMB use

APRV(Airway Pressure Release Ventilation)

- Delivery of continuous positive airway pressure with a brief release phase
- Hypothesized to improve gas exchange by alveolar recruitment

Study	Population	Intervention	Outcome
Putensen et al.	N=30	APRV	No. of ventilator days 15d vs 21d
2001	Trauma rel. ARDS	PCV	ICU stay 23d vs 30d
Maxwell et al.	N= 63	APRV	No. of ventilator days 15d vs 21d
2016	Trauma rel. ARDS	LTV	Mortality 6.45% vs 6.25%
Zhou et al.2017	Single centre N=138 (~70% Extrapulmonary cause)	APRV LTV	Ventilator free days 19d vs 2d Length of ICU stay 15d vs 20d Mortality 23.9% vs 37.3%

Is APRV better than LTV ? Two groups not comparable at B/L

Main outcome variables

			\sim
Main outcome variables	APRV $(n = 71)^{b}$	$LTV(n=67)^{b}$	P value
No. of days of ventilation	8 [5–14]	15 [7–22]	0.001
No. of ventilator-free days at 28 days	19 [8-22]	2 [0–15]	<0.001
Successful extubation	47 (66.2%)	26 (38.8%)	0.001
Tracheostomy	9 (12.7%)	20 (29.9%)	0.013
Length of ICU stay (days)	15 [8-21]	20 [10-32]	0.015
Pneumothorax between day 1 and day $28^{\mathbf{a}}$	3 (4.2%)	7 (10.4%)	0.199
Death during the ICU stay	14 (19.7%)	23 (34.3%)	0.053
Length of hospital stay (days)	21 [14–30]	27 [18-41]	0.055
Death during the hospital stay	17 (23.9%)	25 (37.3%)	0.088
Other supportive therapies			\bigcirc
Neuromuscular blocker	2 (2.8%)	9 (13.4%)	0.021
Recruitment maneuvers	4 (5.6%)	11 (16.4%)	0.042
Prone position	2 (2.8%)	10 (14.9%)	0.012
Inhaled nitric oxide	1 (1.4%)	1 (1.5%)	1.000
High-frequency oscillatory ventilation	1 (1.4%)	3 (4.5%)	0.355

Baseline characteristics of the patients

	Duration of mechanical ventilation (h)	24.6 ± 12.6	22.1 ± 13.
	Duration of ICU stay before inclusion (h)	25.6 ± 12.6	23 ± 13.3
	Chronic disease		
	Chronic obstructive pulmonary disease	2 (2.8%)	5 (7.5%)
	Chronic cardiac dysfunction	2 (2.8%)	3 (4.5%)
	Chronic renal dysfunction	0%	3 (4.5%)
	Hematological disease	2 (2.8%)	3 (4.5%)
	Hepatic disease	3 (4.2%)	5 (7.5%)
	Cancer	7 (9.9%)	12 (17.9%
	Immunodeficiency	4 (5.6%)	4 (6.0%)
	Diabetes	3 (4.2%)	2 (3.0%)
/	Coexisting one or more of the above diseases	23 (32.4%)	34 (50.7%
	Reason for ARDS		
<u> </u>	Pneumonia	18 (25.4%)	26 (38.8%
	Extrapulmonary sepsis	13 (18.3%)	10 (14.9%
	Severe acute pancreatitis	19 (26.8%)	13 (19.4%
	Severe trauma	9 (12.7%)	7 (10.4%)
	Major surgical procedures	8 (11.3%)	9 (13.4%)
	Other	4 (5.6%)	2 (3.0%)
	Co-interventions		
	Vasopressor	40 (56 3%)	46 (68 7%)
	vasopressor	(JU.J /0)	40 (00.770)

Zhou et al. Intensive Care Med. 2017; 43(11): 1648–1659

Stress Index

- Analysis of airway pressure and time curve can give details regarding respiratory system elastance
- Stress index is a dimensionless coefficient derived from this curve
- Stress index has shown to correlate with tidal recruitment and overdistension
- Stress index estimation requires dedicated ventilator and software

Sun et al. Respiratory Care 2018

Estimation Of Stress Index with Visual Inspection

Sun et al. Respiratory Care 2018

Electrical Impedance Tomography(EIT) in ARDS

- EIT is a non invasive bedside radiation free imaging tool
- Images generated by EIT can help in real time monitoring of pulmonary ventilation

Brief small alternating currents Delivered via electrodes attached to band applied to chest Voltages read by electrodes depends upon resistivity/impedance of lung tissue At end of one breathing cycle Voltages recorded are used to generate a pixel image based on prespecified reconstruction algorithm

Bachmann et al. Critical Care (2018)

EIT Plethysmograph and Ventilation Map

- EIT plethysmograph is a waveform derived from pixel image denote volume of air moving in and out of a region
- Ventilation map is colour coded functional image representing changes in lung impedence

Bachmann et al. Critical Care (2018)

Role Of EIT In ARDS

- ARDS is a heterogenous condition with regional difference in ventilation
- Ventilation map can help detect these regional difference
- EIT plethysmography can help assess changes in these areas during recruitment manoeuvre and aid in PEEP titration
- EIT derived changes in lung volume and images have been found to correlate with lung mechanic indices and CT images

Lowhagen K, et al. Acta Anaesthesiol Scand. 2011;55:165–74.

Pulmonary Dead Space - ARDS

- In ARDS secondary to inflammation and thrombosis in pulmonary microcirculation there is
 physiological dead space
- Elevated physiological dead space fraction (V_d/V_t) is a marker of severity of lung injury in ARDS(Normal 25-30%)
- V_d/V_t is markedly elevated in first 24 hr after ARDS and sustained elevation of V_d/V_t is associated with increased mortality
- $V_d/V_t > 60\%$ is a independent risk factor for increased mortality

TJ Nuckton et al, NEJM 2002 Kallet et al. Resp Care 2004

Pulmonary Dead Space Fraction Measurement And Application

Enghoff modification of Bohrs equation used to calculate Vd/Vt =PaCO2-PECO2/PaCO2

- Estimation and F/u of Vd/Vt for prognosis
- Vd/Vt can help in estimating response to PEEP/RM
- Changes in capnography curve can help in optimising PEEP
- Help in assessing effectiveness of RM

Slope method is used by S1 Hamilton to estimate Vdaw/VT

Personalised Ventilation (the LIVE Study)

Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial

Jean-Michel Constantin, Matthieu Jabaudon, Jean-Yves Lefrant, Samir Jaber, Jean-Pierre Quenot, Olivier Langeron, Martine Ferrandière, Fabien Grelon, Philippe Seguin, Carole Ichai, Benoit Veber, Bertrand Souweine, Thomas Uberti, Sigismond Lasocki, François Legay, Marc Leone, Nathanael Eisenmann, Claire Dahyot-Fizelier, Hervé Dupont, Karim Asehnoune, Achille Sossou, Gérald Chanques, Laurent Muller, Jean-Etienne Bazin, Antoine Monsel, Lucile Borao, Jean-Marc Garcier, Jean-Jacques Rouby, Bruno Pereira, Emmanuel Futier, for the AZUREA Network*

- Ventilation was modified based on patient lung morphology
- Lung morphology defined based on CT Thorax

Constatutin et al. Lancet Resp Oct 2019

Personalised Ventilation (the LIVE Study)

Study	Population	Intervention	Outcome
Multicentre single blind RCT	N= 420 ModSev ARDS P/F<200	196 – Personalised Gp Focal- Low PEEP/PPV Diffuse – RM/High PEEP 204 – Control Gp	90 day mortality

Constatutin et al. Lancet Resp Oct 2019

Personalised Ventilation (the LIVE Study) Results

B Per protocol (n=360)

Constatntin et al. Lancet Resp Oct 2019

Prone Position Ventilation(PPV)

Gattinoni et al. AJRCC 2013

Finally A Positive Trial - PROSEVA

Study	Population	Intervention	Outcome
Multicentre RCT	N=466 P/F<150, FiO2 60%, PEEP>5 MV<36Hr	PPV(atleast 16hr) Vs Supine LTV	28 D Mortality 16% Vs 32.8% ARR – 17% RRR – 51% NNT=6

Guerin et al. 2013 NEJM

Meta analysis – Mortality Benefit with PPV In Mod.-Sev ARDS

	Pro	ne	Sup	ine		Risk Ratio			R	isk Ra	atio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI			IV, Ra	ndom	, 95% Cl		
Moderate to Severe A	RDS						_						
Mancebo et al. 2006	38	76	37	60	17.0%	0.81 [0.60, 1.10]			-	-			
Chan <i>et al.</i> 2007	4	11	4	11	3.2%	1.00 [0.33, 3.02]				-		-	
Fernandez et al. 2008	8	21	10	19	6.9%	0.72 [0.36, 1.45]				-	-		
Taccone et al. 2009	52	168	57	174	16.6%	0.94 [0.69, 1.29]			2	-	e		
Guerin et al. 2013	38	237	75	229	15.3%	0.49 [0.35, 0.69]							
Subtotal (95% CI)		513		493	59.1%	0.74 [0.56, 0.99]							
Total events Heterogeneity: Tau ² = 0	140 0.05; Chi ²	2 = 8.51	183 df = 4 (P	= 0.07)	; <i>l</i> ² = 53%								
Test for overall effect: 2	2 = 2.06 (P = 0.04	4)										
AII ARDS													
Gattinoni <i>et al.</i> 2001	70	152	67	152	19.1%	1.04 [0.82, 1.34]				+	-		
Guerin et al. 2004	134	413	119	378	20.9%	1.03 [0.84, 1.26]				+			
Voggenreiter et al. 200	5 1	21	3	19	0.9%	0.30 [0.03, 2.66]	-			-			
Subtotal (95% CI)		586		549	40.9%	1.03 [0.88, 1.20]				•			
Total events	205		189							1			
Heterogeneity: Tau ² = 0 Test for overall effect: 2	0.00; Chi ² Z = 0.36 (² = 1.24 P = 0.72	, df = 2 (P 2)	= 0.54)	; <i>I</i> ² = 0%								
Total (95% CI)		1099		1042	100.0%	0.84 [0.68, 1.04]			55	•			
Total events	345		372										
Heterogeneity: Tau ² = 0 Test for overall effect: 2	0.04; Chi ² Z = 1.60 (² = 16.9 P = 0.1	4, df = 7 (F 1)	P = 0.02	?); <i>I</i> ² = 59	%	0.1	0.2	0.5	1	2	5	10
Test for subaroup differ	ences: C	$hi^2 = 3.9$	93. df = 1 i	(P = 0.0)	5). $l^2 = 74$	4.6%		Favour	s prone		Favou	rs supine	

Munshi et al. Ann Of ATS 2017

Meta analysis – Mortality Benefit with PPV With Duration >12 Hr

Munshi et al. Ann Of ATS 2017

Flow Chart Ventilatory Management

Non-Ventilatory Management

Neuro Muscular Blockade In Severe ARDS

- NMBs aid in ARDS management by promoting ventilator synchrony, reducing WOB and thereby reducing VILI
- Ventilator asynchrony can lead to generation of large tidal volume
- However neuromuscular weakness remains a concern

NMB Trials Conflicting Results

Study/Characteristics	ACURASYS(2010)	ROSE(2019)
Туре	Multicentre RCT Double blind N=340 P/F<150; PEEP>5 (AECC) Mean PEEP 9.2 cm H20	Multicentre RCT Open label N=1006 Mod Sev ARDS (Berlin) P/F or S/F<150; PEEP>8 Mean PEEP 12.6cm H20
Intervention	Deep sedation + Early NMB(178) v/s Deep sedation (162)	Deep sedation + Early NMB(501) v/s Light sedation alone(505)(RASS 0 to -1)
	ARMA PEEP FiO2 table Proning in ~30%	High PEEP FiO2 table Proning in ~16%
28 d Mortality	23.7% Vs 33.3% (-19.2 to -0.2)	36.7% Vs 37% (-6.3 to 5.7)
90 d Mortality	31.6% Vs 40.7%[(P/F<120) p=0.04]	42.5% Vs 42.8% (p=0.93)
Adverse events ICUAW Serious CV events Pneumothorax	MRC score similar - 4% Vs 11.7%	46.8% Vs 27.5%(at D28) 14 vs 4 4% Vs 6.3%
Deep Sedation not curre ICUAW and CV events ar	nt standard of care Re e a concern	verse Triggering in Deep sedation arm?

Are NMB Really Useful?

RESEARCH

Neuromuscular blockade in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials

An Thi Nhat Ho^{1*}, Setu Patolia¹ and Christophe Guervilly^{2,3}

Open Access

Meta analysis Results – 28d & 90d Mortality

28-day mortality

No significant difference in 28d and 90d Mortality

90-day mortality

	NBM	A	Cont	lor		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rand	om, 95% Cl	
Forel 2006	5	18	10	18	7.9%	0.50 [0.21, 1.17]	1			
Gainnier 2004	14	28	21	28	20.5%	0.67 [0.43, 1.02]				
Guervilly 2017	5	13	2	11	3.2%	2.12 [0.51, 8.84]				
Moss 2019	213	501	216	505	38.9%	0.99 [0.86, 1.15]				
Papazian 2010	56	177	70	162	29.5%	0.73 [0.55, 0.97]				
Total (95% CI)		737		724	100.0%	0.81 [0.62, 1.06]		•		
Total events	293		319							
Heterogeneity: Tau ¹	= 0.04; Cl	$hi^2 = 9.$	03. df =	4 (P =	0.061; 12	= 56%	-		1	100
Test for overall effect	r Z = 1.5	4 (P = 0)).12)				0.01	Favours NMBA	Favours control	100

Meta analysis Results – Adverse events

Barotrauma events lesser in NMB group

Meta analysis Results – Improvement in P/F ratio

PaO2/FiO2 ratio at 24 hours

	1	NMBA	Longer	C	ontrol	E.c.		Mean Difference		Mean Diffe	erence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random,	95% CI	
Forel 2005	183	73	18	146	47	18	8.7%	37.00 [-3.11, 77.11]	2	+		÷.
Gainnier 2004	159	48	28	145	56	28	16.0%	14.00 [-13.32, 41.32]		-	-	
Guervilly 2017	218	58	13	140	160	11	1.6%	78.00 [-21.67, 177.67]				
Moss 2019	198.4	77.7	436	189.2	76.8	408	42.2%	9.20 [-1.23, 19.63]		+	-	
Papazian 2010	164	72	172	168	72	159	31.5%	-4.00 [-19.53, 11.53]				
Total (95% CI)			667			624	100.0%	9.33 [-3.48, 22.15]				
Heterogeneity Tau ² -	- 72.94;	Chi2 =	6.43,	df = 4 (P = 0.	17); 12 .	- 38%		100	1.	da	100
Test for overall effect	Z = 1.4	3 (P =	0.151						-100	Favours NMBA F	avours control	100

PaO2/FiO2 ratio at 48 hours

Revenue - Second	- 11 H	NMBA			Control			Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
Forel 2006	205	73	18	152	49	18	21.3%	53.00 [12.38, 93.62]			
Gainnier 2004	183	88	28	139	42	27	23.5%	44.00 [7.76, 80.24]			
Guervilly 2017	191	57	13	158	60	11	18.4%	33.00 [-14.09, 80.09]			
Moss 2019	198	73.4	381	193.2	79	348	36.8%	4 80 [-6 30, 15.90]			
Total (95% CI)			440			404	100.0%	29.46 [1.69, 57.24]	-		
Heterogeneity Tau ² -	- 513.53	2; Chi2	= 9.29	, df = 3	P.	0.03)	1 ² = 68%	E Constant a substant a	100 20 10 10		
Test for overall effect	Z = 2.0	08 (P -	0.04)						Favours NMBA Favours control		

PaO2/FiO2 at 72 hours

	NMBA			Control				Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD.	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Forel 2006	239	91	18	175	62	18	6.3%	64.00 [13.13, 114.87]		
Gainnier 2004	196	78	27	170	65	27	10.4%	26.00 [-12.30, 64.30]		
Moss 2019	197.8	74.6	330	185.6	75.6	272	45.8%	11.20 [-0.86, 23.26]		
Papazian 2010	166	70	167	157	68	152	37.6%	9 00 [-6 15, 24 15]		
Total (95% CI)			542			469	100.0%	15.21 [1.90, 28.52]	+	
Heterogeneity Tau? +	62.84;	Chi ² -	4.66,	df = 3 (P = 0.3	20x P .	- 36%		1000 do 10 10	
Test for overall effect:	Z = 2.2	4 (P =	0.033						Favours NMBA Favours control	

Modest P/F improvement at day 3

NMB infusion not routinely recommended in early Mod-Sev. ARDS

May be used to tackle asynchrony not controlled by sedatives
Role Of Steroids

Role In Early ARDS- DEXA ARDS Study

Study	Population	Intervention	Outcome
MULTICENTRE RCT	N= 277	STANDARD CARE PLUS	VENTILATOR FREE DAYS
	MODSEV ARDS	I/V DEXA V/S STANDARD	AT DAY 28
	17 ICUs across Spain	CARE	MORTALITY AT DAY 60

Villar et al. Lancet Resp Feb 2020

Results - DEXA ARDS Study

Data are n (%) or mean (SD). ICU= intensive care unit. *Data included the period from randomisation to day 10 (for hyperglycaemia) and from randomisation to ICU discharge (for new infections and barotrauma).

Villar et al. Lancet Resp Feb 2020

Steroids in early v/s late ARDS

AGARWAL R. et al. (2007). Respirology, 12(4), 585–590

Late steroid initiation In ARDS (LaSRS)

Variable	Placebo (N=91)	Methylprednisolone (N=89)	P Value
180-Day mortality — %	31.9	31.5	1.0
95% CI	23.2-42.0	22.8-41.7	
No. of ventilator-free days at day 180			0.04
Median	149	159	
Interquartile range	0-167	13-173	
No. of ICU-free days at day 180			0.27
Median	150	152	
Interquartile range	0-164	13-168	
Survivors			0.006
Days of assisted ventilation up to 180 days			
Median	18	11	
Interquartile range	10-33	6-22	
Days of ICU stay up to 180 days			0.29
Median	20	17	
Interquartile range	11-31	10-31	
Days of hospitalization up to 180 days			0.73
Median	29	26	
Interquartile range	19-40	19-43	
Neuromyopathy			0.18
Retrospective review	10/43 (23)	15/44 (34)	
Prospective review	11/48 (23)	11/44 (25)	0.67
Overall	21/91 (22)	26/88 (30)	0.20
180-Day mortality according to time from ARDS onset			
7-13 Days %	39	27	0.14
No. of patients	66	66	
⇒14 Days — %†	12	44	0.01
No. of patients	25	23	
180-Day mortality according to baseline BAL procollagen peptide type III level			
≤ Median — %	13	39	0.04
No. of patients	23	23	
> Median — %‡	24	4	0.05
No. of patients	21	24	

Increase in mortality in subset of patients receiving steroid after 2 weeks

Steinberg et al. NEJM 2006

Fluid Management FACTT Trial

Study	Population	Intervention	Outcome
Multicentre RCT	N=1000 ALI/ARDS Patients not in shock	Conservative strategy(503) CVP<4cm H20 Liberal Strategy(497) CVP 10-14cm H2O	60 d mortality(25.5% v/s 28.4%) p =0.3 Mechanical ventilation duration (10.37 d vs 13.59 d) ICU free days (13.4d vs 11.2d)

Decreased ventilator and ICU days and improved lung function Diff. in cumulative balance ~7L Wiedemann et al. NEJM 2006

ECMO In ARDS

- ECMO is an extracorporeal device for cardiorespiratory or respiratory support
- VV-ECMO is commonly used for respiratory support in patient with life threatening respiratory failure

RCT s ECMO In ARDS CESAR TRIAL Vs EOLIA TRIAL

	CESAR Trial	EOLIA Trial
Study	Multicentre RCT	Multicentre RCT
Population	N=180	N=249
Intervention	ECMO(24% DID NOT RECEIVE ECMO) Vs CMV(LTV NOT USED IN ALL PATIENTS)	ECMO Vs CMV(LTV adhered to) Crossover (Rescue ECMO allowed~28%)
Incl Criteria	MV<7d Murray score >3 ; pH<7.2	MV<7d P/F<50(3hr) P/F<80(6hr) pH<7.25(6hr)
Primary Outcome	6 month mortality 47% Vs 63% RR-0.69 (p=0.03)	60 d Mortality 35% Vs 46% RR- 0.76(p=0.09) 44% Of patient who received Rescue ECMO survived
Cointerventions	PPV(4 Vs 42%)	PPV~90% NMB~100% used

Even though EOLIA trial failed to show superiority of ECMO

ECMO as a rescue intervention is worth noting from this trial

Meta Analysis ECMO In ARDS – Effect On 30d Mortality

	ECMO		CMV			Weight (%)	Risk ratio
	Events	Total	Events	Total			(95% CI)
Peek et al (2009) ³	29	90	44	90		21-8%	0-66 (0-46-0-95)
Noah et al (2011) ⁵	11	75	31	75 •	<	14-4%	0-35 (0-19-0-65)
Pham et al (2013) ⁶	26	52	21	52		- 19-7%	1-24 (0-81-1-90)
Tsai et al (2015) ¹⁰	22	45	34	45		22.7%	0.65 (0.46-0.91)
Combes et al (2018) ³⁰	32	124	46	125		21-4%	0.70 (0.48-1.02)
Combined Heteropeneity: x ² =0.08: y ² =11.92. df=4. (p=0.02): l ² =0	120 56%	386	176	387	-	100-0%	0-69 (0-50-0-95)
Test for overall effect: Z=2-31 (p=0-02)					0.5 0.7 1 1.5	2	
					Favours ECMO Favours C	MV	

Figure 5: Forest plot of 30-day mortality across all studies of ECMO vs CMV in adults with severe acute respiratory distress syndrome

Munshi et al. Lancet 2019

Meta Analysis ECMO In ARDS – Adverse Events

	Major haemorrhage n/N (%)	Major haemorrhage type	Complications associated with ECMO circuit or cannulation n/N (%)
Peek et al (CESAR), ³ 2009	Not reported	NA	1/90 (1%)
Noah et al, ⁵ 2011	18/75 (24%)	Eight intracranial haemorrhages, five gastrointestinal or haemoperitoneal haemorrhages, four haemothoraxes, and one fatal pulmonary haemorrhage	1/75 (1%)
Pham et al,° 2013	24/52 (46%)	Seven haemothoraxes, seven gastrointestinal or haemoperitoneal haemorrhages, five intracranial haemorrhages, and five cases of haemorrhagic shock	3/52 (6%)
Combes et al (EOLIA),= 2018	6/124 (5%)	Three intracranial haemorrhages and three participants received massive transfusions	1/124 (1%)

the text. Tsai et al= is not included because adverse events were not reported. ECMO=extracorporeal membrane oxygenation. NA=not applicable.

Table 3: Adverse events across ECMO groups

Munshi et al. Lancet 2019

SUPERNOVA Trial (ECCO2R with ULTV)

Safety And Feasibility Study

Study	Population	Intervention	Outcome
Multicentre Phase 2 study	Mod ARDS N=95	LTVV with NMB, sedatives ECCO2R catheter Vt dec to 4ml/kg PBW PaCo2 b/w 80-120% B/L D/C if pH<7.3 PaCO2>70	 82% had acceptable PaCO2 and Ph 73% Survived at D28 6 Serious AE 2 attributed to ECCO2R

Combes A et al. Intensive Care Medicine February 2019

Inhaled Pulmonary Vasodilators Role of Inhaled Nitric Oxide(INO)

Cochrane metanalysis 14 trials n=1275

Outcome	Relative Effect(Control vs INO)
Overall Mortality	RR – 1.04(0.9-1.19)
28 D Mortality	RR- 1.08(0.92-1.27)
P/F improvt at 24 hr	MD- 15.91(8.25-23.56)
Ventilator Free Days upto 30 days	MD- 0.57(-1.82-0.69)
Renal impairment	RR-1.59(1.17-2.16)

Inhaled prostacycline has shown similar results No statistically significant effect of INO on mortality or other clinical outcomes except modest improvement on oxygenation

Gebistorf et al. Cochrane Systematic Review 2016

Other Supportive Care

- Sedation
- Nutrition
- Glucose control
- Prevention of Nosocomial Infection
- DVT
- Stress ulcer prophylaxis

Ineffective Therapies

TRIAL	THERAPY
SAILS	Rosuvastatin
HARP-2	Simvastatin
VIOLET	Vitamin D
CITRIS ALI	Vitamin C
BALTI-1/2	Beta Adrenergic agonist
ISRTCN 98813895	Keratinocyte Growth Factor
LIPS-A	Aspirin

Upcoming Trials

Trial	Intervention
REST(Protective ventilation with veno venous lung assist in respiratory failure)	ECCO2R with ULTV Vs LTV
NCT03608592(Phase 2)	Umbilical cord derived mesenchymal stem cell in ARDS
OPTIPRONE Study	HFNC + PPV

Final Flow Chart

Conclusion

- Number of therapies available for ARDS remain limited
- Identification of ARDS phenotypes has given a ray of hope
- Identification of these phenotypes and directing therapy towards them(precision medicine) is need of the hour