VAPING RELATED LUNG DISORDERS

DM SEMINAR

Outline

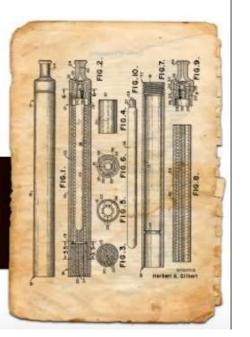
- History
- E-cigarette Nicotine and Cannabis, constituents
- E-cigarette use prevalence, patterns, reasons
- E-cigarette smoking cessation, gateway drug
- E-cigarettes and health Asthma, COPD
- EVALI
- Role of Vitamin E acetate in EVALI
- CDC updates and recommendations

Joseph Robinson filed a patent for the first "Electric Vaporizer" in 1927 and was approved in 1930.

142

My invention relates to vaporizing devices for holding medicinal compounds which are electrically heated to produce vapors for inhalation, and to provide a device for individual use which may be freely handled without any possibility of being burned.

JOSEPH ROBINSON May 3, 1927 New York


GILBERT HERBERT A Aar 17, 1963 Pennsylvania

Although not actually made for vaporizing tobacco, the device has similar capabilities to a modern electronic cigarette.

> Herbert A. Gilbert files a US Patent for the first smokeless cigarette.

The present invention relates to a smokeless non tobacco cigarette and has for an object to provide a safe and harmless means for and method of smoking by replacing burning tobacco and paper with heated, moist, flavored air.

Unfortunately, he was way ahead of his time and his ideas wouldn't be revisited for almost 30 years.

1990'S

A number of new patents are issued for cigarette substitutes, including several novel electronic cigarette designs.

In 1998, Philip Morris begins selling Accord, a battery-powered "heat not burn" device as a cigarette substitute.

2009

OCT

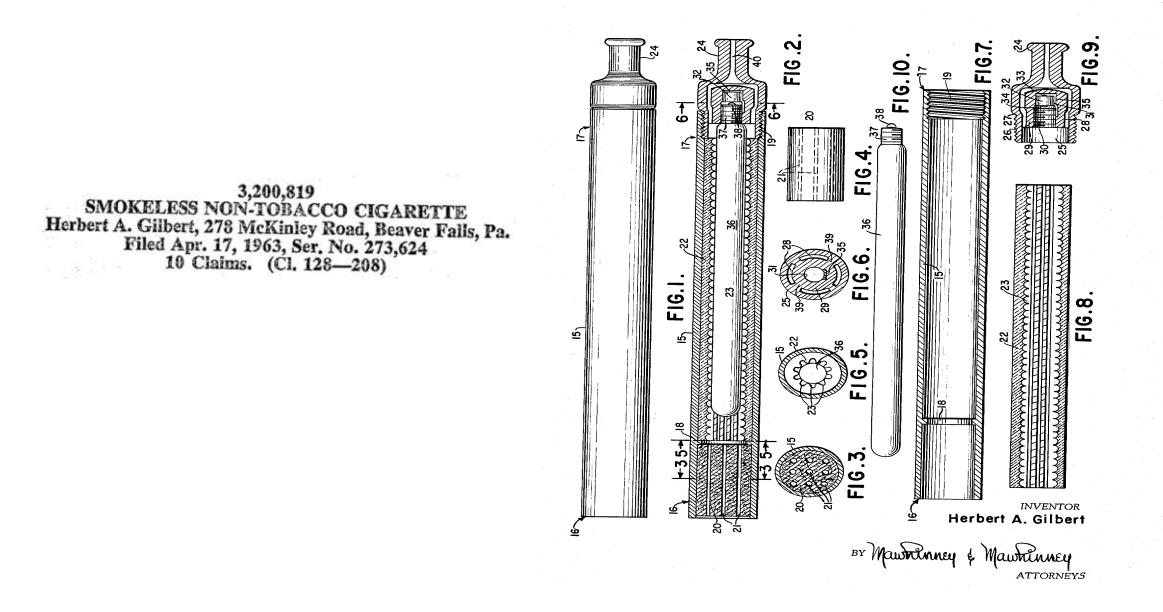
California Governor Arnold Schwarzenegger protects adult consumer rights by rejecting a bill to ban e-cigarettes in California. Amazon bans the sale of electronic tobacco products on their website.

The United Kingdom Action on Smoking and Health expresses initial support for electronic cigarettes as a possible harm reduction product, saying that products should be made available that deliver nicotine in a safe way, without the harmful components found in tobacco.

ash

History of E-cigarettes

- Herbert A. Gilbert, 1965 First smokeless, non-tobacco cigarette
- Replaced burning tobacco and paper with heated, moist, flavored air
- Safe and harmless method of smoking


Aug. 17, 1965

H. A. GILBERT

3,200,819

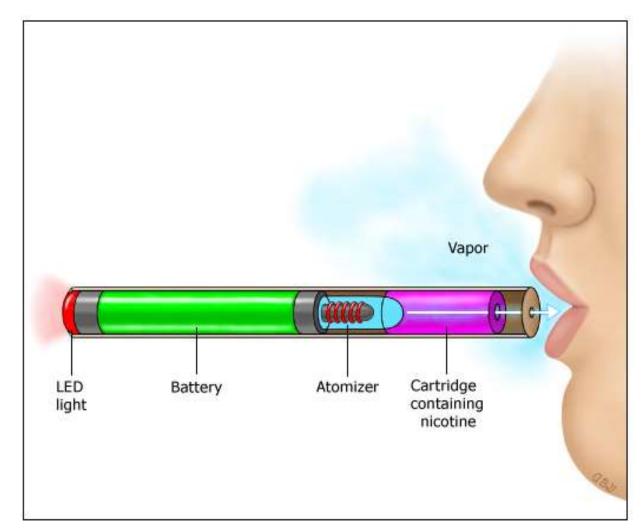
SMOKELESS NON-TOBACCO CIGARETTE

Filed April 17, 1963

Some of the advantages of the invention are:

(a) There is no open flame or fire and fire hazard is

therefore eliminated.


- (b) Nothing is consumed so that there is no smoke, ashes or dirt.
- (c) Since the air which enters the lungs of the user comes into contact with only inert materials, there is nothing of an injurious nature being placed into the respiratory system of the user.
- (d) Heated medication for respiratory ailments may be induced into the lungs of a user of this invention should a physician feel the same desirable.
- (e) Persons who wish to smoke but have been advised against such a practice by their doctor may use this invention to maintain the satisfaction of smoking without any of its disadvantages.
- (f) By changing the liquid employed to moisten the cartridge 20, a variety of tastes may be imparted to the warm moist air which serves to duplicate the smoking sensation.
- (g) The size and shape of the device according to this invention may approximate the size and shape of a cigarette; therefore its use will not call undue attention to the user. A white coloration of the basic tube 15 and mouthpiece will further add to this illusion.

Modern E-cigarette

- Electronic Nicotine Delivery System (ENDS)
- Hon Lik, Chinese research pharmacist, 2004
- He quit smoking after his father who was a heavy smoker, died of lung cancer
- Consists of a cartridge, an atomizer (vaporization chamber with a heating element), and a battery

E-cigarette parts

- "RUYAN" 2004
- Activation by inhaling or pressing a button
- Atomizer heats and aerosolizes the liquid creating "vapor"
- Vaping smoking an E-cigarette

Product	Description	Some Brands	
Disposable e-cigarette	Cigarette-shaped device consisting of a battery and a cartridge containing an atomizer to heat a solution (with or without nicotine). Not rechargeable or refillable and is intended to be discarded after product stops producing aerosol. Sometimes called an e-hookah.	NJOY OneJoy, Aer Disposable, Flavorvapes	
Rechargeable e-cigarette	Cigarette-shaped device consisting of a battery that connects to an atomizer used to heat a solution typically containing nicotine. Often contains an element that regulates puff duration and /or how many puffs may be taken consecutively.	Blu, GreenSmoke EonSmoke	
Pen-style, medium-sized rechargeable e-cigarette	Larger than a cigarette, often with a higher capacity battery, may contain a prefilled cartridge or a refillable cartridge (often called a clearomizer). These devices often come with a manual switch allowing to regulate length and frequency of puffs.	Vapor King Storm, Totally Wicked Tornado	
Tank-style, large-sized rechargeable e-cigarette	Much larger than a cigarette with a higher capacity battery and typically contains a large, refillable cartridge. Often contains manual switches and a battery casing for customizing battery capacity. Can be easily modified.	Volcano Lavatube	

E-Liquid Constituents

Constituents	Concentration/type	Comments
Nicotine	6mg/ml, 12mg/ml, 18mg/ml, 24mg/ml	0 to 30ug per puff (30 puffs - 1mg) 1 conventional cigarette – 1mg nicotine
Humectants	Propylene glycol / glycerol / ethylene glycol 80% of liquid	Propylene oxide – carcinogen Acrolein – upper respiratory tract irritation Formaldehyde, acetaldehyde
Flavors	Candy, fruit, soda, alcohol	To attract youth
Metals	Tin, lead, nickel, chromium, arsenic, manganese, cobalt	From - Metallic coil, device and liquid

Vaping - Cannabis

Cannabis concentrates (THC based oils, wax)

Constituents	Comment	Limitation / AE
Pesticides	Used to grow cannabis	May not be eliminated completely even after processing
Solvents	Butane, hexane	Case reports of severe pneumonitis (butane hash oil)
Flavors	Diacetyl, acetoin	Popcorn Lung (BO)
Cutting agents	Vitamin E acetate	Surfactant disruption

Table 1. Electronic Cigarette (E-Cigarette) Use Patterns Among US Adults by Demographics and Smoking Status, 2014 National Health Interview Survey (n = 36 697)^a

	Never user	Former trier ^b	Someday	Daily
	% (95% CI)	% (95% CI)	% (95% CI)	% (95% CI)
Sex				(C=2)
Male (48.2%)	85.8 (84.8-86.7)	10.1 (9.4-10.7)	2.9 (2.3-3.5)	1.3 (1.1-1.6)
Female (51.8%)	88.9 (88.1-89.6)	7.8 (7.3-8.3)	2.4 (1.9-2.9)	1.0 (0.8-1.3)
Age group				
18 to 24 (12.6%)	78.4 (75.9-80.7)	16.5 (14.7-18.6)	4.3 (2.9-6.1)	0.9 (0.5-1.4)
25 to 44 (34.2%)	83.4 (82.4-84.4)	11.9 (11.1-12.8)	3.2 (2.8-3.7)	1.5 (1.2-1.8)
45 to 64 (34.5%)	89.8 (88.9-90.7)	6.6 (6.1-7.3)	2.3 (1.8-2.9)	1.2 (1.0-1.5)
≥65 (18.7%)	96.3 (95.8-96.8)	2.2 (1.9-2.7)	0.8 (0.6-1.2)	0.6 (0.4-0.9)
Race/ethnicity				
White, NH (66.3%)	85.2 (84.3-86.0)	10.3 (9.7-10.9)	3.1 (2.7-3.7)	1.4 (1.2-1.7)
Black, NH (12.0%)	92.4 (91.5-93.2)	5.6 (4.9-6.4)	1.5 (1.1-2.1)	0.4 (0.3-0.7)
Hispanic (15.3%)	91.4 (90.2-92.4)	6.5 (5.6-7.5)	1.7 (1.2-2.3)	0.5 (0.3-0.7)
Other, NH (6.4%)	91.5 (89.9-92.9)	6.1 (5.0-7.4)	1.4 (0.9-2.0)	1.0 (0.5-1.9)
Cigarette smoking status				
Daily smoker (12.8%)	50.9 (48.5-53.3)	32.8 (30.9-34.8)	12.7 (10.9-14.8)	3.5 (2.7-4.4)
Some day smoker (3.9%)	57.4 (53.6-61.1)	27.7 (24.4-31.4)	11.5 (9.2-14.2)	3.4 (2.2-5.2)
Recent quitter-quit 1 year ago or less (2.9%)	52.0 (47.2-56.8)	29.9 (25.8-34.4)	5.0 (3.2-8.0)	13.0 (10.5-16.1)
Former smoker-quit 2 to 3 years ago (1.7%)	66.6 (61.5-71.4)	23.0 (18.7-27.9)	3.8 (2.4-6.2)	6.5 (4.2-9.9)
Former smoker-quit 4+ years ago (17.2%)	95.8 (94.9-96.5)	3.5 (2.9-4.1)	0.6 (0.2-1.3)	0.2 (0.1-0.4)
Never-smoker (61.1%)	96.8 (96.4-97.2)	2.8 (2.5-3.2)	0.3 (0.2-0.5)	0.1 (0.0-0.1)
Region				
Northeast (17.3%)	90.3 (89.0-91.4)	7.3 (6.4-8.4)	1.5 (1.1-1.9)	0.9 (0.6-1.5)
Midwest (23.0%)	84.9 (83.5-86.2)	10.6 (9.8-11.5)	3.2 (2.4-4.3)	1.2 (0.9-1.7)
South (37.2%)	87.7 (86.6-88.7)	8.4 (7.7-9.2)	2.7 (2.1-3.4)	1.2 (1.0-1.5)
West (22.5%)	87.2 (86.2-88.2)	9.0 (8.2-9.9)	2.7 (2.2-3.2)	1.1 (0.8-1.4)
Overall	87.4 (86.8-88.0)	8.9 (8.5-9.3)	2.6 (2.3-3.0)	1.1(1.0-1.3)

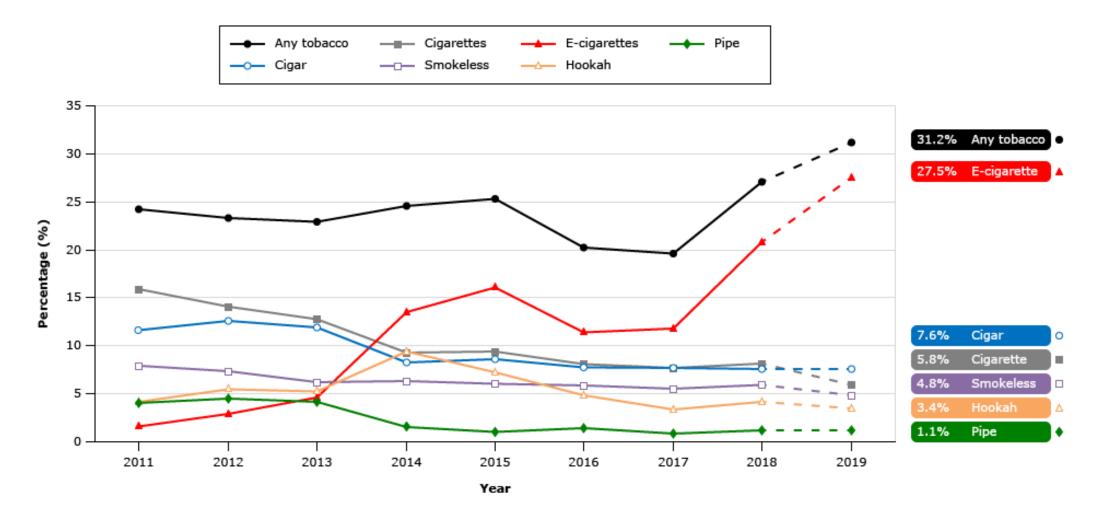
NHIS, cross-sectional survey – 2014

Computer based personal interview - 36,697 subjects

E-cigarette use highest in

- Males
- 18-24 years
- Whites
- Recent quitter

CI = confidence interval; NH = non-Hispanic.


Prevalence estimates used weighted data.

"Have ever tried an e-cigarette but currently use "not at all".

'Currently use e-cigarettes "some days".

Nicotine & Tobacco Research, 2016, Vol. 18, No. 5

Current tobacco product use among high school students (NYTS, 2011-2019)

Reasons for E—cigarette use

TABLE 6. Reasons for e-cigarette use* among middle and high school students who reported using e-cigarettes and other tobacco products during the past 30 days — National Youth Tobacco Survey, United States, 2019

	Use e-ciga	rettes only†	Use e-cigarettes and other tobacco products		
Reason	% (95% CI)	Estimated no. [¶]	% (95% Cl)	Estimated no.	
was curious about them	56.1 (53.4-58.7)	1,900,000	38.4 (35.1-41.7)	730,000	
riend or family member used them	23.9 (21.7-26.3)	810,000	22.2 (19.6-25.1)	420,000	
They are available in flavors, such as mint, candy, fruit, or chocolate	22.3 (20.3–24.5)	760,000	26.6 (23.8–29.6)	500,000	
can use them to do tricks	22.0 (20.0-24.2)	740,000	29.0 (25.6-32.7)	550,000	
They are less harmful than other forms of tobacco, such as cigarettes	17.2 (15.3–19.3)	580,000	19.1 (16.7–21.9)	360,000	
can use them unnoticed at home or at school	14.5 (12.9-16.3)	490,000	22.9 (19.4-26.8)	430,000	
was peer pressured into using them	8.9 (7.7-10.3)	300,000	7.5 (5.8-9.8)	140,000	
They are easier to get than other tobacco products, such as cigarettes	3.9 (3.0–5.0)	130,000	9.7 (7.9–11.8)	180,000	
've seen people on TV, online, or in movies use them	3.8 (3.1-4.6)	120,000	5.4 (3.9-7.4)	100,000	
o try to quit using other tobacco products, such as cigarettes	2.8 (1.8-4.2)	90,000	17.0 (14.0-20.5)	320,000	
They cost less than other tobacco products, such as cigarettes	2.5 (1.9-3.3)	80,000	11.6 (9.4-14.3)	220,000	
used them for some other reason**	15.9 (14.0-18.0)	540,000	22.2 (17.9-27.3)	420,000	

Abbreviations: CI = confidence interval; e-cigarettes = electronic cigarettes; TV = television.

* Assessed by the question, "What are the reasons why you have used electronic cigarettes or e-cigarettes? (Check all that apply.)" Responses were not mutually exclusive.

[†] Reported use of only e-cigarettes on ≥ 1 day during the past 30 days (n = 2,361).

⁵ Reported use of e-cigarettes and at least one other tobacco product (e-cigarettes and cigarettes, cigars, smokeless tobacco, hookahs, pipe tobacco, or bidis [small brown cigarettes wrapped in a leaf]) on ≥1 day during the past 30 days (n = 1,267).

[¶] Estimated weighted total number of users was rounded down to the nearest 10,000 persons.

** Respondents could subsequently specify a reason through a write-in option (n = 465).

- Cochrane review, 2016
- 2 RCTs, EC vs Placebo (non-nicotine), n=662
- 1 RCT, EC vs Nicotine patch, n=584

Electronic cigarettes (EC) for smoking cessation

Patient or population: people defined as current smokers at enrolment into trials, motivated or unmotivated to quit

Intervention: nicotine-containing electronic cigarettes

Comparison: placebo electronic cigarettes or nicotine replacement therapy (or for adverse events, uncontrolled)

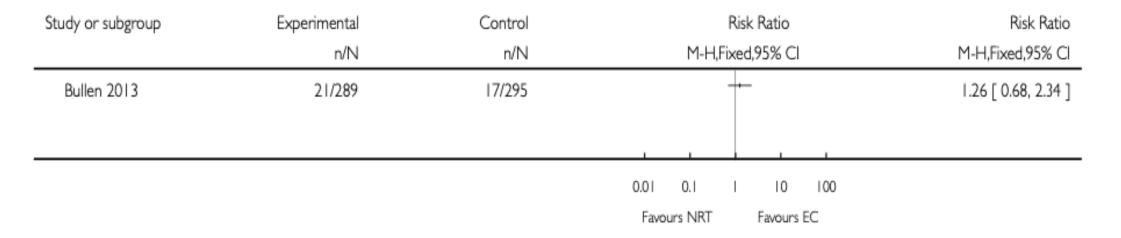
Outcomes	Illustrative comparative risks* (95% CI)		Relative effect (95% CI)	No of Participants (studies)	Quality of the evidence (GRADE)	Comments	
	Assumed risk ¹	Corresponding risk					
	Control	Electronic cigarettes					
Cessation: Nicotine EC versus placebo EC ² assessed with exhaled CO Follow-up: 6 - 12 months	40 per 1000	93 per 1000 (42 to 201)	RR 2.29 (1.05 to 4.96)	662 (2 studies)	⊕⊕⊖⊖ low ^{3,4}	Only RCTs reported here. Some cohort data also available (see full review) but only RCTs provide efficacy data	
Cessation: Nicotine EC versus nicotine re- placement therapy assessed with exhaled CO Follow-up: 6 months	58 per 1000	73 per 1000 (39 to 135)	RR 1.26 (0.68 to 2.34)	584 (1 study)	⊕⊖⊖⊖ very low ^{3.5}	As above	

Analysis I.I. Comparison I Smoking cessation, Outcome I Nicotine EC versus placebo EC.

Review: Electronic cigarettes for smoking cessation

Comparison: I Smoking cessation

Outcome: I Nicotine EC versus placebo EC


Study or subgroup	Experimental	Control	1	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fi	xed,95% Cl		M-H,Fixed,95% Cl
Bullen 2013	21/289	3/73	×-	-	47.3 %	1.77 [0.54, 5.77]
Caponnetto 2013a	22/200	4/100		-	52.7 %	2.75 [0.97, 7.76]
Total (95% CI)	489	173		•	100.0 %	2.29 [1.05, 4.96]
Total events: 43 (Experime	ntal), 7 (Control)					
Heterogeneity: Chi ² = 0.30	0, df = 1 (P = 0.58); l ² =0	0.0%				
Test for overall effect: Z =	2.09 (P = 0.037)					
Test for subgroup difference	es: Not applicable					
			10 IC	c - 100 - 14		
			0.01 0.1	1 10 100		
			Favours placebo	Favours EC		

Analysis I.2. Comparison I Smoking cessation, Outcome 2 Nicotine EC versus nicotine replacement therapy.

Review: Electronic cigarettes for smoking cessation

Comparison: | Smoking cessation

Outcome: 2 Nicotine EC versus nicotine replacement therapy

Authors conclusion

- ECs help smokers to stop smoking in the long term compared with placebo ECs
- Evidence "LOW" GRADE
- The long-term safety of ECs is unknown

EC vs NRT

Study	Population	Intervention	Comparator	Outcome
Hajek, 2019 Pragmatic, RCT multi-center - UK	N = 886 Smokers 1:1 randomization	E-cigarette ("ONE KIT" – ASPIRE company)	NRT (patch, gum, etc)	Primary – 1-yr sustained abstinence rate: 18% - EC
NHS funded May 2015 to Feb 2018	Both groups – behaviour therapy (4 weeks)	18mg/ml nicotine conc		9.9% - NRT 80% were using E- cig at 1 yr vs 9% were using NRT at 1 yr
				Long term use of E- cig - dependence

Smoking Cessation

- E-cigarettes replace or reduce conventional cigarette use
- However risk remains uncertain
- If an adult smoker is not willing for NRT, e-cigarettes can be advised as an alternative, as long as the smoker is informed about the safety and efficacy

Gateway Effect

- Studies that evaluated the association between e-cigarette use among never cigarette smokers at baseline and cigarette smoking initiation between baseline and follow-up
- 9 longitudinal studies
- 16,621 adolescents and young adults

Figure 2. Meta-analysis of Adjusted Odds of Cigarette Smoking Initiation Among Never Cigarette Smokers at Baseline and Ever e-Cigarette Users at Baseline Compared With Never e-Cigarette Users at Baseline

	Probability of Cigarette Smoking Initiation, %										
Source	Ever e-Cigarette Users	Never e-Cigarette Users	Unadjusted OR (95% CI)	Adjusted OR (95% CI)	Favors Smaller Increase in Odds				s Larger ase in Oc		Weight, %
Miech et al, ¹⁰ 2017	31.1	6.8	6.23 (1.57-24.63)	4.78 (1.91-11.96)	-			-		+	11.4
Spindle et al, ⁹ 2017	29.4	10.6	3.50 (2.41-5.09)	3.37 (1.91-5.94)	_	-	-				17.9
Primack et al, 22 2016	37.5	9.0	6.06 (2.15-17.10)	8.80 (2.37-32.69)		S				-	7.0
Barrington-Trimis et al, ⁸ 2016	40.4	10.5	5.76 (3.12-10.66)	6.17 (3.29-11.57)						-	16.6
Wills et al, ⁷ 2016	19.5	5.4	4.25 (2.74-6.61)	2.87 (2.03-4.05)	-	13					23.0
Primack et al, ⁶ 2015	37.5	9.6	5.66 (1.99-16.07)	8.30 (1.19-58.00)		10.00					3.7
Leventhal et al, ⁵ 2015	31.8	5.6	7.78 (6.15-9.84)	1.75 (1.10-2.78)							20.3
Total	30.4	7.9	5.12 (4.41-5.95)	3.62 (2.42-5.41)		-		-			100
Heterogeneity: τ ² = 0.15; Q ₆ = 1 Test for overall effect: z = 6.25; i		= 60%			1 2	3 OR (95	4 % CI)	6	8	Tii	

The odds ratios (OR) for the studies^{5-10,22} are adjusted for a study-specific set of demographic, psychosocial, and behavioral risk factors. The size of the point estimate (black square) is proportional to the weight of the study in the random-effects meta-analysis model. The weights add to 99.9% and not 100% because of rounding. Q indicates Cochrane Q.

E-Cigarette use was associated with greater risk for subsequent cigarette smoking initiation

JAMA Pediatr. 2017;171(8):788-797

E-cigarettes and health

Pro-inflammatory effects of E-cigarettes – vapor condensate or flavorants

Cells tested/systems affected	Treatment/type of lung fluid tested	Main findings
In vitro tests		
Isolated neutrophils	EC vapor extract	Increased expression/activity of: (I) CD11b & CD66b; (II) release of MMP9, neutrophil elastase and IL-8 and (III) activation of p38 MAPK
Alveolar macrophage culture	EC vapor condensate	Reduction in cell viability. Sub-lethal concentrations increased generation of ROS, cytokines (IL-6, TNFα, IL-8 MCP-1) and MMP9
Monocytic cell types MM6 and U937	Exposed to EC flavorants e.g., diacetyl, cinnamaldehyde, pentanedione, o-vanillin, maltol, coumarin; doses 10-1,000 µM	Increased generation of IL-8; certain flavorants were cytotoxic at relatively high concentrations
Ex vivo test		
Isolated neutrophils from EC users	Activated with 25 nM PMA	Isolated peripheral neutrophils demonstrated increased NET formation upon PMA stimulation
In vivo tests		
Effects of EC use on airways	Induced sputum samples	Elevated levels of elastase and MMP9. Increases in NET- related proteins (e.g., MPO, azurocidin, protein arginine deiminase 4)
Effects of EC use on airways	Bronchoalveolar lavage fluid	Neutrophil elastase, MMP2 & MMP9 equally elevated in vapers and smokers
Effects of use of EC, containing <mark>only PG & VG, on airways</mark>	Bronchoalveolar lavage fluid	No changes in inflammatory cell counts or cytokines, however, changes in urinary PG correlated with change in cell counts and cytokines (although changes were small)

J Thorac Dis 2019;11(12):5572-5585

E-cigarette use – epidemiological surveys

Cross sectional studies	Ν	EC use	Outcome
Hong Kong, 2016	45,000 adolescents	EC use in previous month	Increased Cough or sputum production (OR 2.1, 95% CI – 1.8 to 2.5)
South California, 2017	2000 high school students`	Past and current use of EC	2 fold increase in the risk of cough, sputum compared to never users
Health eHeart study, 2018	40,000 subjects	Current EC use	Higher self ratings of dyspnea

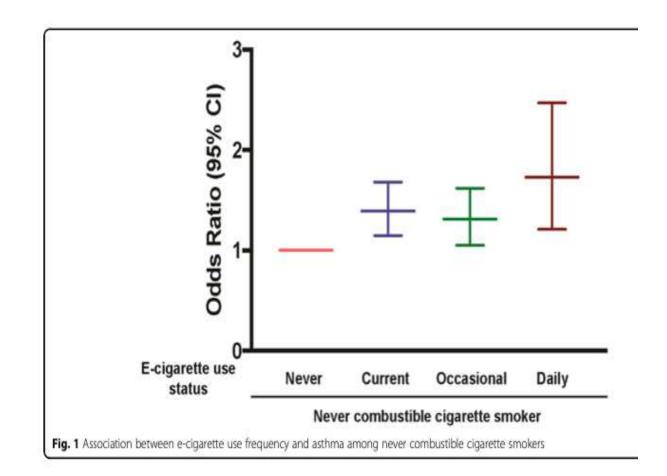
Spirometric study

Study	Ν	Intervention	Outcome
Meo SA, 2019	30 (EC) 30 (controls)	EC use and spirometry after a period of abstinence (at least 1 hr)	EC – Lower FEV ₁ (4.6L vs 5.2L; P=0.007) Lower FEV ₁ /FVC (77.4 vs 83.4; P=0.001) Can reflect acute bronchospasm rather than lasting changes

Conventional Asthmatic smokers on switching to EC

Study	Ν	Primary outcome	Limitations
Polosa, 2014 Retrospective study	18 mild to moderate Asthmatic smokers	Improvement in FEV ₁ and Performance in methacholine challenge test	No change in Asthma exacerbations Small sample

Int. J. Environ. Res. Public Health 2014, 11, 4965-4977


EC use and Asthma

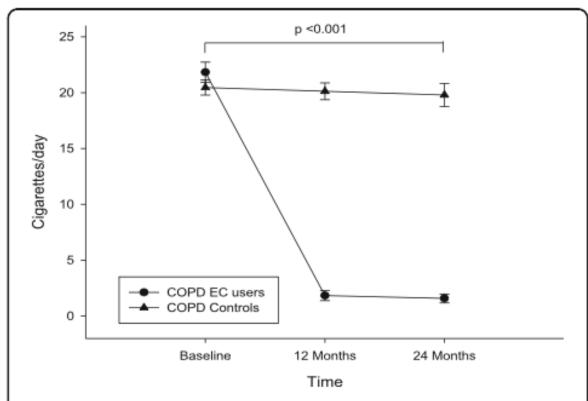
- Pooled data of Behavioral risk factor surveillance system (BRFSS) 2016 and 2017
- Cross sectional, self reported, telephonic survey in USA
- 4,02,822 adults aged > 18 years, lifetime smoking < 100 cigarettes
- 3103 (0.7%) were current e-cigarette users
- 34,074 (8.5%) with asthma

EC use and Asthma

The odds ratio of self-reported asthma

- 1.39; (95% confidence interval: 1.15, 1.68) in current EC users
- 1.31 (95% confidence interval: 1.05, 1.62) in occasional EC users
- 1.73 (95% confidence interval: 1.21, 2.48) in daily EC users compared to never e-cigarette users

Osei et al. BMC Pulmonary Medicine (2019) 19:180


Conventional smokers with COPD switching to EC

- Retrospective study
- Four Italian hospitals in the outpatient setting
- September 2013 to December 2015
- 48 COPD patients, 1 year follow up
- Those who continued to smoke CC versus those who switched to EC

CC – conventional cigarette

Polosa et al. Respiratory Research (2016) 17:166

	COPD Controls	COPD E-Cig users	Baseline <i>P</i> -value between groups 0.350	
Age ^c	65.3 (±5.5)	66.9 (±6.7)		
Sex	21 M, 3 F	20 M, 4 F	(<u>6</u> 7	
COPD GOLD stage				
Stage 1	3	2	(<u>u</u>)	
Stage 2	5	6		
Stage 3	11	10	(R)	
Stage 4	5	6	-	
post-BD FEV1 ^b (L)	1.47 (1.13, 1.72)	1.25 (0.94, 1.78)	0.298	
post-BD FVC ^b (L)	2.39 (2.1, 2.64)	2.37 (2, 2.65)	0.902	
%FEV1/FVC ^c	56.2 (±10.3)	59.4 (±8.4)	0.244	
Pack years of smoking ^c	51.7 (±9.9)	52.4 (±10.7)	0.365	
Cig/day ^c	20.5 (±3.3)	21.8 (±4.4)	0.228	
CAT score ^b	20.5 (17.8, 24.3)	21.5 (17.8, 25.3)	0.710	
COPD Exacerbations ^{a, c}	2.1 (±1.1)	2.3 (±1)	0.440	

Fig. 1 Changes in the number of cigarettes smoked in a day from baseline, at follow-up visit 1 (12 ± 1.5 months) and visit 2 (24 ± 2.5 months) separately for electronic cigarettes users (*closed circles*) and controls (*closed triangles*). All data expressed as mean and error bars are standard deviation of the mean. The p value is an overall comparison of both groups over the 24-month period

Polosa et al. Respiratory Research (2016) 17:166

	Baseline	12-Month Follow-up	Within group p value vs Baseline ^Ω	24-Month Follow-up	Within group <i>P</i> value vs Baseline ^Ω	Overall between group <i>p</i> value from Baseline ^k
COPD Controls ($n = 2$	24)					
post-BD FEV1 ^a (L)	1.47 (1.13, 1.72)	1.43 (1.12, 172)	0.538	1.45 (1.17, 1.66)	0.657	0.223
post-BD FVC ^a (L)	2.39 (2.1, 2.64)	2.35 (2.2, 2.74)	0.065	2.35 (2.19, 2.83)	0.141	0.977
%FEV1/FVC ^b	56.2 (±10.3)	55.9 (±10.1)	0.328	56.3 (±10.1)	0.277	0.033
Cig/day ^b	20.5 (±3.3)	20.1 (±3.7)	0.371	19.8 (±5)	0.296	<0.001
CAT score ^a	20.5 (17.8, 24.3)	20 (17.5, 24.3)	0.075	20 (15.8, 24)	0.361	0.001
COPD Exacerbations ^b	2.1 (±1.1)	2.2 (±1)	0.906	2.1 (±1.1)	0.819	0.005
6MWD ^{a, c}	267.3 (195, 351.5)	270 (210.3, 372)	0.056	270.5 (220.8, 373.9)	0.096	0.002
COPD EC users $(n = 2)$	24)					
post-BD FEV1 ^a (L)	1.25 (0.94, 1.78)	1.23 (0.93, 1.73)	0.102	1.29 (0.92, 1.67)	0.153	
post-BD FVC ^a (L)	2.37 (2, 2.65)	2.45 (1.92, 2.73)	0.081	2.46 (1.84, 2.86)	0.252	
%FEV1/FVC ^b	59.4 (±8.4)	58.3 (±8.6)	0.457	57.9 (±8.5)	0.483	
Cig/day ^b	21.8 (±4.4)	1.8 (±2.2)	<0.001	1.58 (±2)	<0.001	
CAT score ^a	21.5 (17.8, 25.3)	17.5 (15.8, 20.5)	<0.001	18 (15, 20)	<0.001	
COPD Exacerbations ^b	2.3 (±1)	1.8 (±1)	0.002	1.4 (±0.9)	<0.001	
6MWD ^{a, c}	266.5 (187.5, 313.5)	307 (219.5, 342)	0.002	327 (239.5, 359.5)	0.002	

Table 2 Comparison of controls and e-Cigarette users at baseline, 12-month and 24-month follow-up visits

Abbreviations: COPD Chronic obstructive pulmonary disease, EC e-Cigarette, n number, BD bronchodilator, L litre, FEV1 forced expiratory volume in 1 s, FVC forced vital capacity, Cig conventional cigarettes, CAT COPD assessment tool, 6MWD 6 min walk distance

^a Median (interquartile range); ^b Mean (± standard deviation)

^c 13 subjects in the COPD E-Cig user group and 14 in the COPD control group

^Ω Statistical analyses conducted using Mann Whitney U Test (as data non-parametric) except for Cig/day and COPD exacerbations which were analysed using student T test (parametric data)

^k Statistical analyses conducted using repeated measures ANOVA with Bonferroni adjustment

Polosa et al. Respiratory Research (2016) 17:166

Decreased exacerbations Improved CAT scores

No improvement in FEV₁ Retrospective study Small sample

RCT, CC to EC switch

Study	Population	Intervention	Comparator	Outcome
Cravo, 2016	N = 408	EC (n=306)	CC (n=102)	Adverse events in
RCT, parallel group				EC group (total –
	Age:21-65 years			1515 events)
Safety profile				
	5-30 cig/day for at			more common
CC smokers	least 1 year			in 1 st week
switching to EC for				after switching
12 weeks				– "nicotine
				withdrawal"
				(495 events)

A.S. Cravo et al. Regulatory Toxicology and Pharmacology (2016) 81:114

	EVP (N = 306)		CC (N = 102)	
	Number of subjects	% of subjects	Number of subjects	% of subjects
Respiratory, thoracic and	mediastinal disorders			
Sore Throat	85	27.8%	9	8.8%
Cough	52	17.0%	8	7.8%
Nervous system disorders				
Headache	145	47.4%	34	33.3%
Infection and infestation				
Nasopharyngitis	34	11.1%	8	7.8%
Psychiatric disorders				
Desire to smoke	84	27.5%	13	12.7%
General disorders and add	ministration site conditions			
Irritability	33	10.8%	1	1.0%
Metabolism and nutrition	disorders	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O		
Increased appetite	43	14.1%	1	1.0%

Very common AEs (frequency of \geq 10%) in the EVP group, by system organ class, and frequency of these AEs in the CC group.

A.S. Cravo et al. Regulatory Toxicology and Pharmacology (2016) 81:114

Summary

- In healthy adults smoking EC causes increase in cough, sputum production and dyspnea
- EC smokers have higher rates of self reported asthma
- Insufficient evidence of benefit in CC smokers with COPD on switching to EC
- Nicotine withdrawal symptoms are the most common adverse events in COPD patients switching from CC to EC

The Journal of Emergency Medicine, Vol. ■, No. ■, pp. 1–3, 2013 Published by Elsevier Inc. Printed in the USA 0736-4679/\$ - see front matter

Clinical Communications: Adults

CASE REPORT OF ELECTRONIC CIGARETTES POSSIBLY ASSOCIATED WITH EOSINOPHILIC PNEUMONITIS IN A PREVIOUSLY HEALTHY ACTIVE-DUTY SAILOR

http://dx.doi.org/10.1016/j.jemermed.2013.09.034

Darshan Thota, MD and Emi Latham, MD

Emergency Department, Naval Medical Center San Diego, San Diego, California Reprint Address: Darshan Thota, MD, Emergency Department, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92134

□ Abstract—Background: Electronic cigarettes (e-cigarettes) are a technology that has been touted as a safe and effective alternative to traditional cigarettes. There is, however, a paucity of literature showing the adverse outcomes of e-cigarettes and a correlation with acute eosinophilic pneumonia (AEP). Objective: To present a possible association between e-cigarettes and AEP. Case Report: A 20-year-old previously healthy man was found to develop AEP after smoking an e-cigarette. He was treated with antibiotics and steroids and his symptoms improved. Conclusion: Though an alternative to traditional cigarettes, e-cigarettes can have unpredictable and potentially serious adverse effects. More research needs to be conducted to determine their safety. If seeing a patient in the ED with pulmonary symptoms after use of e-cigarettes, AEP should be considered in the differential. Published by Elsevier Inc.

August 2013 BAL – 74% eosinophils Improved with oxygen, IV Abx, Steroids

Bilateral Pneumonia and Pleural Effusions Subsequent to Electronic Cigarette Use

Kendall Moore, Henry Young II, Matthew F. Ryan*

Department of Emergency Medicine, University of Florida, Gainesville, FL, USA Email: <u>kendalldmoore@ufl.edu</u>, <u>hyoungii@ufl.edu</u>, <u>mfryan@ufl.edu</u>

Received 8 July 2015; accepted 1 September 2015; published 7 September 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

September 2015

Improved with conservative Rx No specific cause identified

Abstract

0 (20)

Open Access

Electronic nicotine delivery systems also known as electronic cigarettes (or e-cigarettes) are marketed by their manufactures as a safer alternative to tobacco cigarettes because of potentially reduced delivery of toxins. However, the scientific evidence and the long-term health effects of e-cigarettes are limited. We describe a case of a 43-year-old man who had been smoking electronic cigarettes excessively for three days and presented with acute dyspnea, increased work of breathing and tachycardia. Subsequent chest x-ray revealed bilateral pleural effusions. In addition, the patient had a new oxygen requirement and was thus admitted with a diagnosis of pneumonia and bilateral pleural effusions. The case and the potential harmful effects of electronic cigarettes are discussed herein.

Open Journal of Emergency Medicine, 2015, 3, 18-22

Hypersensitivity Pneumonitis and Acute Respiratory Distress Syndrome From E-Cigarette Use

Casey G. Sommerfeld, MD, Daniel J. Weiner, MD, Andrew Nowalk, MD, PhD, Allyson Larkin, MD

June 2018

BAL26% neutrophils13% lymphocytes22% eosinophils

Electronic cigarette (e-cigarette) use, or "vaping," is gaining widespread popularity as an alternative to conventional cigarettes among adolescents. Little is known of the health risks of e-cigarette use, especially in children and adolescents. We present a Case Report of a previously healthy 18-yearold woman who presented with dyspnea, cough, and pleuritic chest pain after e-cigarette use. She developed respiratory failure with hypoxia and was intubated, and ultimately met diagnostic criteria for acute respiratory distress syndrome. Chest tubes were placed to drain worsening pleural effusions. Computed tomography of the chest revealed dependent opacities in both lung bases, superimposed smooth interlobular septal thickening, and pleural effusions. Bronchoalveolar lavage revealed cellular debris and reactive mononuclear cells, and cell counts were remarkable for elevated mononuclear cells and eosinophilia. After the results of a workup for an infectious etiology came back negative, the patient was diagnosed with hypersensitivity pneumonitis and intravenous methylprednisolone therapy was initiated. After this the patient rapidly improved, was weaned off vasopressor support, and was extubated. This is the first reported case of hypersensitivity pneumonitis and acute respiratory distress syndrome as a risk of e-cigarette use in an adolescent, and it should prompt pediatricians to discuss the potential harms of vaping with their patients. Hypersensitivity pneumonitis, lipid pneumonia, and eosinophilic pneumonia should be included in the differential diagnosis of patients who exhibit respiratory symptoms after the use of an e-cigarette.

Pediatrics. 2018;141(6):e20163927

The NEW ENGLAND JOURNAL of MEDICINE

and the second second

ORIGINAL ARTICLE

Pulmonary Illness Related to E-Cigarette Use in Illinois and Wisconsin — Preliminary Report

Jennifer E. Layden, M.D., Ph.D., Isaac Ghinai, M.B., B.S., Ian Pray, Ph.D., Anne Kimball, M.D., Mark Layer, M.D., Mark Tenforde, M.D., Ph.D., Livia Navon, M.S., Brooke Hoots, Ph.D., Phillip P. Salvatore, Ph.D., Megan Elderbrook, M.P.H., Thomas Haupt, M.S., Jeffrey Kanne, M.D., Megan T. Patel, M.P.H., Lori Saathoff-Huber, M.P.H., Brian A. King, Ph.D., M.P.H., Josh G. Schier, M.D., Christina A. Mikosz, M.D., M.P.H., and Jonathan Meiman, M.D.

- July 10, 2019 August 27, 2019
- Wisconsin Department of Health Services (WDHS) 28 cases
- Illinois Department of Public Health (IDPH) 25 cases
- Received reports of pulmonary disease of unclear cause associated with the use of e-cigarettes and related products

Timeline

- July 10, 2019 Children's Hospital of Wisconsin Notified 5 previously healthy adolescents admitted with dyspnea and respiratory failure to WDHS
- History and w/u inconclusive, except for a history of recent EC use
- July 25, 2019 WDHS issued an alert of the clinical syndrome
- July 31, 2019 IDPH contacted WDHS for clinical treatment guidance for a similar patient
- August 1, 2019 Joint WDHS and IDPH initiated public health investigation
- August 20, 2019 CDC deployed epidemiological assistance field team (Epi-Aid)

Table 1. Outbreak Surveillance Case Definitions of Severe Pulmonary Disease Associated with E-Cigarette Use — August 30, 2019.*

Confirmed case

Use of an e-cigarette (vaping) or dabbing in 90 days before symptom onset; and

Pulmonary infiltrate, such as opacities on plain-film radiograph of the chest or ground-glass opacities on chest CT; and

Absence of pulmonary infection on initial workup: the minimum criteria include negative respiratory viral panel and influenza PCR or rapid test if local epidemiology supports testing. All other clinically indicated testing for respiratory infectious disease (e.g., urine antigen testing for *Streptococcus pneumoniae* and legionella, sputum culture if productive cough, bronchoalveolarlavage culture if done, blood culture, and presence of HIV-related opportunistic respiratory infections if appropriate) must be negative; and

No evidence in medical record of alternative plausible diagnoses (e.g., cardiac, rheumatologic, or neoplastic process)

Probable case

Using an e-cigarette (vaping) or dabbing in 90 days before symptom onset; and

Pulmonary infiltrate, such as opacities on plain film chest radiograph or ground-glass opacities on chest CT; and

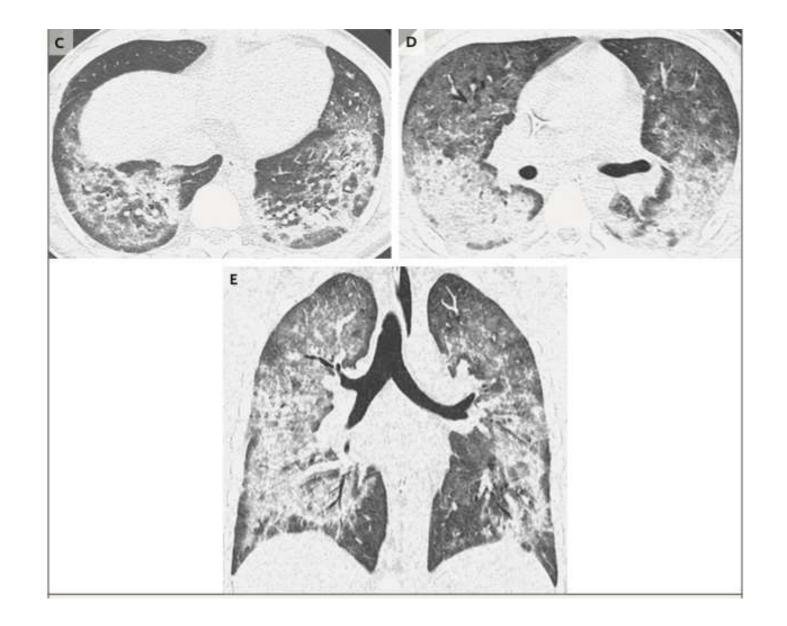
Infection identified by means of culture or PCR, but the clinical team caring for the patient believes that this is not the sole cause of the underlying respiratory disease process; or as the minimum criteria, to rule out pulmonary infection not met (testing not performed) and clinical team caring for the patient believes that this is not the sole cause of the underlying respiratory disease process; and

No evidence in medical record of alternative plausible diagnoses (e.g., cardiac, rheumatologic, or neoplastic process)

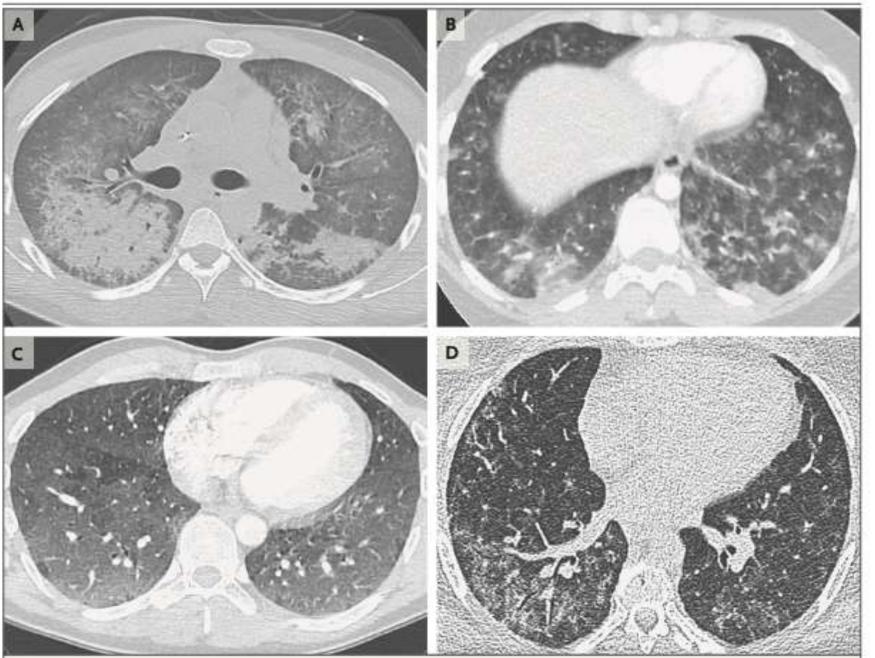
These surveillance case definitions are from the Centres for Disease Control and Prevention and are meant for surveillance purposes and not for clinical diagnosis

Characteristic	Values
Median age (range) — yr	<mark>19 (</mark> 16–53)
Male sex — no./total no. (%)	44/53 (83)
Race or ethnic group — no./total no. (%)†	
White	37/45 (82)
Black	4/45 (9)
Hispanic	4/45 (9)
Medical history documented in medical record — no./total no. (%)	L
Asthma	16/53 (30)
Mood or anxiety disorder	18/53 (34)
E-cigarette use in the previous 90 days — no./total no. (%)‡	
Reported nicotine use	25/41 (61)
Reported only nicotine use	7/41 (17)
Reported THC use	33/41 (80)
Reported only THC use	15/41 (37)
Reported nicotine and THC use	18/41 (44)
Reported CBD use	3/41 (7)

Symptoms reported at presentation	
Median duration of symptoms before presentation (range) — days	6 (0-61)
Any respiratory symptom — no./total no. (%)§	52/53 (98)
Shortness of breath	46/53 (87)
Any chest pain	29/53 (55)
Pleuritic chest pain	20/53 (38)
Cough	44/53 (83)
Hemoptysis	6/53 (11)
Any gastrointestinal symptom — no./total no. (%)§	43/53 (81)
Nausea	37/53 (70)
Vomiting	35/53 (66)
Diarrhea	23/53 (43)
Abdominal pain	23/53 (43)
Any constitutional symptom – no./total no. (%)§	53/53 (100)
Subjective fever	43/53 (81)
Chills	31/53 (58)
Weight loss	14/53 (26)
Fatigue or malaise	24/53 (45)
Headache — no./total no. (%)	21/53 (40)
Vital signs at presentation	
Temperature ≥38°C — no./total no. (%)	15/51 (29)
Heart rate >100 beats/min — no./total no. (%)	34/53 (64)
Respiratory rate >20 breaths/min — no./total no. (%)	22/51 (43)
Oxygen saturation while breathing ambient air — no./total no. (%)	
≥95%	16/52 (31)
89–94%	20/52 (38)
≤88%	16/52 (31)


Initial radiographic findings	
Abnormal chest radiograph — no./total no. (%)	48/53 (91)
Abnormal chest CT — no./total no. (%)	48/48 (100)
Bilateral infiltrates identified on chest radiograph or CT — no./total no. (%)	53/53 (100)
Treatment	
Antibiotics for lower respiratory tract infection — no./total no. (%)	
As outpatient	24/53 (45)
During hospitalization	45/50 (90)
Glucocorticoids — no./total no. (%)	
Systemic glucocorticoids, oral or intravenous, during hospitalization	46/50 (92)
Intravenous glucocorticoids	38/46 (83)
Had clinical improvement documented with use of systemic glucocorticoids	30/46 (65)
Clinical course	
Hospitalization — no./total no. (%)	50/53 (94)
Outpatient or ED visit before hospitalization — no./total no. (%)	36/50 (72)
Median duration of hospitalization (range) — days	6 (1-25)
Receipt of supplemental oxygen — no./total no. (%)	46/53 (87)
Receipt of noninvasive positive-pressure ventilation — no./total no. (%)	19/53 (36)
Intubation and mechanical ventilation — no./total no. (%)	17/53 (32)
Admission to intensive care unit — no./total no. (%)	31/53 (58)
Death — no./total no. (%)	1/53 (2)

9 cases met Berlin criteria of ARDS2 cases underwent ECMO, 1 died


Of the 48 patients who underwent CT imaging 4 cases of pneumomediastinum 5 pleural effusions 1 case of pneumothorax

One patient had both pneumomediastinum and a pneumothorax

one patient had both pneumomediastinum and pleural effusion

Test	N/Comments
BAL	24 patients
BAL – DC	14 patients Median E – 0% (0-6) N - 65% (10-91) L – 7% (1-40) M – 21% (2-68)
Lipid laden macrophages with Oil red O stain	7/14
TBLB	3 patients
OLB	2 patients
HPE	DAD and foamy macrophages Non-specific inflammation Interstitial and peribronchiolar GI

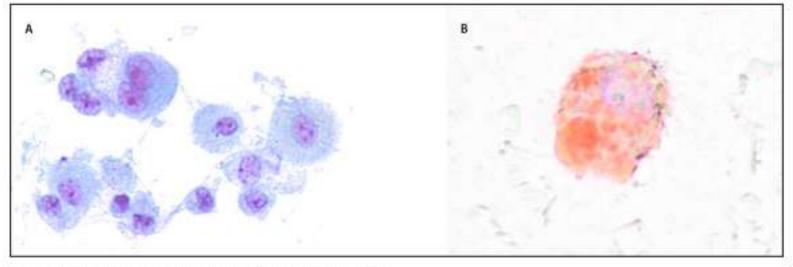
A – DAD
B – AEP
C – HP
D –Giant cell pneumonitis (cobalt) Morbidity and Mortality Weekly Report

Outbreak of Electronic-Cigarette–Associated Acute Lipoid Pneumonia – North Carolina, July–August 2019

Kevin Davidson, MD¹; Alison Brancato, MS¹; Peter Heetderks, MD¹; Wissam Mansour, MD¹; Edward Matheis, MD¹; Myra Nario, MS¹; Shrinivas Rajagopalan, MD, PhD²; Bailey Underhill, MS¹; Jeremy Wininger, MS¹; Daniel Fox, MD¹

MMWR / September 13, 2019 / Vol. 68 / No. 36

- 5 patients with respiratory failure
- All recent use of marijuana oils in EC
- BAL on day 3-5 extensive lipid laden macrophages


Diagnosis of Acute lipoid pneumonia was made:

- EC containing oils
- Consistent radiology
- Lipid laden macrophages in BAL
- All five patients improved with IV steroids

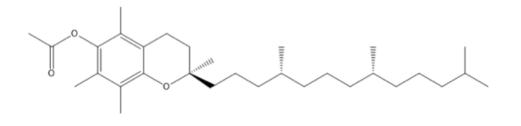
FIGURE 2. Microscopy of a bronchoalveolar lavage sample (Papanicolaou stain [A]* and oil red O stain [B][†]) from a patient with acute lung injury associated with vaping — North Carolina, July-August 2019

* Papanicolaou stain demonstrating alveolar macrophages laden with vacuoles. [†] Oil red O stain showing lipid deposits staining red (400x magnification).

Vitamin E Acetate in Bronchoalveolar-Lavage Fluid Associated with EVALI

B.C. Blount, M.P. Karwowski, P.G. Shields, M. Morel-Espinosa, L. Valentin-Blasini, M. Gardner, M. Braselton,
C.R. Brosius, K.T. Caron, D. Chambers, J. Corstvet, E. Cowan, V.R. De Jesús, P. Espinosa, C. Fernandez, C. Holder,
Z. Kuklenyik, J.D. Kusovschi, C. Newman, G.B. Reis, J. Rees, C. Reese, L. Silva, T. Seyler, M.-A. Song, C. Sosnoff,
C.R. Spitzer, D. Tevis, L. Wang, C. Watson, M.D. Wewers, B. Xia, D.T. Heitkemper, I. Ghinai, J. Layden, P. Briss,
B.A. King, L.J. Delaney, C.M. Jones, G.T. Baldwin, A. Patel, D. Meaney-Delman, D. Rose, V. Krishnasamy, J.R. Barr,
J. Thomas, and J.L. Pirkle, for the Lung Injury Response Laboratory Working Group*

Vitamin E acetate


- Thickening agent in illicit products (THC)
- Enhance quality and appearance
- Provide desirable taste and aroma
- Lower product cost

- Dietary supplement Vitamin E
- Skin creams
- Inhalational effects uncertain
- Viscosity makes it undesirable as an additive to nicotine solutions

Vitamin E acetate

- Vitamin E acetate is the ester of vitamin E (α-tocopherol) and acetic acid
- Long aliphatic tail can penetrate a layer of surfactant to align the molecule in parallel with phospholipids

Figure S1. Chemical structure of Vitamin E acetate.

- Phosphatidylcholines undergo transition from a gel to a liquid crystal-line phase when exposed to increasing amounts of tocopherols
- Transitioning causes the surfactant to lose its ability to maintain the surface tension

BAL analysis

51 patients of EVALI

99 healthy participants

- 25 confirmed
- 26 probable

• 52 nonusers

- 18 current nicotine EC users
- 29 current cigarette smokers

	EVALI Case Patients (N=51)	Healthy Comparators			
		Nonusers (N=52)	E-Cigarette Users (N = 18)	Cigarette Smokers (N=29)	All Comparators (N = 99)
Median age (range) — yr	23 (16-67)	25 (21–37)	27 (21–30)	26 (21-44)	26 (21-44)
Male sex — no. (%)	35 (69)	19 (37)	12 (67)	22 (76)	53 (54)
Self-reported vaping — no./ total no. (%)					
Nicotine products only	7/43 (16)	0/52	18/18 (100)	29/29 (100)	47/99 (47)
THC products only	11/43 (26)	0/52	0/18	0/29	0/99
Dual use of nicotine and THC products	22/43 (51)	0/52	0/18	0/29	0/99

Toxicant	EVALI Case Patients (N=51)	Healthy Comparators				
		Nonusers (N = 52)	E-Cigarette Users (N=18)	Cigarette Smokers (N=29)	All Comparators (N=99)	
		number/total number (percent)				
Vitamin E acetate	48/51 (94)	0/52	0/18	0/29	0/99	
Medium-chain tri- glyceride oil	0/49	0/34	0/11	0/18	0/63	
Coconut oil	1/48 (2)	0/34	0/11	0/18	0/63	
Plant oil	0/49	0/34	0/11	0/17	0/62	
Squalane	0/38	0/52	0/17	0/29	0/98	
Squalene	0/38	0/52	0/17	0/29	0/98	
α-Pinene	0/39	0/52	0/17	0/28	0/97	
β-Pinene	0/39	0/52	0/17	0/28	0/97	
3-Carene	0/39	0/52	0/17	0/28	0/97	
Limonene	1/39 (3)	0/52	0/17	0/28	0/97	
Petroleum distillates	0/12	0/52	0/17	0/29	0/98	

* The listed toxicants were detected in bronchoalveolar-lavage fluid obtained from 51 patients with EVALI in 16 states from August through December 2019 and in 99 healthy comparators.

Variable	Patient 1	Patient 2	Patient 3
Patient-reported expo- sure history	Reported vaping nicotine products, <mark>denied vaping THC products</mark>	Reported daily vaping of flavored nicotine prod- ucts obtained from vape shop starting 1 mo before admission, denied vaping THC products	Incomplete interview with the patient; vaping materials found at the scene by first responders; patient later reported heavy alcohol use immediately before illness
Symptoms	Respiratory, gastrointestinal	Constitutional, respiratory	Constitutional, respiratory
Medical history	Negative for chronic respiratory disease and heart disease	Negative for chronic respiratory disease and heart disease	Negative for chronic respiratory disease and heart disease
Presentation	Found unresponsive; on arrival at emergency department, hemoptysis and cyanosis; was intubated and admitted	Presented to urgent care on day of illness (DOI) 1 and to emergency department on DOI 3 and 5, when he was admitted	Found unresponsive; on arrival at emergency depart- ment, severe respiratory failure; was intubated and admitted
Admitted to intensive care unit	Yes	No	Yes
Respiratory support	Mechanical ventilation	None	Mechanical ventilation
Radiologic assessment	Hazy opacities predominantly in left lung on radiography; no CT	Bilateral patchy opacities on radiography; diffuse bilateral nodular opacities with surrounding micronodular and ground-glass opacities on CT	Bilateral infiltrates and opacities on radiography and CT
Infectious diseases workup	Blood cultures negative; methicillin-susceptible Staphylococcus aureus (interpreted by clinical team as a contaminant) in BAL fluid	Serologic analysis on admission indeterminate for coccidioides species, follow-up IgM and IgG by immunodiffusion were positive; BAL cell count, 31% eosinophils; negative results on respiratory viral panel, influenza PCR, blood cultures, legionella urinary antigen, <i>Streptococcus pneumoniae</i> urinary antigen, <i>Mycoplasma pneumoniae</i> PCR, cytomegalovi- rus PCR, pneumocystis antigen, fungal stain and culture, AFB smear, and mycobacterial culture	Negative results on respiratory viral panel, influenza testing, and blood cultures; methicillin-susceptible <i>S. aureus</i> (interpreted by clinical team as a contami- nant) in tracheal-aspirate culture
Treatment	Glucocorticoids and antibiotics	Glucocorticoids, antibiotics, and antifungal agents	Glucocorticoids and antibiotics
Disposition	Discharged 3 days after admission	Discharged 3 days after admission	Discharged 13 days after admission
Discharge diagnoses	Unintentional multidrug overdose with benzodi- azepines and oxycodone, active nicotinism with vaping, with suspected likely vaping- induced lung injury	Acute eosinophilic pneumonia, initially attributed to EVALI; after discharge, positive results on coccidioides serologic analysis prompted up- dating of diagnosis to coccidioidomycosis with or without EVALI	Acute hypoxic respiratory failure caused by vaping-asso- ciated lung injury, methicillin-susceptible S. <i>aureus</i> pneumonia, acute respiratory distress syndrome, distributive shock

Vitamin E acetate not seen in BAL – 3 cases

Reasons :

- Vit E acetate may have been cleared from lungs
- Inadequate processing of BAL
- Alternate diagnosis in one patient

- In Minnesota, 10 of 10 products seized by law enforcement during 2018, before the EVALI outbreak, did not contain vitamin E acetate
- 20 of 20 THC-containing products seized by law enforcement during September 2019, at the peak of the outbreak, contained vitamin E acetate
- This finding is consistent with laboratory measurements and trade websites, which suggests that the addition of vitamin E acetate to product fluid began to appear in the illicit market in late 2018 or early 2019 and gained popularity in 2019

Morbidity and Mortality Weekly Report

Update: Characteristics of a Nationwide Outbreak of E-cigarette, or Vaping, Product Use–Associated Lung Injury — United States, August 2019–January 2020

Vikram P. Krishnasamy, MD¹; Benjamin D. Hallowell, PhD^{2,3}; Jean Y. Ko, PhD⁴; Amy Board, DrPH^{1,2}; Kathleen P. Hartnett, PhD⁵; Phillip P. Salvatore, PhD^{1,2}; Melissa Danielson, MSPH⁶; Aaron Kite-Powell, MS⁵; Evelyn Twentyman, MD⁴; Lindsay Kim, MD³; Alissa Cyrus, MPH⁷; Megan Wallace, DrPH^{2,3}; Paul Melstrom, PharmD, PhD⁴; Brittani Haag, MS⁵; Brian A. King, PhD⁴; Peter Briss, MD⁴; Christopher M. Jones, PharmD, DrPH¹; Lori A. Pollack, MD⁴; Sascha Ellington, PhD⁴; Lung Injury Response Epidemiology/Surveillance Task Force

MMWR / January 24, 2020 / Vol. 69 / No. 3

TABLE. Demographic and product use characteristics among hospitalized patients with e-cigarette, or vaping, product useassociated lung injury (EVALI) reported to CDC — United States, August 2019–January 2020*

Characteristic (no. with available information)	No. (%) [†] (N = 2,668)
Sex (2,606)	
Male	1,731 (66)
Female	875 (34)
Median age, yrs (range)	24 (13-85)
Age group (yrs) (2,619)	
13-17	404 (15)
18-24	979 (37)
25-34	631 (24)
35-44	335 (13)
45-64	223 (9)
≥65	47 (2)
Race/Ethnicity [§] (1,856)	
White	1,360 (73)
Black	64 (3)
American Indian/Alaska Native	12 (1)
Asian/Native Hawaiian/Other Pacific Islander	38 (2)
Other	97 (5)
Hispanic	285 (15)
Case status (2,668)	
Confirmed	1,401 (53)
Probable	1,267 (47)
Substances used in e-cigarette, or vaping, products (2,02	2) 1.**
Any THC-containing product	1,650 (82)
Any nicotine-containing product	1,162 (57)
Both THC- and nicotine-containing product use	834 (41)
Exclusive THC-containing product use	669 (33)
Exclusive nicotine-containing product use	274 (14)
No THC- or nicotine-containing product use reported	44 (2)

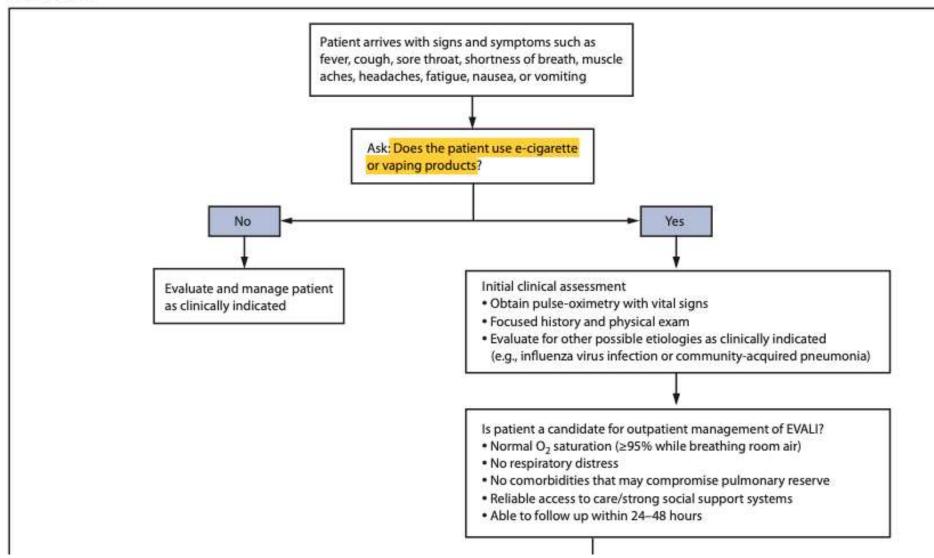
As of Feb 18, 2020

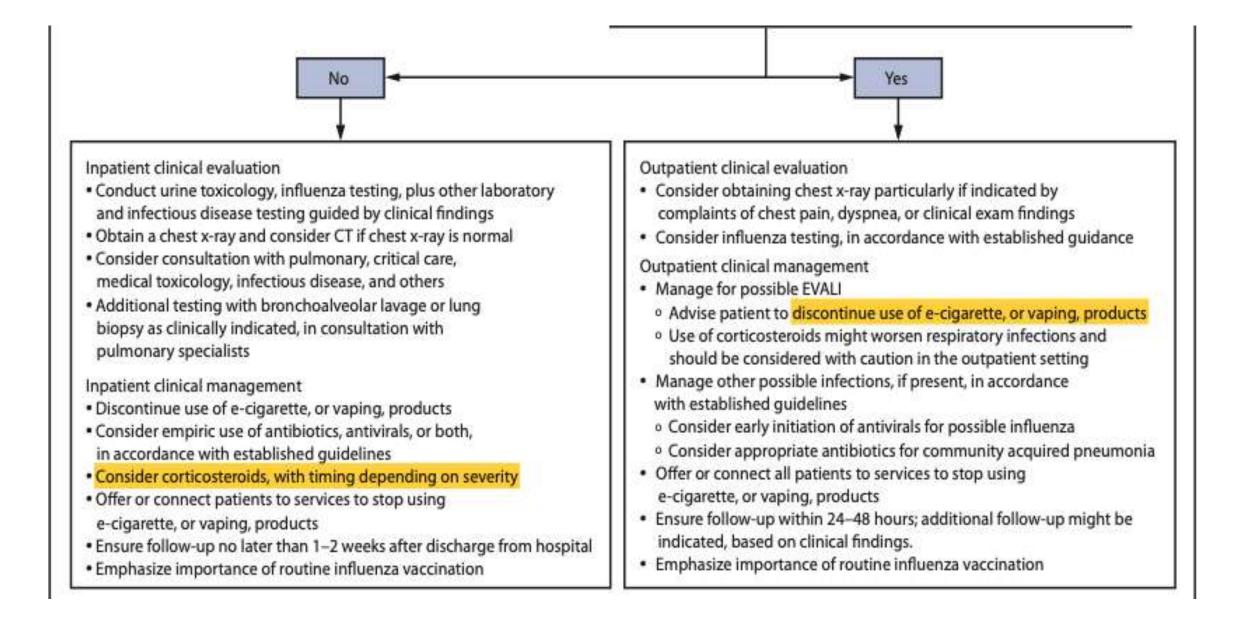
- 2807 hospitalized,
- 68 deaths in US

Abbreviation: THC = tetrahydrocannabinol.

- * For cases reported to CDC as of January 14, 2020.
- [†] Percentages might not sum to 100% because of rounding.
- [§] These were mutually exclusive groups. Whites, blacks, American Indians/ Alaska Natives, Asians/Native Hawaiians/Other Pacific Islanders, and Others were non-Hispanic. Hispanic persons could be of any race.
- I Limited to persons who reported vaping or dabbing at least one substance in the past 3 months.

** In the 3 months preceding symptom onset.


Morbidity and Mortality Weekly Report


Update: Interim Guidance for Health Care Providers for Managing Patients with Suspected E-cigarette, or Vaping, Product Use–Associated Lung Injury — United States, November 2019

Tara C. Jatlaoui, MD¹; Jennifer L. Wiltz, MD¹; Sarah Kabbani MD²; David A. Siegel¹, MD; Ram Koppaka, MD, PhD³; Michele Montandon, MD⁴; Susan Hocevar Adkins, MD⁵; David N. Weissman, MD⁶; Emily H. Koumans, MD¹; Michelle O'Hegarty, PhD¹; Megan C. O'Sullivan, MPH²; Matthew D. Ritchey, DPT¹; Kevin Chatham-Stephens, MD⁷; Emily A. Kiernan, DO^{8,9}; Mark Layer, MD^{9,10}; Sarah Reagan-Steiner, MD²; Jaswinder K. Legha, MD¹¹; Katherine Shealy, MPH¹; Brian A. King, PhD¹; Christopher M. Jones, PharmD, DrPH¹¹; Grant T. Baldwin, PhD¹¹; Dale A. Rose, PhD²; Lisa J. Delaney, MS⁶; Peter Briss, MD¹; Mary E. Evans, MD¹¹; Lung Injury Response Clinical Working Group

MMWR / November 22, 2019 / Vol. 68 / No. 46

FIGURE. Algorithm for management of patients*,^{†,§,¶} with respiratory, gastrointestinal, or constitutional symptoms and e-cigarette, or vaping, product use

CDC recommends

- Not to use THC containing EC
- Vitamin E acetate should not be added to any EC
- People should not add any other substances not intended by the manufacturer
- Adults using nicotine containing EC should not go back to smoking; if possible they should consider using FDA approved smoking cessation medications
- EC should not be used by youths, young adults, pregnant women

Conclusion

- EC should not used by youth
- If an adult smoker is not willing for NRT, EC can be advised as an alternative, as long as the smoker is informed about the safety and efficacy (but not in INDIA – as we have already banned)
- THC and Vitamin E acetate are associated with EVALI

Thank you