INTRAPLEURAL AGENTS FOR PLEURODESIS AND FIBRINOLYSIS

NITHIYANANDAN RAVI 19/07/2019

1. PLEURODESIS AGENTS

CONTENTS

- Definition
- Methods
- Indications
- Contraindications
- Pleurodesis in malignant pleural effusion
- Pleurodesis in pneumothorax
- Chemical vs mechanical pleurodesis
- Pleurodesis agents
- Comparing pleurodesis agents in meta analysis
- Adverse events
- Guidelines
- Pleurodesis in benign pleural effusions

DEFINITION

 Pleurodesis is a procedure to achieve symphysis between the two layers of pleura aimed at preventing accumulation of either air or fluid in the pleural space

Methods:

- Chemical pleurodesis: achieved by either a chemical agent
- Mechanical pleurodesis: by physical abrasion of the pleural surfaces during thoracotomy or thoracoscopy
- Abrasion or the sclerosant stimulates an inflammatory reaction within the pleural cavity, which results in fusion of the visceral and parietal pleura

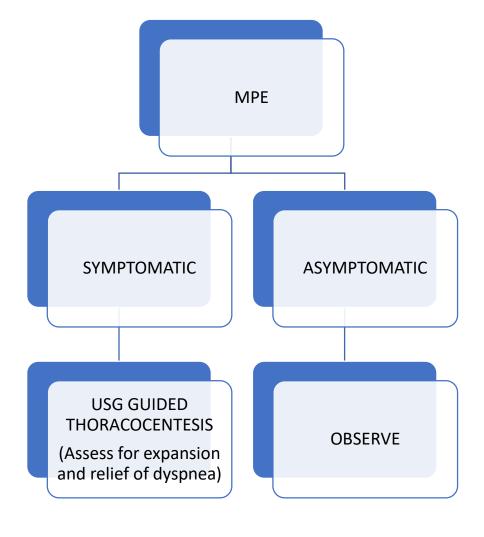
METHODS USED FOR CHEMICAL PLEURODESIS

- Intercostal chest tube drain (Bedside or slurry pleurodesis)
 - Chest tube drainage of the pleural fluid followed by sclerosant instilled into the pleural space via the drain to induce inflammation
- Thoracoscopy
 - Medical thoracoscopy performed under conscious sedation
 - Surgical thoracoscopy (VATS)— performed under general anaesthesia
 - Here, pleural cavity is visualized using a fibre optic camera and pleurodesis agent is instilled using insufflation (poudrage)

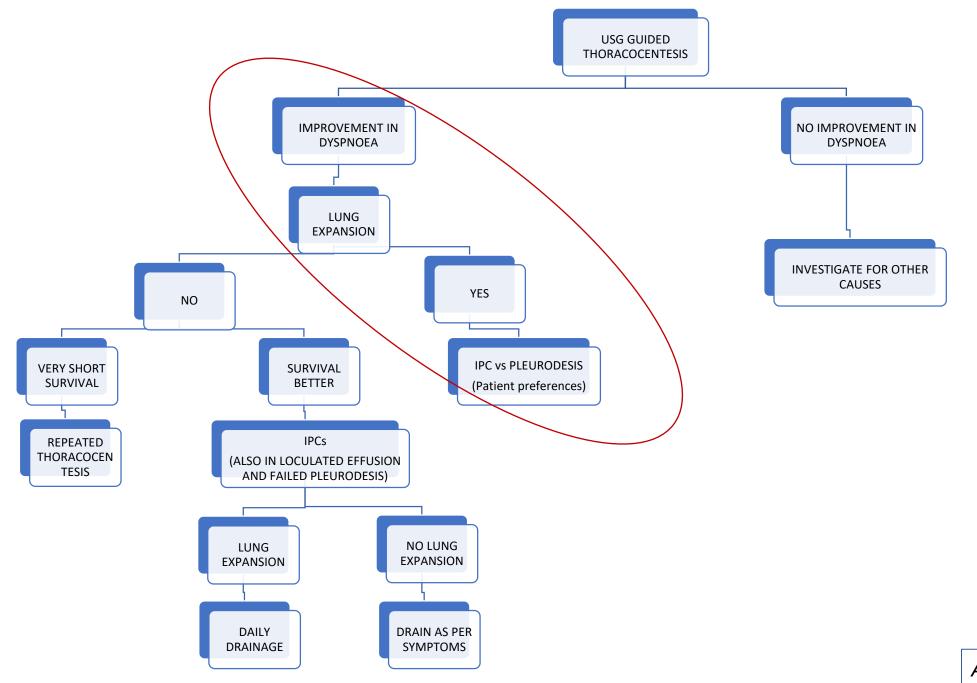
INDICATIONS FOR PLEURODESIS

- A. Malignant pleural effusions
- B. Pneumothorax
- 1. Secondary spontaneous pneumothorax
- 2. Primary spontaneous pneumothorax with any one of the following:
 - Second episode of PSP
 - Persisting air leak >3–5 days
 - Haemopneumothorax
 - Bilateral pneumothorax
 - Professions at risk (aircraft personnel, divers)
- C. Benign pleural effusions (Recurrent and undiagnosed)

INDICATIONS FOR PLEURODESIS

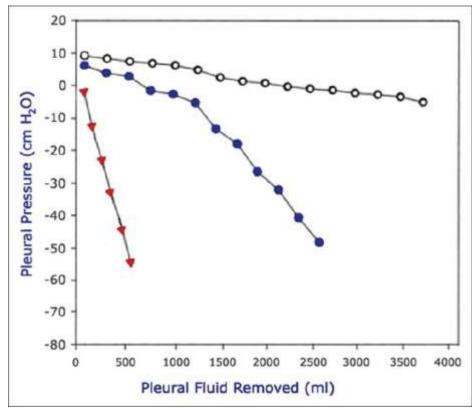

C. Benign pleural effusions

- 1. Peritoneal dialysis
- 2. Chylous effusion
- 3. Catamenial effusion/pneumothorax
- 4. Systemic lupus erythematosus
- 5. Hepatic hydrothorax


CONTRAINDICATIONS

- No absolute contraindications
- Lung transplantation not a contraindication but some centres advice against pleurodesis
- Severely debilitated patients

WHEN TO DO PLEURODESIS IN MALIGNANT PLEURAL EFFUSION?


IPCs - Indwelling Pleural Catheters
MPE – Malignant Pleural Effusion

HOW TO IDENTIFY EXPANDABLE LUNG?

Pleural Manometer

- Expandable lung Gradual fall from Positive pressure to negative pressure
- Entrapped lung Already negative pressure and there is an abrupt fall after pleural tapping

- (i) Open circles plain hydrothorax
- (ii) blue-closed circles entrapped lung
- (iii) red-closed triangles pleural fibrosis

CAN PLEURAL PRESSURES PREDICT SUCCESSFUL PLEURODESIS ?

Study	Prospective cohort study
Subjects	65 patients with symptomatic malignant pleural effusion
Intervention	Chest tube insertion and pleurodesis with bleomycin
Measurement	Fall in pleural pressure after draining 500 ml fluid
Outcome	Elastance of \geq 19 cmH2O – higher failure rates of pleurodesis

IPCs vs PLEURODESIS IN EXPANDABLE MPE

STUDY	SUBJECTS	INTERVENTION	Dyspnoea score improvement	Duration of Hospitalisation
Putnam JB Jr et al ¹	144	2:1 (IPCs vs Doxycycline pleurodesis)	Similar	IPCs < Doxycycline pleurodesis
NVALT 14 trial ²	94	1:1 (IPCs vs Talc pleurodesis)	Similar	IPCs < TP
TIME2 ³	106	1:1 (IPCs vs Talc pleurodesis)	Similar	IPCs < TP
AMPLE ⁴	146	1:1 (IPCs vs Talc pleurodesis)	Similar	IPCs < TP

TP- Talc pleurodesis
IPCs – Indwelling pleural catheters

CHEMICAL VS MECHANICAL PLEURODESIS IN MALIGNANT PLEURAL EFFUSION

Pleural abrasion is not currently used in the control of recurrent neoplastic pleural effusions due to its lesser efficacy, as well as due to the high risk of bleeding in the regions involved and to the possibility of tumor dissemination

CHEMICAL VS MECHANICAL PLEURODESIS IN PRIMARY SPONTANEOUS PNEUMOTHORAX

Study	Year	Patients	Mean follow up (months)	Recurrence rate %
Simple talc poudrage under medical				
thoracoscopy TSCHOPP BOUTIN	2002 1991	59 505	60 42	5 7
EL KHAWAND GYÖRIK	1995 2007	142 56	39 118	6 5
Talc poudrage with VATS and surgical treatment of lung lesions CARDILLO CARDILLO	2006 2000	861 279	52.5 38	1.73 1.27
Mechanical abrasion GOSSOT LANG-LAZDUNSKI	2004 2003	111 167	36.5 93	3.6
Pleurectomy AYED	2003	100	48	2

ROLE OF PLEURODESIS IN PNEUMOTHORAX

 The rate of recurrence following surgical pleurodesis via thoracotomy or VATS is far less than following simple medical pleurodesis with chemical agents

 Chemical pleurodesis can control difficult or recurrent pneumothoraces but, since surgical options are more effective, it should only be used if a patient is either unwilling or unable to undergo surgery

IDEAL SCLEROSANT

- A high molecular weight and chemical polarity
- Low regional clearance
- Rapid systemic clearance
- Steep dose-response curve
- Minimal or no side effects
- Easily available
- Easy to administer
- Inexpensive

PLEURODESIS AGENTS

CHEMICAL AGENTS

- Talc
- Iodopovidone
- Antimicrobials:
 - .Tetracyclines: (Tetracycline, minocycline, doxycycline, tigecycline)
 - .Quinacrine
- Cytotoxic drugs (bleomycin, mitoxantrone, mitomycin, carboplatin)
- Bevacizumab
- Silver nitrate
- Sodium hydroxide
- 50% glucose

PLEURODESIS AGENTS

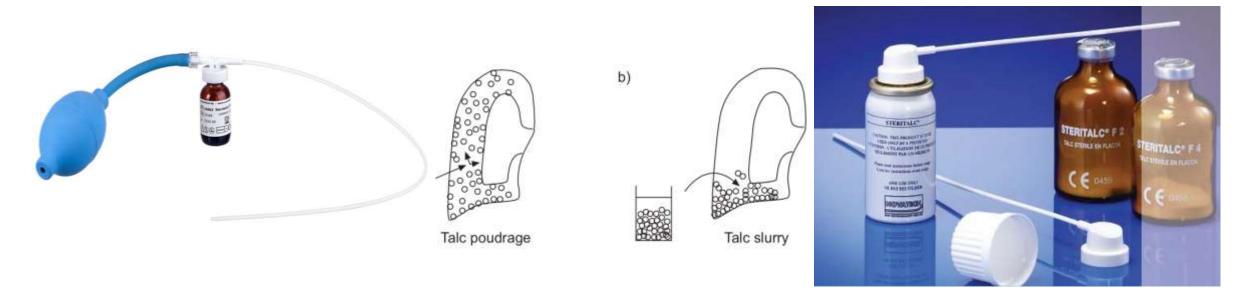
BIOLOGICAL

- .Corynebacterium parvum
- .OK 432
- .Staphylococcal superantigen
- . Viscum album (mistletoe)
- Recombinant tumor necrosis factor
- . Platelet-rich plasma and fibrin glue
- .Blood patch

TALC

- Talc (Mg3Si4O10(OH)2) is a trilayered magnesium silicate sheet that is inert and was first used as a sclerosing agent in 1935
- Administered in two ways :
 - Talc poudrage at thoracoscopy using an atomiser (or)
 - Talc slurry via an intercostal tube in the form of a suspension
- Success rates range from 81-100% in malignant effusions and around 91% success rates in pneumothorax
- Both methods are equally efficacious in malignant effusion
- Most common side effects : Pleuritic pain, fever

PROCEDURE – TALC SLURRY PLEURODESIS


- Insert small-bore intercostal tube (10F to 14 F)
- Controlled evacuation of pleural fluid
- Confirm full lung re-expansion and position of intercostal tube with chest x-ray
- Administer premedication prior to pleurodesis (no recommendation)
- Instill lidocaine solution (3 mg/kg; maximum 250 mg) into pleural space followed by 4-5 g sterile graded talc in 50 ml 0.9% saline
- Clamp tube for 1-2 hours
- Remove intercostal tube within 24-48 hours

PROCEDURE – TALC SLURRY PLEURODESIS

- Large pleural effusions should be drained in a controlled fashion to reduce the risk of re-expansion pulmonary oedema (1.5L)
- Only partial pleural apposition can be achieved chemical pleurodesis may still be attempted
- Lung expansion is more important than the amount of drain fluid (< 150ml/day)
- Suction generally avoided (Avoid pleural pressure < -20cmH2O)

TALC POUDRAGE

- Talc is not water-soluble and, when applied in suspension as a slurry, does not distribute evenly in the pleural cavity
- Talc poudrage can be performed under local anaesthesia with conscious sedation or general anaesthesia

WHY SLURRY PREFERRED OVER POUDRAGE IN MALIGNANT EFFUSION?

- Better studied
- Simple bedside technique
- Can be performed in patients who are very sick, with poor performance status, or in those with contralateral pleural involvement

TALC PLEURODESIS — EFFICACY/SAFETY

STUDY	Meta analysis
SUBJECTS	20 trials, 1525 MPE patients
METHOD	Talc slurry/poudrage pleurodesis vs controls
OBJECTIVE	Efficacy and safety
RESULTS	Success rates significantly higher with talc pleurodesis (Relative risk, 1.21; 95% confidence interval, 1.01–1.45; p=0.035) Adverse events: Fever: No significant difference (RR, 1.15; 95% CI, 0.69–1.94; p=0.589) Pain: No significant difference (RR, 0.74; 95% CI, 0.40–1.40; p=0.360) Emphysema: No significant difference (RR, 1.35; 95% CI, 0.45–4.08; p=0.596) Wound Infection: No significant difference (RR, 2.18; 95% CI, 0.85–5.58; p=0.106)

TALC SLURRY PLEURODESIS(TSP) VS POUDRAGE (TTP) IN PNEUMOTHORAX

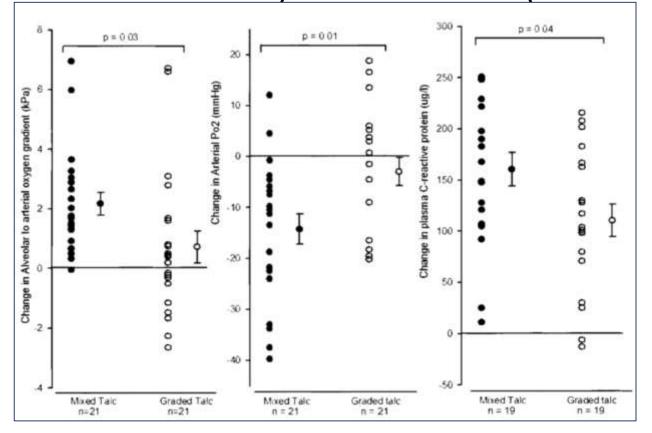
Variable	TTP under general anesthesia (n=11)	TSP via a chest tube under local anesthesia (n=6)	P value
Drainage period after pleurodesis (days)			
Median [range]	6 [2-11]	12 [8-45]	0.005
Length of hospital stay (days)			
Median [range]	23 [14–46]	37.5 [20-60]	0.154
Complications: total (%)	1 (9.1)	4 (66.7)	0.028
Atrial fibrillation	1 (9.1)	0	1.000
Chest pain	0	2 (33.3)	0.110
Bronchial asthma attack	0	1 (16.7)	0.353
Pneumonia	0	1 (16.7)	0.353
Mortality	0	1 (16.7)	0.353

17 elderly patients with persistent air leak who received talc pleurodesis for secondary pneumothorax from April 2013 to March 2017

TTP better than slurry in pneumothorax

TALC PNEUMONITIS/ARDS

- The most severe adverse effect
- The mechanism of acute talc pneumonitis is unclear
- Hypothesis: Escape of very small talc particles from the pleural space through the parietal pleural pores
- Reported with both talc poudrage and slurry
- Commercially available Talc has 2 types:
 - Mixed Talc (Thornton and Ross, Huddersfield, UK)
 - Graded Talc (Novatech, Grasse, France)
- This complication is related to the grade of talc used

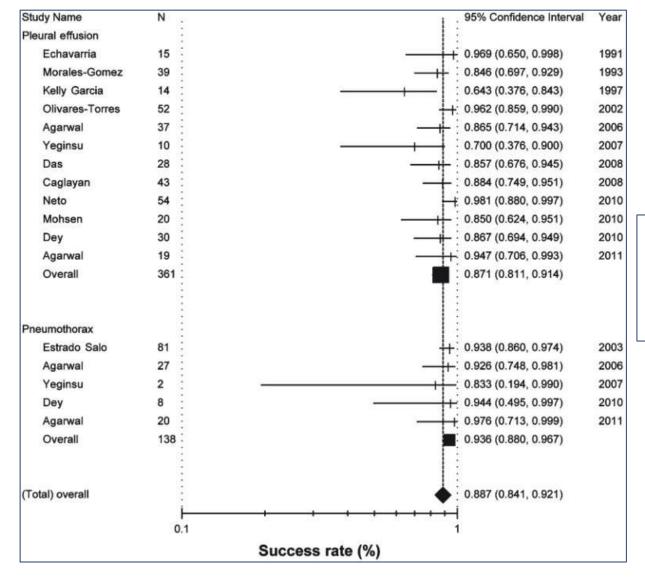

TALC PNEUMONITIS

 52 malignant pleural effusion patients randomized to pleurodesis with Mixed Talc (50% particles < 15 microns) vs Graded Talc (50% >

25 microns)

• Implication :

Routine use of graded talc for pleurodesis would reduce the morbidity of this procedure


POVIDONE IODINE

- Mode of action: Unclear, likely related to low pH, oxidative and cytotoxic properties
- Inexpensive and easily available
- Used in both pneumothorax and malignant pleural effusion
- Recommended dose: 20 ml of 10% iodopovidone with 80 ml of 0.9 per cent saline administered intra pleurally either through tube thoracostomy or during thoracoscopy

POVIDONE IODINE

STUDY	SYSTEMIC REVIEW AND METAANALYSIS
SUBJECTS	13 studies with 499 patients with recurrent pleural effusion and pneumothorax
OBJECTIVE	Efficacy and safety of povidone iodine pleurodesis
RESULTS	Pooled success rate being 88.7 per cent (95% CI, 84.1 to 92.1) Tube thoracostomy vs Thoracoscopy (89.6 vs. 94.2%) Pleural effusion vs pneumothorax (89.2 vs. 94.9%)
ADVERSE EFFECTS	Only significant complication: Chest pain Hypotension – 2 studies, likely vasovagal secondary to pain ARDS or deaths - 0

POVIDONE IODINE PLEURODESIS

COMMENTS:

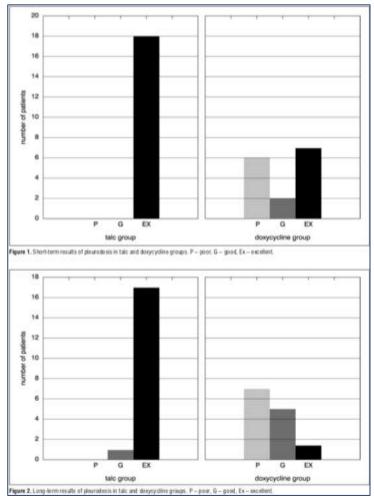
- Povidone iodine is as efficacious as talc and is easily available at a low cost
- Also devoid of major adverse events

TETRACYCLINE

- Not used nowadays and less efficacious than Talc pleurodesis
- Studied in both malignant pleural effusions and pneumothorax
- Dose used in MPE: 35 mg/kg (powder from capsules) success rates 77% and intravenous formulations (1.5g or 20mg/kg) 50-92%

STUDY	RCT
SUBJECTS	96, spontaneous pneumothorax
INTERVENTION	Chest drain (n=34) vs Chest drain+ Talc slurry(n=29) vs Chest drain + tetracycline pleurodesis(n=33)
RESULTS	Recurrence rates: Chest drain: 36% Chest drain + Talc slurry pleurodesis: 8% Chest drain + Tetracycline pleurodesis: 13%
COMMENT	Tetracycline inferior to Talc pleurodesis

MINOCYCLINE


 Derivative of tetracycline and has been studied in both pneumothorax and malignant pleural effusions

STUDY	RCT
SUBJECTS	N=214, primary spontaneous pneumothorax
INTERVENTION	Chest drainage (108) vs Chest drainage + Minocycline 300 mg (106)
RESULT	Pain: Minocycline group – (72 of 106), 67.9% vs Chest drain group -(21 of 108), 19.4% Recurrence rate: Significantly lower in the minocycline group (31 patients, 29.2%) than in the control group (53 patients, 49.1%)
COMMENT	Pain and lower efficacy – Not the preferred agent

DOXYCYCLINE

- Derivative of tetracycline, inhibit Matrix metalloproteinase¹
- Has been tried in pleurodesis of Malignant pleural effusion and sometimes in pneumothorax
- Dose used 500mg -1000 mg
- Success rates³ short term 67% and long term 81%

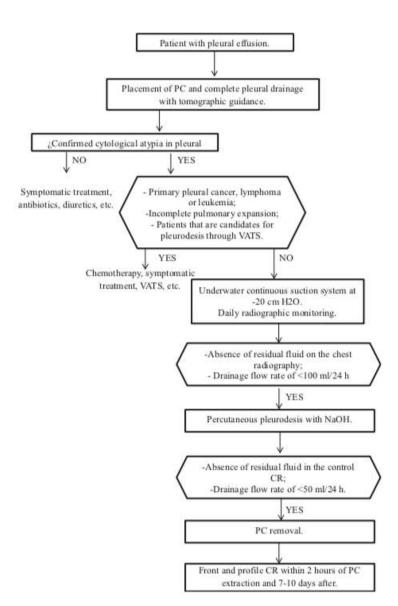
STUDY ²	RCT
SUBJECTS	Malignant pleural effusions, n=33
INTERVENTION	Talc pleurodesis by poudrage (10g), n=18 Doxycycline pleurodesis (500mg), n=15
OUTCOME	Doxycycline pleurodesis less efficacious than Talc poudrage

AUTOLOGOUS BLOOD PATCH PLEURODESIS

- The technique was first described by Robinson in 1987
- Indication:

Spontaneous/Post operative pneumothorax with prolonged air leak (5-7 days) – unable to undergo surgery

- Simple, painless, inexpensive
- Mechanism: "Patch effect"- coagulated blood seals the site of the air leak
- Recurrence rates: 0-29%


AUTOLOGOUS BLOOD PATCH PROCEDURE

- 1. Add an extension tube to the chest drain
- 2. Under aseptic precautions inject 100 ml (2ml/kg) of patients own blood into the chest drain
- Loop the drainage tube over the drip stand and clamp the tube for 1 hour(if no air leak)
- 4. Don't clamp if air leak persists
- 5. Avoid patient rotation
- 6. After 4 hours drainage tube should be replaced to the original position and leave overnight
- 7. If no air leak and lung expanded, chest drain can be removed
- 8. If unsuccessful the procedure can be repeated upto a total of 3 times

AUTOLOGOUS BLOOD PATCH PROCEDURE

- Complications: Empyema and tension pneumothorax can occur
- **Precautions**: Saline flush should be ready, avoid narrow bore chest tube
- Advantages: Less incidence of systemic inflammatory response and pain and no need for analgesia or anaesthesia

SODIUM HYDROXIDE

Extremely basic solution (pH 13) - alters the volume of pleural fluid by reducing its production, destroying the layer of mesothelial cells and obliterating the pleural capillaries

60 patients with symptomatic neoplastic pleural effusion

- 1. 20 ml of 2% lidocaine was instilled through the pleural catheter 15 min prior
- 2. 200 ml of sterile 0.5% NaOH solution
- 3. Clamped for 6 hours

Success rate - 75%

ERYTHROMYCIN

STUDY	RCT
SUBJECTS	Refractory (recurrent or persistent) spontaneous pneumothorax , n=57
INTERVENTION	Erythromycin poudrage (30) vs Erythromycin slurry (27), Dose used – 1 gram
OUTCOME	Success rate: 80% vs 59.26%, Similar side effects – fever and chest pain
COMMENT	Alternate pleurodesis agent for PSP

NEEDS RCTs TO COMPARE EFFICACY WITH OTHER AGENTS

SILVER NITRATE

Is silver nitrate an effective means of pleurodesis?

Alexandra Bucknor*, Karen Harrison-Phipps, Thomas Davies and Levon Toufektzian

Department of Thoracic Surgery, Guy's Hospital, London, UK

 Corresponding author. Department of Thoracic Surgery, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK. Tel: +44-7201887188; e-mail: alexandrabucknor@gmail.com (A. Bucknor).

Received 22 January 2015; received in revised form 25 May 2015; accepted 8 June 2015

Abstract

A best evidence topic was written according to a structured protocol. The question addressed was whether silver nitrate (SN) is an effective means of pleurodesis. A total of 42 papers were identified using the reported search, of which 8 represented the best evidence to address the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Three studies assessed the efficacy of SN in inducing pleurodesis in patients with malignant pleural effusion (MPE). Using intrapleural injections of SN in concentrations of 0.5-1%, they reported success rates of 89-96% at 30 days. One of these studies compared SN with talc slurry and found equally effective pleurodesis at monthly intervals up to 4 months (P = 0.349-1). Another two studies retrospectively reviewed the efficacy of thoracosopic SN instillation (1 or 10%) in patients with primary spontaneous pneumothorax (PSP). Recurrence rates were 0-1.1% during long-term follow-up. One of these compared SN with simple drainage and reported a therapeutic gain of 45 ± 30% (95% CI) with SN, at the cost of increased analgesia consumption, chest drainage and hospital stay. Finally, three studies reported the results of the comparison of intrapleural injections of SN, talc or tetracycline in inducing pleurodesis in rabbits. SN was equally effective with tetracycline and superior to talc at producing pleurodesis, with lower concentrations of SN (0.1%) resulting in significantly attenuated systemic inflammatory response when compared with either higher SN concentrations (0.5%) or talc. Although not commonly used, available evidence suggests that SN is an effective agent in inducing pleurodesis in patients with either MPE or PSP. Compared with universally employed talc, it seems to result in at least similar short-term recurrence rates for MPE, with a demonstrably good side-effect profile; the longer-term efficacy is, as yet, undetermined. In cases of PSP, evidence suggests that thoracoscopic SN instillation is at least as effective as talc, with potentially fewer systemic side effects.

OK-432 (Picibanil)

- Lyophilized mixture of a low virulence strain (Su) of Streptococcus pyogenes incubated with benzyl penicillin
- Studied in both pneumothorax and malignant pleural effusion

STUDY(2011-2016)	Retrospective analysis
SUBJECTS	64 – malignant pleural effusion (33- lung cancer)
INTERVENTION	52 – Picobanil vs 12 –Talc pleurodesis
RESULTS	Success rate: (p-0.72). Picobanil-75% Talc - 83.3% Duration of drain: (p-0.52) Picobanil-2.4 days Talc-2.5 days Relapse: (p-0.34) Picobanil-40.4% Talc-58.3% Side effects: Fever, pain – similar ILD – 2 patients with Talc pleurodesis

ANTI CANCER DRUGS IN PLEURODESIS

- Various chemical agents have been used in an attempt to produce pleurodesis
- The complete success rate with fibrosing agents (non anticancer agents) was 75%, compared with a complete success rate of only 44% for anticancer agents

Study	Prospective
Subjects	 N=20, proven malignant pleural effusion secondary to lung cancer Progressed after chemoradiotherapy
Intervention	Intrapleural OK-432 10 KE + Doxorubicin 30 mg (after thoracocentesis) and OK-432 can be repeated every 3 days
Outcome	Objective response 90%

BLEOMYCIN

- Chemical sclerosant
- Although 45% of the administered bleomycin is absorbed systemically, it has been shown to cause minimal or no myelosuppression
- Success rates 58% to 85% and less efficacious than talc in MPE
- Side effects: Fever, chest pain and cough
- Dose recommended: 60,000 units with normal saline
- Expensive
- Animal studies showed ineffective pleurodesis in pneumothorax hence not indicated for non-malignant conditions

SERICIN

ARCHIVOS DE Bronconeumología

Bronconeumologia

www.archbronconeumol.org

Original article

Does Sericin, as a Novel Pleurodesis Agent, Have Higher Effectiveness Compared to Talcum Powder, Doxycycline, and Silver Nitrate Pleurodesis?*

Alkin Yazicioglu a.*, Serkan Uysalb, Tuba Sahinoglu Mahmut Subasia, Funda Demirag^d, Erdal Yekeler^a

- * SBU, Turkiye Yuksek Ihtisas Training and Research Hospital, Thoracic Surgery and Lung Transplantation Clinic, Ankara, Turkey
- ^b Bulent Ecevit University, Department of Thoracic Surgery, Zonguldak, Turkey
- Conya Numune Hospital, Department of Thoracic Surgery, Konya, Turkey
- SBU, Ataturk Chest Diseases and Thoracic Surgery Training and Research Hospital, Department of Pathology, Ankara, Turkey

ARTICLE INFO

Article history: Received 18 July 2018 Accepted 8 October 2018 Available online xxx

Keywords: Sericin Talcum powder Doxycycline Silver nitrate Pleurodesis Fibrosis Pleura Parenchyma Cost-effective Side effect

ABSTRACT

Introduction: The usefulness of sericin as pleurodesis agent has previously been described. Present study aims to compare sericin pleurodesis regarding success, effectiveness, tolerability, and side-effects. Methods: Adult, 12-week-old Wistar-albino rats (n = 60), divided to five groups as sericin, talcum-powder, doxycycline, silver-nitrate and control. Agents were administrated through left thoracotomy, rats sacrificed twelve-days after.

Results: Highest ratio of collagen fibers was observed in sericin group, and the intensity was higher than talcum-powder group (p < 0.05). Compared to silver nitrate, sericin group displayed better mesothelial reaction, and multi-layer mesothelium was also better (p < 0.05). Foreign body reaction and emphysema were less frequent in sericin group (p < 0.05). The presence of biological tissue in parenchyma was less prominent in sericin group (p < 0.05). Foreign body reaction on thoracic wall was less common in sericin group (p < 0.05). Presence of biological tissue glue in thoracic wall was less prominent in sericin group (p < 0.05).

Glomerular degeneration was lower in sericin group compared to the silver nitrate group (p < 0.05), and tubular degeneration was less common in sericin group than talcum group (p < 0.05). Pericarditis was less common in sericin group compared to the other groups (p < 0.05).

Conclusion: As an intrinsic, natural glue protein, sericin protects the lung parenchyma and tissues, and its glue-like characteristics enable pleurodesis. The success of sericin in pleurodesis was demonstrated in the present study based on investigations of the pleurae. Being cost-effective and better tolerated agent associated with a low potential of side effects, sericin is more effective, less expensive and provides more Yazicioglu et al. luArchivos de Bronconeumología. 2019; 55(7): 357-67

VEGF INHIBITORS

- VEGF: Over expressed in many solid tumours causing excessive angiogenesis and vascular permeability thereby leading to malignant pleural effusion
- Bevacizumab is a recombinant humanized monoclonal antibody that selectively binds to VEGF and interferes with its receptor interactions
- Endostatin is another endogenous VEGF inhibitor being studied in controlling malignant pleural effusion

BEVACIZUMAB AS PLEURODESIS AGENT?

Author	Study design (phase)	N	Regimen	Comparator	MPE control rate	P-value
INTRAVENOUS BE	VACIZUMAB					
Kitamura et al.	R	13	Bevacizumab + Carboplatin based chemotherapies	None	12/13 (92.3%)*	NA
Masago et al.	R	21	Bevacizumab + Carb oplatin-based chemotherapies	None	15/21 (71.4%) ^b	N/A
Jiang et al.	R	86	Bevacizumab + EGFR-TKI therapies	Bevacizumab + standard chemotherapies	42/47 (89.4%) vs. 25/39 (64.1%)b	p = 0.005
Tamiya et al.	P (II)	23	Bevacizumab + Carboplatin + Paclitaxel	None	21/23 (91.3%)*	N/A
Usui et al.	P (81)	28	Bevacizumab + Carb op latin + Pemetrexed	None	26/28 (92.9%)°	N/A
INTRAPLEURAL B	EVACIZUMAB					
Chen et al.	R	300	Bevacizumab	IP Chemotherapy	41/50 (82%) vs. 191/250(76.4%) ^d	$\rho < 0.01$
Jiang et al.	R	43	Bevacizumab + Cisplatin	IP Cisplatin	16/20 (80.0%) vs. 11/23 (47.8%) ^b	p = 0.03
Du et al.	P	72	Bevacizumab + Cisplatin	IP Cisplatin	30/36 (83.3%) vs. 17/34 (50.0%) ^b	p < 0.05
Qi et al.	P	24	Bevacizumab + Paclitaxel	IP Paclitaxel	11/14 (78.6%) vs. 5/10 (50.0%) ^d	p < 0.05

N: total study population; MPE malignant pleural effusion, R: retrospective, P: prospective; IP: intrapleural/intracavitary; EGFR-TKI: epidermal growth factor receptor-tyrosine kinase inhibitor.
"MPE control defined as no reaccumulation of MPE for >8 weeks after the start of treatment.

^bMPE control defined as complete response (CR) + partial response (PR); CR − defined as complete disappearance of pleural effusion at 4weeks; PR − defined as ≥50% reduction of pleural effusion at 4weeks.

*MPE control defined as not needing pleurodesis at 8 weeks of treatment

[&]quot;MPE control defined as PR + CR; CR - effusion and symptoms disappeared and patient was stable for >8 weeks; PR - size of effusion was reduced by >50% with improvement of symptoms for >8 weeks.

VISCUM

- Abnobaviscum F is an extract of *V. album* (European mistletoe), which grows on trees of the genus Fraxinus
- Mechanism: Stimulation of antitumor immunity
- Used in the pleurodesis of malignant effusions and also recently shown to be effective in pneumothorax with persistent air leaks

Study	Phase 3 trial
Subjects	62 MPE
Intervention	 Remove pleural fluid Viscum pleurodesis (5 ampoules of 20 mg with 0.9% normal saline) Repeated at a dosing interval of 3-7 days till adequate response
Outcome	Efficacy : 96.77% Most common side effect : Fever

OTHER PLEURODESIS AGENTS STUDIED IN MALIGNANT PLEURAL EFFUSION

- MEPACRINE Anti malarial drug, acts as a sclerosant
- MITOXANTRONE synthetic anthracenedione (Doxorubicin analogue), acts via inflammatory and anti-neoplastic mechanism
- CORNYBACTERIUM PARVUM Immunological agent
- MUSTINE Cytotoxic agent

NETWORK META ANALYSIS COMPARING DIFFERENT AGENTS IN MALIGNANT PLEURAL EFFUSION

Inclusion criteria:

- 62 studies 3248 patients
- Symptomatic MPE

Exclusion criteria:

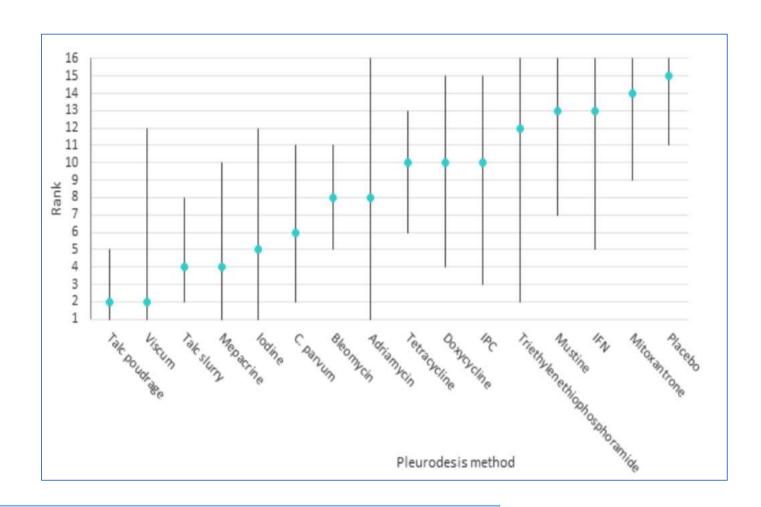
- Studies recruiting both malignant and non-malignant effusions
- Other than intrapleural route
- Studies including participants with effusions in other body cavities

PLEURODESIS EFFICACY — NETWORK METAANALYSIS RESULTS

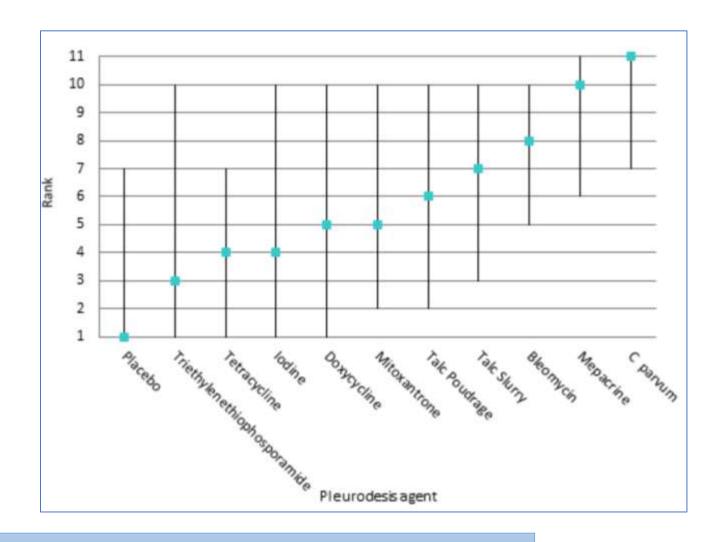
	Talc slurry				C. parvum			In- dwellin pleu- ral catheter	Placebo		Mi- tox- antrone	-	Doxy- cyline	Tri- ethylen phos- pho- ramide	cum
	0. 42 (0. 13, 1. 19)	NA	2		-	5.	.5.X	a.v	5.7	•	-N	in.	-		-
Bleomy	2. 56 (1. 05, 6. 67)	03 (2.	NA	2	ž.	7.0	-	3 .0		÷	- A		-		*
Tetra- cy- cline	3. 71 (1. 22, 11. 67)		1. 45 (0. 59, 3. 46)	NA	•	-	2 11		3 11	-	-		-	-	-

	Talc slurry	Talc poudraș	Bleomy	Tetra- cy- cline	C. parvum	Inter- feron	Io- dine	In- dwelling pleu- ral catheter	Placebo	Mus- tine	Mi- tox- antrone	Мераст	Doxy- cyline	Tri- ethylene phos- pho- ramide	vis- cum
C. parvum	1. 48 (0. 34, 6. 57)	3.49 (0.79, 17. 64)	0. 58 (0. 16, 1. 95)	0. 40 (0. 10, 1. 52)	NA	2	-		-		-	-			-
Inter- feron	8.49 (0.94, 82. 98)	19. 96 (2. 22, 229. 60)	3.33 (0.43, 25. 66)	2.29 (0.26, 21. 65)	5.75 (0.55, 64. 16)	NA	-			7 .5	-	-	_	•	
Io- dine	1. 25 (0. 22, 6. 77)	2.97 (0.55, 17. 21)	0. 49 (0. 09, 2. 49)	0. 34 (0. 05, 2. 04)	0. 85 (0. 11, 6. 35)	0. 15 (0. 01, 1. 90)	NA		-	5 5	-	-	*		5 ₩ 3
In- dwellin pleu- ral catheter	16. 46)	8. 19 (1. 32, 59. 02)	1. 36 (0. 22, 8. 01)	0. 94 (0. 14, 6. 27)	2.36 (0.28, 19. 88)	0. 41 (0. 03, 5. 96)	2.76 (0.29, 28. 48)	NA		22	4				_
Placebo	19. 50 (3. 73. 128. 50)	46. 51 (7. 86, 375. 90)	7. 64 (1. 55, 44. 22)	5. 29 (1. 04, 31. 95)	13. 28 (1. 91, 110. 80)	2.29 (0.18, 34. 14)	15. 63 (1. 72, 179. 10)	5.61 (0.59, 65. 18)	NA	7 3	-	-	-	•	
Mus- tine	7. 50 (1. 35, 43. 86)	17. 75 (3. 59, 105. 70)	2.94 (0.58, 14, 84)	2. 02 (0. 43, 9. 79)	5.07 (0.91, 29. 81)	0.88 (0.06, 11. 71)	5.98 (0.68, 58, 17)	2.16 (0.22, 22. 76)	0. 38 (0. 04, 3. 32)	NA		-	==		s = 3
Mi- tox- antrone	12. 87 (2. 36, 89. 02)	30. 53 (5. 11, 259. 50)	5. 04 (1. 04, 28. 67)	3.48 (0.64, 22, 72)	8. 76 (1. 24, 73. 66)	1.51 (0.12, 22. 89)	10. 28 (1. 12, 119. 70)	3.71 (0.38, 44. 85)	0. 66 (0. 13, 3. 52)	1.73 (0.19, 17.80	NA				
Мераст	0. 98 (0. 22, 4. 15)	2.32 (0.45, 12. 99)	0. 38 (0. 09, 1. 52)	0. 27 (0. 05, 1. 17)	0. 67 (0. 10, 4. 06)		0. 78 (0. 09, 6. 55)			0. 13 (0. 02, 0. 99)		NA			•
Doxy-	3.49 (0.68, 19.	8. 23 (1. 70,	1. 37 (0. 31, 6.	0. 94 (0. 18, 5.	2.36 (0.46, 13.	0. 41 (0. 03, 5.	2.78 (0.33, 26.	1.00 (0.11, 10.	0. 18 (0. 02, 1.	0. 47 (0. 06, 3.		3.56 (0.50,	NA		*
	56)	50. 18)	09)	09)	09)	14)	50)	23)	53)	77)	31)	28. 59)			

PLEURODESIS EFFICACY (VIA CHEST DRAIN)


	Talc slurry	Doxy- cycline	Bleomyci		C. parvum	
Doxy- cycline	1.10 (0. 13, 8. 65)	NA	-	-	-	•
Bleomyci	1.56 (0. 53, 4. 88)	1.41 (0. 25, 9. 11)	NA	•	-	•
Tetra- cycline	2.28 (0. 58, 9. 13)		1.46 (0. 53, 3. 90)	NA	-	
C. parvum	0.82 (0. 15, 4. 60)		0.53 (0. 13, 2. 00)		NA	
Inter- feron	5.18 (0. 43, 68. 49)	157.0	3.33 (0. 34, 32. 42)		20	NA
Iodine	1.13 (0. 12, 9. 77)	1.02 (0. 06, 16. 19)	THE THE PARTY OF T		1.37 (0. 11, 16. 45)	Contract of the Contract of th

\bigcap	Talc slurry		Bleomyci		C. parvum	Inter- feron	Iodine	Adri- amycin	Placebo	Mus- tine	Mitox- antrone	Mepacri
Adri- amycin	02,	1.36 (0. 01, 130.60)	0.95 (0. 01, 65. 87)		02,	0.28 (0. 00, 33. 67)		NA	-	*		
Placebo	91,	8.42 (0. 56, 156.30)	5.96 (0. 69, 55. 43)	4.06 (0. 50, 37, 88)		08, 44.	8.24 (0. 44, 188.50)	06,	NA	*		**
Mus- tine	5.89 (0. 63, 62. 33)		3.78 (0. 50, 31. 32)			1.14 (0. 05, 25. 58)	30,	3.99 (0. 06, 354.40)	04, 11.	NA	2	
Mitox- antrone	7.23 (0. 97, 69. 79)	6,57 (0, 57, 104.40)	4.63 (0. 79, 33. 87)	PERMITTED AND AUTOM	8. 81 (1. 01, 98. 38)	08, 29.		05,	0.79 (0. 12, 5. 83)	1.23 (0. 09, 19. 34)	NA	
Mepacrin	1		0.46 (0. 08, 2. 15)					0.48 (0. 01, 45. 93)		0.12 (0. 01, 1. 40)		NA
Viscum	0.23 (0. 01, 6. 09)		0.15 (0. 01, 3. 19)			0.04 (0. 00, 1. 99)		0.15 (0. 00, 32. 36)				


PLEURODESIS – TECHNICAL CONSIDERATIONS

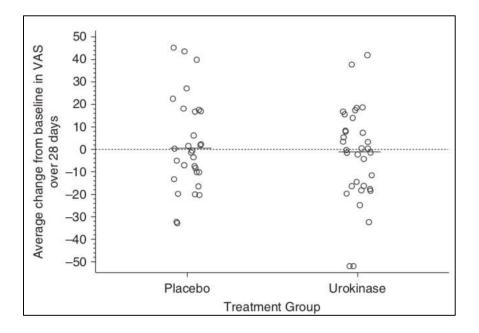
TYPE OF METHOD	STUDY	INTERVENTION 1	FAILURE RATE 1	INTERVENTION 2	FAILURE RATE 2	ODDS RATIO
Chest tube size	CLEMENTSEN 1998	Small bore chest tube	2/9	Large bore chest tube	3/9	0.57 (0.07 <i>,</i> 4.64)
Patient rotation	Mager 2002	Rotation after talc instillation	2/10	No rotation	1/10	2.25 (0.17 <i>,</i> 29.77)
Duration of drainage after administration of	Goodman 2006	Drain removed 24 hours after pleurodesis	2/16	Drain removed 72 hours later	4/19	0.54 (0.08 <i>,</i> 3.40)
sclerosant	Villanueva 1994	Drain removed the day after	2/9	Removed when output < 150ml/day	3/15	1.14 (0.15,8.59)
Duration of drainage prior to administration of sclerosant	Ozkul 2014	Early instillation of talc slurry after drain insertion	5/40	Instillation of talc slurry when daily drainage < 300ml/day	6/39	0.79 (0.22, 2.82)

PLEURODESIS EFFICACY — ESTIMATED RANK

ADVERSE EFFECTS - FEVER

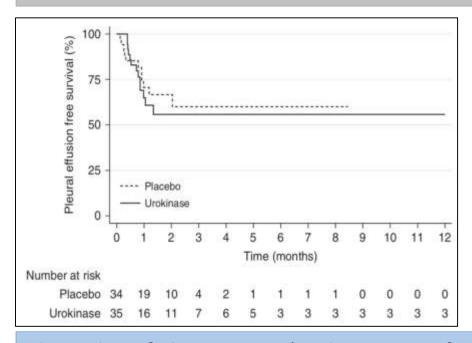
ADVERSE EFFECTS - PAIN

Pleurodesis agent	Estimated rank (95% CI)
Talc poudrage	1 (1,8)
Talc slurry	2 (1,7)
Doxycycline	3 (1,8)
Bleomycin	4 (2,6)
Tetracycline	5 (2,8)
Triethylenetriophosphoramide	6 (1,9)
C. parvum	7 (4,9)
Mitoxantrone	7 (1,9)
Mepacrine	8 (4,9)


TALC POUDRAGE < TALC SLURRY < DOXYCYCLINE

CHEST TUBE SIZE AND ANALGESIA

STUDY	TIME1 trial - RCT
SUBJECTS	Malignant pleural effusion, n=320
INTERVENTION	n=206, thoracoscopy, 24 F tube, (103 – NSAID vs 103 Opiods) n=114, 4 groups (24F +NSAID, 24F+Opiod, 12F+NSAID,12F+Opiod)
OUTCOME	 NSAID non-inferior to Opiod in analgesia and had similar pleurodesis failure rates 12F drain had higher failure pleurodesis rates than 24F drain (30% vs 24%) although it had significantly better analgesia (mean VAS score : 22 vs 28)
COMMENT	Large bore chest drain preferred for pleurodesis in malignant effusions with either NSAID/Opiod analgesia


SEPTATED MALIGNANT PLEURAL EFFUSIONS FIBRINOLYSIS f/b PLEURODESIS

Non draining pleural effusion N=71

VAS Dyspnoea score at day 28 (mean difference, 3.8 mm; 95% confidence interval [CI], 212 to 4.4 mm; P = 0.36) similar

1:1 (Intrapleural urokinase: placebo) 1,00,000 IU 3 doses 12 hourly f/b Talc slurry pleurodesis

Pleurodesis failure rates - (urokinase, 13 of 35 [37%]; placebo, 11 of 34 [32%]; adjusted hazard ratio, 1.2; P = 0.65) similar

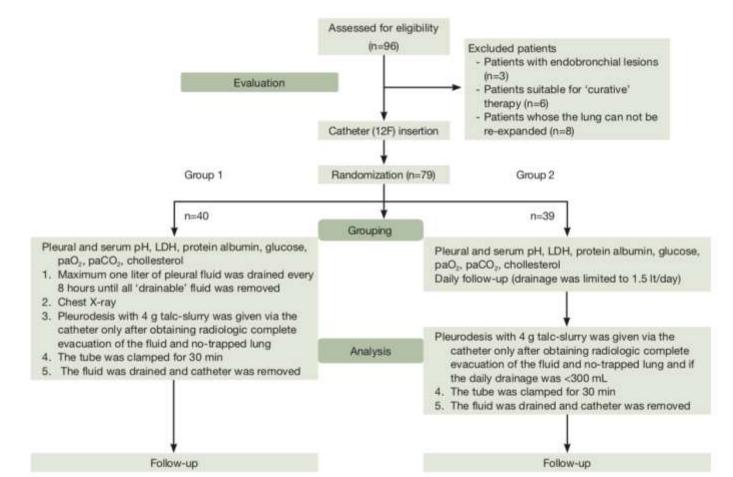
SEPTATED MALIGNANT PLEURAL EFFUSIONS ROLE OF FIBRINOLYTICS BEFORE PLEURODESIS?

STUDY	SUBJECTS	INTERVENTION
Okur E et al ¹	47, Non expanding MPE	1:1 (STK 2.5 lakh units 3 cycles vs placebo) f/b Talc slurry pleurodesis

STUDY	SUBJECTS	INTERVENTION
Saydam et al ²	40, Multiloculated MPE	1:1 (STK vs placebo f/b Talc slurry pleurodesis)

Variable	Fibrinolytic Group	Control Group	p Value
Drainage in first 24 h (mL)	1,783 ± 157	I,654 ± 191	0.570
Drainage in 24-48 h (mL)	$\textbf{423} \pm \textbf{102}$	$\textbf{523} \pm \textbf{92}$	0.070
Drainage in 48-72 h (mL)	793 ± 59	271 ± 84	< 0.001
Total drainage (mL)	$\textbf{3611} \pm \textbf{278}$	$\textbf{2536} \pm \textbf{345}$	0.010
Lung expansion (yes/no)	23/1	17/6	0.035
Success of pleurodesis	14/19 (74%)	9/16 (56%)	0.280

	Fibrinolytic group	Control group	P value
Mean age	57.3	58.3	0.65
Mean drainage at 24–48 h	493 cc	248 cc	< 0.001
Mean drainage at 48–72 h	446 cc	198 cc	< 0.001
Mean drainage at 24–72 h	939 сс	446 cc	< 0.001
CT score (3/2/1)	11/6/3	2/5/13	0.001
Dyspneic patients	2 (10 %)	9 (45 %)	0.03
Recurrence rate	11 %	45 %	0.07


SEPTATED MALIGNANT PLEURAL EFFUSIONS ROLE OF FIBRINOLYTICS BEFORE PLEURODESIS?

CONCLUSION

- 1. Using fibrinolytics before pleurodesis in MPE increases drain output and improves lung expansion
- 2. But this is not translated into improvement in dyspnoea and pleurodesis success rates probably due to small sample sizes in the studies evaluating these approaches

RAPID PLEURODESIS IN MALIGNANT PLEURAL EFFUSION

A prospective randomized 'non-inferiority' trial was conducted in 96 patients with malignant pleural effusion (MPE)

- Complete or partial response 35 (87.5%) vs 33 (84.6%) (P=0.670)
- The mean total drainage -2,703 mL vs 4,329 mL (P=0.016)
- The mean drainage time- 40.7 hours vs 165.2 hours (P<0.001)
- The mean length of stay -2.2 days vs 9.0 days (P<0.001)
- Comment:

Prolonged drainage and hospitalization seems unnecessary if the fluid is completely drained and the lung is re-expanded

GUIDELINES – PLEURODESIS IN MPE

- Talc is the most effective sclerosant available for pleurodesis
- Graded talc should always be used in preference to ungraded talc as it reduces the risk of arterial hypoxemia complicating talc pleurodesis
- Talc pleurodesis is equally effective when administered as a slurry or by insufflation
- Large bore ≥ 24F chest tube preferred
- Intrapleural instillation of fibrinolytic drugs is recommended for the relief of distressing dyspnoea due to multiloculated malignant effusion resistant to simple drainage
- Patient rotation is not necessary after intrapleural instillation of sclerosant

PLEURODESIS IN PNEUMOTHORAX — SYSTEMATIC REVIEW

STUDY	METAANALYSIS		
SUBJECTS	50 studies with spontaneous pneumothorax		
OBJECTIVE	Chemical pleurodesis efficacy		
RESULTS	Recurrence rates: ICTD drainage alone : 26.1% - 40.1% Thoracoscopic Talc poudrage : 2.5% - 10.2% VATS f/b Talc : 0.0% - 3.2% VATS f/b minocycline : 0.0% - 2.9% ICTD + tetracycline : 13% - 33.3% Autologous blood patch pleurodesis : 15.6% - 18.2%		

BTS GUIDELINES – PLEURODESIS IN PNEUMOTHORAX

- Surgical chemical pleurodesis is best achieved by using 5 g sterile graded talc
- VATS preferred over thoracotomy in view of lesser perioperative morbidity and shorter hospital stay
- Medical pleurodesis may be appropriate for inoperable and unwilling patients
- **ERS statement**: Talc slurry is not used in patients with PSP as these patients are able to tolerate pleurodesis with poudrage, which is more effective

PLEURODESIS IN BENIGN PLEURAL EFFUSIONS?

STUDY	Retrospective/prospective (1992-1997)
SUBJECTS	Non malignant pleural effusions, n=16, CHF -6, Liver failure -4 Yellow Nail syndrome – 1, Chylothorax – 1, SLE -1, Undiagnosed - 3
INTERVENTION	Talc slurry pleurodesis
OUTCOME	Pleurodesis success rate -94%, No significant complications
COMMENT	Pleurodesis can be used in recurrent benign and undiagnosed pleural effusions

2. FIBRINOLYTIC AGENTS

CONTENTS

- Fibrinolytic agents
- Mechanism
- Role of fibrinolytics in parapneumonic effusion
- Surgery vs fibrinolytics
- Streptokinase (MIST 1 trial)
- Urokinase and Alteplase
- Meta analysis of fibrinolytic agents
- DNase
- Saline irrigation
- Protocol to follow
- Take home message

FIBRINOLYTIC AGENTS

DRUG	FIBRIN SELECTIVITY	SYSTEMIC LYTIC STATE	ALLERGIC REACTIONS	HALF LIFE
STREPTOKINASE	NO	YES	YES	30 minutes
ANISTREPLASE	NO	YES	YES	88-112 minutes
UROKINASE	NO	YES	NO	20 minutes
ALTEPLASE	YES	NO	NO	3-5 minutes
TENECTEPLASE	YES	NO	NO	20-24 minutes
RETEPLASE	YES	NO	NO	13-16 minutes

MECHANISM OF FIBRINOLYTICS

- Dissolve the fibrin membranes that are responsible for the loculation and facilitate drainage of the effusion
- Uncontrolled studies have shown that intrapleural fibrinolytics increased the drainage of loculated effusions

Class 1	Non significant Parapneumonic effusion	Small, <10mm thick on decubitus x ray	No thoracentesis indicated
Class 2	Typical parapneumonic effusion	>10mm thick, Glucose >40 mg/dL, pH>7.20, Gram stain and culture negative	Antibiotics alone
Class 3	Borderline complicated Parapneumonic effusion	7.0 <ph<7.20 and="" ldh="" or="">1,000 and glucose>40 mg/dL, Gram stain and culture negative</ph<7.20>	Antibiotics plus serial thoracentesis
Class 4	Simple complicated Parapneumonic effusion	pH<7.00 and/or glucose < 40 mg/dL and/or Gram stain or culture positive Not loculated, not frank pus	Tube thoracostomy plus antibiotics
Class 5	Complex complicated parapneumonic effusion	pH<7.00 and/or glucose < 40 mg/dL and/or Gram stain or culture positive Multiloculated	Tube thoracostomy plus thrombolytics(Rarely require thoracoscopy or decortication)
Class 6	Simple empyema	Frank pus present Single locule or free flowing	Tube thoracostomy± decortication
Class 7	Complex empyema	Frank pus present Multiple locules	Tube thoracostomy + thrombolytics Often require thoracoscopy or decortication

SURGERY VS NON-SURGICAL MANAGAMENT

Cochrane Database of Systematic Reviews

Surgical versus non-surgical management for pleural empyema (Review)

Redden MD, Chin TY, van Driel ML

RESULTS

VATS compared to thoracostomy drainage for pleural empyema

Patient or population: children and adults with pleural empyema

Intervention: VATS

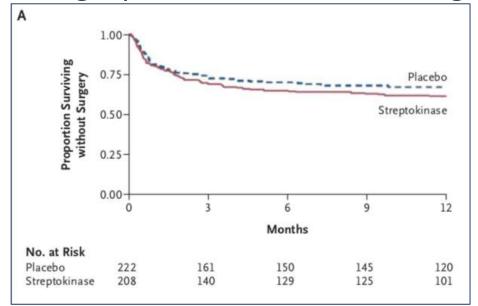
Comparison: thoracostomy drainage

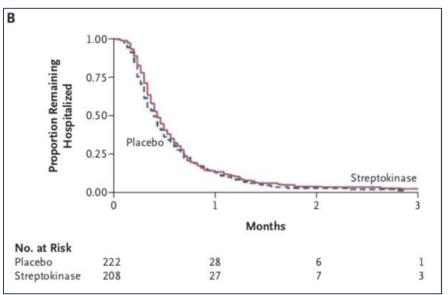
Outcomes	Anticipated absolu	te effects" (95% CI)	Relative effect (95% CI)	of participants (studies)	Quality of the evidence (GRADE)	
	Thoracostomy drainage	VATS				
Mortality	Risk in study popul	ation	OR 0.80	361	⊕⊕○○	
	6 per 1000	5 per 1000 (0 to 78)	(0.04 to 14.89)	(7 RCTs)	LOW ¹	
Mortality: children	Risk in study population		Not estimable	271 (5 POT+)	⊕⊕⊕⊝ ##################################	
	Not pooled	Not pooled		(5 RCTs)	MODERATE 2	
Mortality: adults	Risk in study popul	ation	OR 0.80	90	⊕⊕⊕⊝	
Follow-up: not reported	23 per 1000	18 per 1000 (1 to 257)	(0.04 to 14.89)	(2 RCTs)	MODERATE 3	
Length of hospital stay (days) Follow-up: 1 year in Cobanoglu 2011 and 3 months in Marhuenda 2014	Control group	The mean length of hospital stay in the intervention group was 2.52 days fewer (4.26 fewer to 0.77 fewer).		231 (5 RCTs)	⊕⊕⊕⊝ MODERATE⁴	

VATS and thoracotomy clearly better than thoracostomy drainage in terms of hospital stay and duration of tube drainage

MIST 1 (STK) TRIAL

- 454 patients with pleural infection (defined by the presence of purulent pleural fluid or pleural fluid with a pH below 7.2 with signs of infection or by proven bacterial invasion of the pleural space) were randomised
- Intrapleural streptokinase (250,000 IU twice daily for three days) or placebo


MIST -1 (STK) TRIAL PATIENT CHARACTERISTICS


Variable	Streptokinase (N=208)	Placebo (N=222)
Demographic and clinical characteristics		
Sex — no.		
Male	139	160
Female	69	62
Age — yr	60±18	61±18
Side with empyema — no. (%)		
Right	105 (60)	109 (55)
Left	71 (40)	88 (45)
Duration of symptoms before randomization — days		
Median	14	15
Interquartile range	8–28	8–28
Concurrent heparin or warfarin therapy at randomization — no. (%)	20 (10)	23 (10)
Portion of hemithorax opacified by pleural effusion on chest radiograph — %		
Median	40	35
Interquartile range	20-60	20-60
Chest-tube bore at randomization — French		
Median	12	12
Interquartile range	12–20	12–16

Coexisting illness — no. (%)†	135 (65)	159 (72)
Cardiac disease	49 (24)	67 (30)
Respiratory disease	30 (14)	52 (23)
Diabetes mellitus	22 (11)	22 (10)
Excess alcohol intake	22 (11)	19 (9)
Joint disease	17 (8)	23 (10)
Gastroesophageal disease	12 (6)	22 (10)
Neurologic disease	18 (9)	15 (7)
Kidney disease	13 (6)	7 (3)
Liver disease	8 (4)	10 (5)
Other	37 (18)	31 (14)
Thoracic-surgery facilities on site at the patient's hospital — no. (%)	109 (52)	112 (50)
Pleural-fluid characteristics		
Visibly purulent — no. (%)	170 (82)	185 (83)
Gram-positive for bacteria — no. (%)	43 (21)	45 (20)
Culture-positive for bacteria — no. (%)	34 (16)	30 (14)
pH in patients without frankly purulent fluid	6.8±0.4	6.8±0.5
Lactate dehydrogenase — IU/liter		
Median	7609	4439
Interquartile range	1862-23,010	1044–14,458

MIST-1 TRIAL OUTCOMES

- No significant difference Need for surgery or death at 3 months
 (with streptokinase: 64 of 206 patients [31 percent]; with placebo: 60 of 221
 [27 percent]; relative risk, 1.14 [95 percent confidence interval, 0.85 to 1.54;
 P=0.43)
- No benefit to streptokinase in terms of mortality, rate of surgery, radiographic outcomes, or length of the hospital stay

MIST 1 –TRIAL OUTCOMES

Outcome	Streptokinase	Placebo	Difference between Groups (95% CI)	P Value
Residual pleural thickening at lateral chest wall — mm†	12±14	15±19	3 (-1 to 7)	0.20
Vertical height of thorax on affected side — mm†	209±30	221±33	12 (4 to 19)	0.003
Improvement in the area of pleural-fluid opacity in patients not requiring surgery — no. (%);				0.30§
No. of patients	102	133		
0–25%	7 (7)	12 (9)		
26–75%	6 (6)	12 (9)		
76–90%	12 (12)	24 (18)		
>90%	77 (75)	85 (64)		

- No significant radiological resolution seen
- Subgroup analysis done for loculated effusion, frank pus, chest tube size all failed to show any benefit in primary outcome

MIST -1 TRIAL ADVERSE EVENTS

Variable	Streptokinase (N=208)	Placebo (N=222)	Relative Risk (95% CI)*	P Value
	no. (%	5)		
Severity				
Serious	14 (7)	6 (3)	2.49 (0.98–6.36)	0.08
Other	8 (4)	8 (4)	1.07 (0.41–2.81)	0.91
Total	22 (11)	14 (6)	1.68 (0.88–3.19)	0.15
Туре				
Hemorrhage (local pleural or systemic)	7 (3)	6 (3)		
Chest pain	4 (2)	1 (<1)		
Fever, rash, and allergy	5 (2)	1 (<1)		
Other	6 (3)	6 (3)		

CONCLUSION:

- Streptokinase failed to show any benefit in empyema or complicated parapneumonic effusion
- On the contrary it had shown adverse events

OTHER FIBRINOLYTICS

STUDY	RCT (Tuncozgur et al)	Cross over RCT (Thommi et al)	RCT (Refaat et al)
NUMBER OF SUBJECTS	49	108	94
DRUGS COMPARED	Urokinase vs placebo	Alteplase vs placebo	Tenecteplase vs placebo
DOSE USED	1,00,000 units OD – 3 days	25mg OD – 3 days	15 mg OD (upto 5 doses)
OUTCOME	Reduced need for surgery No mortality benefit	Reduced need for surgery 95% vs 12%	Reduced need for surgery
BLEEDING	No significant increase	No significant increase	No significant increase

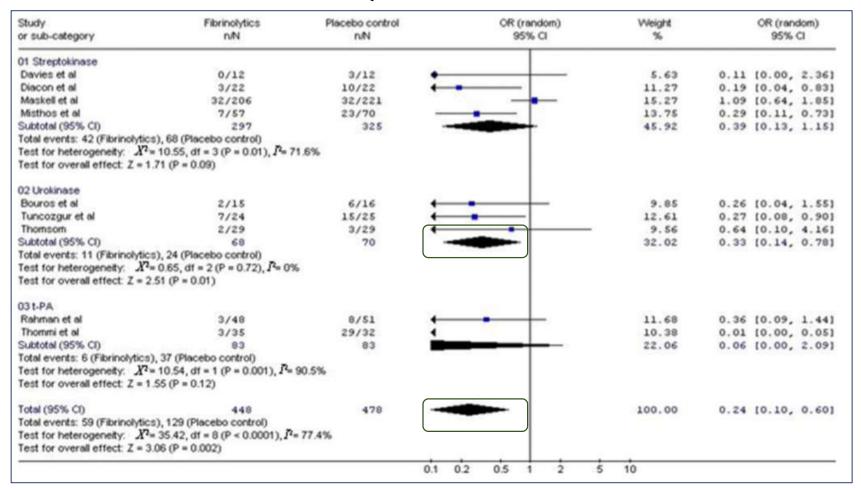
UROKINASE VS ALTEPLASE

STUDY	RCT
SUBJECTS	CPPE/empyema, n= 99
INTERVENTION	51 received alteplase 20mg/10 mg OD - 6 days 48 received- urokinase 1,00,000 units OD- 6 days
OUTCOMES	 Success rates for urokinase and alteplase at 3 and 6 days were not significantly different (91.6% vs 78.4%) CPPE subgroup- Urokinase better There were no differences in mortality or surgical need or duration of hospital stay
ADVERSE EVENTS	Alteplase 20 mg – 28% bleeding, 10mg – 20 % bleeding Urokinase - no bleeding

UROKINASE BETTER THAN ALTEPLASE ESPECIALLY IN CPPE (only in radiological and clinical improvement)

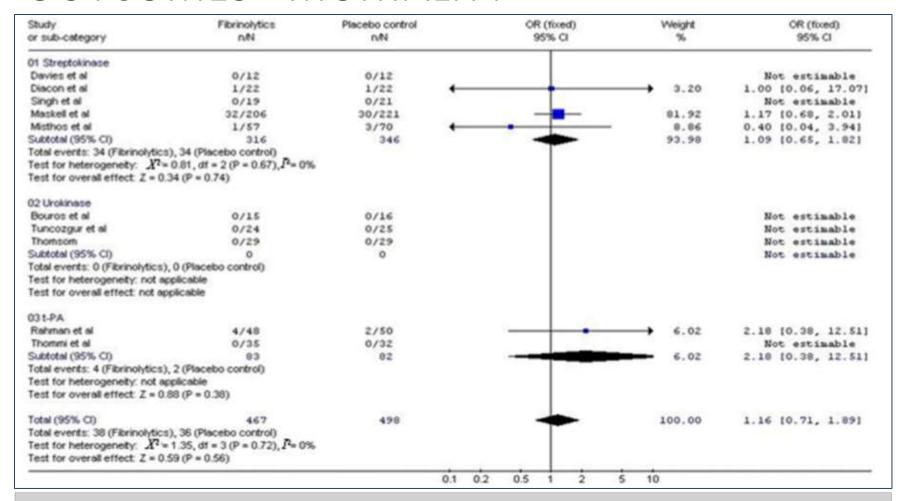
Efficacy of intrapleural instillation of fibrinolytics for treating pleural empyema and parapneumonic effusion: a meta-analysis of randomized control trials

Ten trials with a total of 977 patients were included


		Enroll	ed no.	Male	e, %	Age (mean	s ± SD, year)		Treatment	Duration
Reference	Year	TG	CG	TG	CG	TG	CG	Fibrinolytics	dose per day	(day)
Davies et al. (31)	1997	12	12	75	67	62 (23)	60 (23)	Streptokinase	250 000 IU	3
Bouros et al. (30)	1999	15	16	73	81	54*	57*	Urokinase	100 000 IU	3
Tuncozgur et al. (29)	2001	24	25	83	72	34 (14)	33 (16)	Urokinase	100 000 IU	5
Thomson et al. (32)	2002	29	29		_	3.6	3.0	Urokinase	80 000 IU	3
Singh <i>et al.</i> (27)	2004	19	21	53	52	6.4 (2.8)	6.8 (3.1)	Streptokinase	15 000 IU/kg	3
Diacon et al. (28)	2004	22	22	82	68	40 (13)	40 (14)	Streptokinase	250 000 IU	up to 7
Misthos et al. (17)	2005	57	70	39	51	45*	46*	Streptokinase	250 000 IU	3
Maskell <i>et al</i> . (8)	2005	208	222	67	72	60 (18)	61 (18)	Streptokinase	500 000 IU	3
Rahman et al. (24)	2011	52	55	75	71	60 (17)	58 (19)	t-PA	20 mg	3
Thommi et al. (25)	2012	35	32	-	_	10 00 0 10	_	t-PA	25 mg	3

OUTCOMES

	Surgery or death (n)		Surgery (n)	Surgery (n) Death (n)			Duration of hospital stay (means ± SD, days)		Severe side effects (n)	
Reference	Fibrinolysis	Placebo	Fibrinolysis	Placebo	Fibrinolysis	Placebo	Fibrinolysis	Placebo	Fibrinolysis	Placebo
Davies et al. (31)	0/12	3/12	0/12	3/12	0/12	0/12	16 (13)	13 (8)	0/12	0/12
Bouros et al. (30)	2/15	6/16	2/15	6/16	0/15	0/16	13 (4)	18 (5)	0/15	0/16
Tuncozgur et al. (29)	7/24	15/25	7/24	15/25	0/24	0/25	14 (4)	21 (4)	0/24	0/25
Thomson et al. (32)	2/29	3/29	2/29	3/29	0/29	0/29	6.8	8.8	1/29	0/29
Singh et al. (27)	0/19	0/21	-	-	0/19	0/21	-	-	0/19	0/21
Diacon et al. (28)	4/22	11/22	3/22	10/22	1/22	1/22	10.5 (10.6)*	9 (7.7)*	-	-
Misthos et al. (17)	7/57	25/70	7/57	23/70	1/57	3/70	7 (1.7)	15.5 (4)	0/57	0/70
Maskell et al. (8)	64/206	60/221	32/206	32/221	32/206	30/221	13*	12*	14/208	6/222
Rahman et al. (24)	-	-	3/48	8/51	4/48	2/50	16.5 (22.8)	24.8 (56.1)	0/52	1/55
Thommi et al. (25)	3/35	29/32	3/35	29/32	0/35	0/32		_	2/35	2/32


Intrapleural fibrinolytic therapy **decreased the OR for surgical intervention** [OR = 0.24; 95% confidence interval (CI): 0.10–0.60] and **the length of hospital stay** (weighted mean difference=-6.47; 95% CI: -8.87, -4.08)

OUTCOMES - REQUIREMENT FOR SURGERY

Subgroup analyses indicated that urokinase had marked positive effects on reducing surgical intervention (OR = 0.33; 95% CI: 0.14–0.78), but neither streptokinase nor alteplase did

OUTCOMES - MORTALITY

Intrapleural fibrinolysis was associated with a non-significant reduction in mortality rate (OR = 1.16; 95% CI: 0.71–1.89)

ADVERSE EFFECTS – No significant increase

DORNASE ALFA (PULMOZYME)

- Recombinant human deoxyribonuclease I (rhDNase) an enzyme which selectively cleaves DNA
- The protein is produced by genetically engineered Chinese Hamster Ovary (CHO) cells containing DNA encoding for the native human protein, deoxyribonuclease I (DNase)
- Extremely safe and effective when it is administered by nebulisation in the treatment of cystic fibrosis – FDA Approved
- Its role in pleural effusion is under evaluation

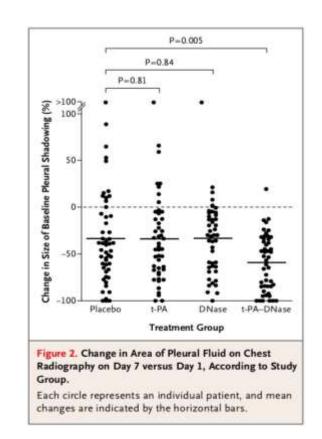
MIST 2 TRIAL

210 patients with empyema/complicated parapheumonic effusion were randomised to any of the following:

- 1. Double placebo
- 2. Intrapleural tissue plasminogen activator (t-PA) and DNase
- 3. t-PA and placebo
- 4. DNase and placebo

MIST 2 TRIAL

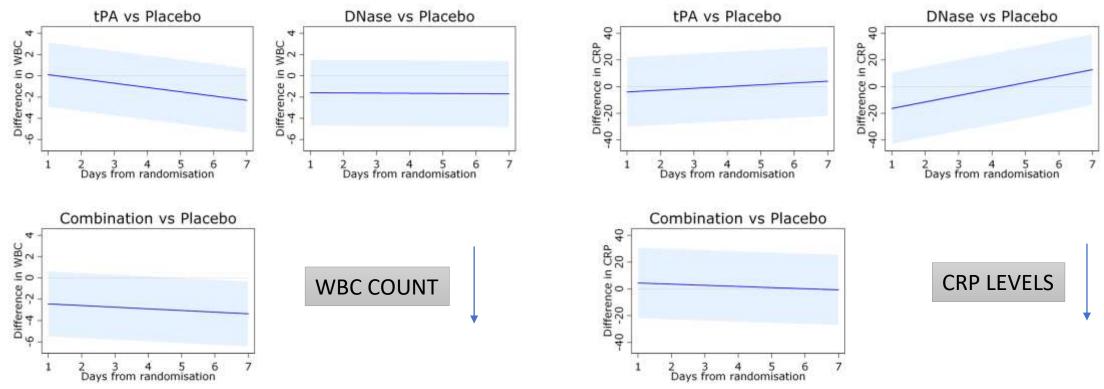
Dosing and schedule:


- tPA (Actilyse, Boehringer Ingelheim) 10 mg
- DNase (Pulmozyme, Roche) 5 mg
- The test drugs were given twice daily along with 30ml Normal saline and sterile water for 3 days
- tPA administrated first and 2 hours later Dnase administrated
- Tube clamped for 1 hour post administration

MIST 2 TRIAL – STUDY POPULATION

Characteristic	t-PA (N = 52)	DNase (N=51)	t-PA-DNase (N = 52)	Placebo (N = 55)
Age — yr	60±17	57±18	60±19	58±19
Male sex — no. (%)	39 (75)	42 (82)	31 (60)	39 (71)
Percent of hemithorax occupied with pleural fluid	39.8±22.6	41.9±22.9	44.2±24.9	36.3±23.3
Duration of symptoms before randomization — days	i .			
Median	14	14	13	13
Interquartile range	7–30	7–30	7–22	7–21
Small-bore tube, <15 French — no. (%)†	41 (80)	44 (88)	48 (94)	49 (91)
Community-acquired infection — no. (%)	44 (85)	44 (86)	45 (87)	49 (89)
Radiographic evidence of loculation — no. (%)‡	49 (94)	47 (92)	49 (94)	47 (85)
Purulent pleural fluid — no. (%)	24 (46)	25 (49)	27 (52)	26 (47)
Positive Gram's stain or culture of pleural fluid — no. (%)	5 (10)	5 (10)	4 (8)	7 (13)
Pleural-fluid pH				
Median	6.9	7.0	6.9	6.9
Interquartile range	6.8-7.1	6.8-7.1	6.8-7.1	6.8–7.1
Lactate dehydrogenase in pleural fluid — IU/liter				
Median	2935	3077	3418	3337
Interquartile range	871-9908	365-7903	1321-7328	1034-8943

MIST -2 TRIAL OUTCOMES


Outcome	t-PA	DNase	t-PA-DNase	Placebo
Change from baseline in hemithorax area occupied by effusion (primary outcome) — %	-17.2±24.3	-14.7±16.3	-29.5±23.3	-17.2±19.6
Percent difference vs. placebo (95% CI)	2.0 (-4.6 to 8.6)	4.5 (-1.5 to 10.5)	-7.9 (-13.4 to -2.4)	NA
P value	0.55	0.14	0.005	NA
Surgical referral — no. referred/total no. (%)	3/48 (6)	18/46 (39)	2/48 (4)	8/51 (16)
Odds ratio vs. placebo (95% CI)	0.29 (0.07 to 1.25)	3.56 (1.30 to 9.75)	0.17 (0.03 to 0.87)	NA
P value	0.10	0.01	0.03	NA
Hospital stay — no. of days	16.5±22.8	28.2±61.4	11.8±9.4	24.8±56.1
Percent difference vs. placebo (95% CI)	-8.6 (-40.8 to 3.3)	3.6 (-19.0 to 30.8)	-14.8 (-53.7 to -4.6)	NA
P value	0.21	0.73	<0.001	NA

SUBGROUP ANALYSES: purulent versus non purulent pleural fluid, use of large-bore versus small-bore chest tube, and radiographic evidence of loculation versus no evidence of loculation.

MIST-2 TRIAL OUTCOMES

- Mortality benefit Not seen both at 3 months and at 12 months
- Inflammatory markers

MIST -2 TRIAL — ADVERSE EVENTS

- Intrapleural haemorrhage 2 cases (tPA + Dnase)
- Hemoptysis 1 case (tPA + Dnase)
- P value 0.22

MIST-2 TRIAL

Conflicting result with MIST 1 trial:

Use of a different fibrinolytic agent (i.e., t-PA rather than streptokinase) and the additional cleavage of uncoiled DNA by DNase may have allowed fibrinolytic treatment to work

DNase alone:

- Ineffective in improving pleural drainage and was associated with an increase in surgical referrals by a factor of 3
- Hypothesis: Systemic absorption of bacterial or inflammatory components after DNase-mediated biofilm disruption in a pleural space with ineffective drainage due to undisrupted fibrinous septations

COST — IS IT AFFORDABLE ??

Dnase (Pulmozyme)- 1 ampoule (2.5mg/2.5 ml)- 48.10 dollars 14000 rupees/day tPA (Actilyse)- 1 ampoule (20mg) 19800 rupees/day

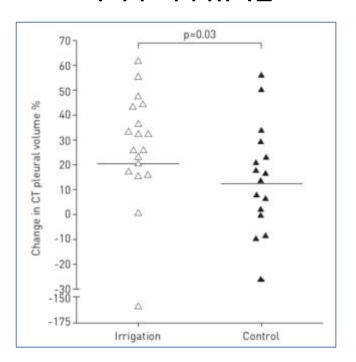
Total – 1,01,400 rupees for total 3 days course

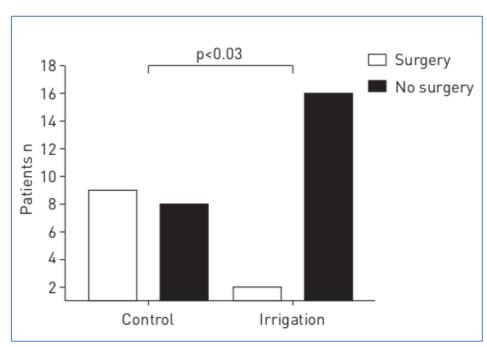
tPA + DNase - OPTIMUM SCHEDULE?

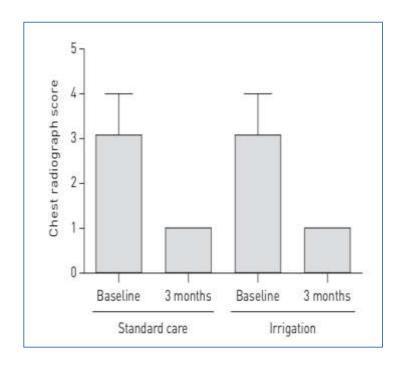
STUDY	SUBJEC TS	DOSE (tPA + Dnase)	Mean time before administration	Administra tion	Clamping time	ICTD Manipulatio ns/day	Total Doses	Efficacy	Bleeding
MIST 2 ¹	52	10mg BD/5mg BD (6 doses)	Immediate post ICTD	Sequential (2 hours)	1 hour	4	6	96%	5.7%
Piccolo et al ²	107	Same (upto 6 doses)	> 24 hours (Rescue therapy)	Sequential (1 hour)	1 hour	4	6	92.3%	1.8%
Majid A et al ³	73	Same (upto 6 doses)	Less than 24 hours (71.2%)	Concurrent	2 hours	2	2 (Median)	90.4%	5.4%
Popowic z et al (ADAPT 1) ⁴	61	5mg BD+5mgBD (6 doses) 11.5% needed dose escalation	> 24 hours (Rescue therapy)	Sequential (1 hour)	1 hour	6	6	89% without dose escalation	4.9%
Hugh Ip et al ADAPT 2 ⁵	21	2.5mg BD + 5mg BD (6 doses)	NA	NA	NA	NA	90% needed 3 doses or less	71% without dose escalation	0%

DNase ALONE – CAN IT BE TRIED?

 MIST-2 trial has reported lack of improvement with DNase if used alone and infact it increased the need for surgery

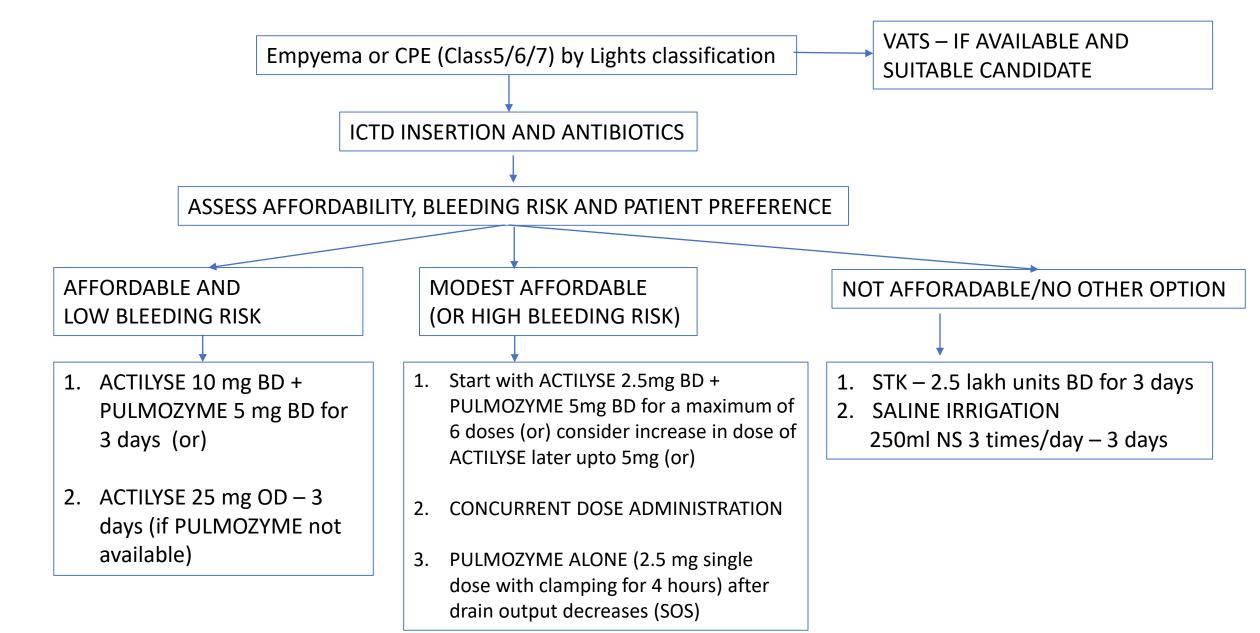

STUDY	SUBJECTS	NUMBER	DOSE USED	INTERVENTION (POST ICTD)	NEGATIVE SUCTION	CLAMPING	OUTCOM E
Retrospecti ve ¹	Empyema	10	2.5 mg Once (SOS)	After drain output decreases (4 th day or 6 th day – in this study)	APPLIED	4 hours	50% success
MIST 2 (RCT)	CPE/Empye ma	51	5 mg BD	Immediate	NOT APPLIED	1 hour	No benefit


DOES SALINE IRRIGATION HELP?- PIT TRIAL


- 30 patients with pleural infection
- ICTD placed and CT scan done 12 hours later
- Those with residual effusion were randomized to saline irrigation vs saline flush
- Study group:
 - 250 ml 0.9% saline infused using gravity over 1 hour and allowed to drain freely
 - Repeated 3 times/ day for 3 days
- Control group:
 - 30 ml 0.9% saline flushed 3 times/day for 3 days
- Both groups- Negative suction -20cmH2O applied

PIT TRIAL

SHORT TERM RESULTS-HOSPITAL DURATION



Comment: 3 months radiological resolution, lung function tests and mortality similar between the groups

PROTOCOL TO FOLLOW?

PROTOCOL TO FOLLOW?

- Eligible:
 - 1. Gross pus (or) Gram stain (or) culture positive (or) pH<7.2
 - 2. Patients fit for thoracic surgery but transfer delayed, and interim measures needed
 - 3. Patients not fit for thoracic surgery and medical management agreed
- Ineligible:
 - 1. Previous treatment with intrapleural fibrinolytic agents, dornase, or both for empyema
 - 2. Coincidental stroke
 - 3. Major haemorrhage or major trauma
 - 4. Major surgery in the preceding 5 days
 - 5. Previous pneumonectomy on the infected side
 - 6. Pregnancy or lactation

HOW TO ADMINISTER?

- 1. Reconstitute Alteplase 20mg vial with 20mL water for injection
- 2. This can be retained for 24 hours at 2-8 degree celsius and can be used for 2 doses
- 3. For a single dose, 10mg should be withdrawn and further diluted with 30mL sodium chloride 0.9%
- 4. Instill diluted alteplase first into the chest drain, clamp the drain for 1 hour and then unclamp and allow drainage for 1 hour
- 5. After 1 hour drainage repeat with dornase alfa (2x2.5mg ampoules diluted with 30mL water for injection) and clamp for 1 hour
- 6. Repeat upto 6 doses, 12 hours apart

TAKE HOME MESSAGE

- Talc is still the most efficacious pleurodesis agent
- However severe adverse effects prompt using alternate pleurodesis agents
- Povidone iodine and Doxycycline appear to be promising alternatives
- Povidone iodine appears the agent of choice in view of relatively less side effects
- Newer agents are under evaluation
- Fibrinolytics are to be used in empyema only when VATS not applicable
- Streptokinase to be used only if no other option
- tPA along with DNase appear promising agents but without any mortality benefit

THANK YOU