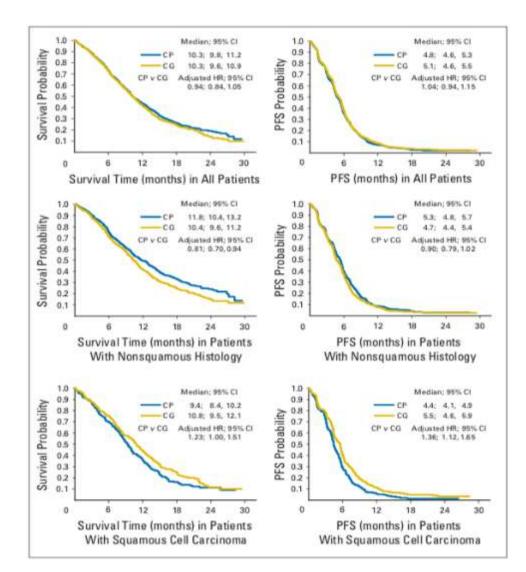
MOLECULAR TESTING IN LUNG CANCER-BASICS AND COMPARISONS OF METHODS USED AND GUIDELINES

NITHIYANANDAN RAVI 18/01/19

TOPICS TO BE DISCUSSED

- 1. Why and how to differentiate Squamous vs Adeno NSCLC ?
- 2. Target genetic alterations in NSCLC
- 3. Molecular testing methods
- 4. Need for Molecular testing –approved and non approved drugs
- 5. Samples to be tested
- 6. Most common genetic alterations and their testing methods
- 7. Role of liquid biopsy in lung cancer
- 8. Guidelines on molecular testing in lung cancer
- 9. Take home message



Therapeutics and diagnostics meaningfully combined to achieve personalised pharmacotherapy

NSCLC vs SCLC

- Molecular research advances have heralded major breakthroughs in the management of lung cancer, particularly for the more common (~80%) non-small cell lung cancer (NSCLC)
- Treatment for small cell lung cancer remains chemotherapy-based even now

NSCLC - WHY SQUAMOUS VS NON SQUAMOUS IMPORTANT?

- Noninferiority, phase III, randomized study
- Stage IIIB or IV NSCLC
- N= 1725, ECOG 0-1
- Cisplatin 75 mg/m2 on day 1 + gemcitabine 1,250 mg/m2 on days 1 and 8 (n = 863) VS Cisplatin 75 mg/m2 + pemetrexed 500 mg/m2 on day 1 (n = 862) every 3 weeks (Total 6 cycles)

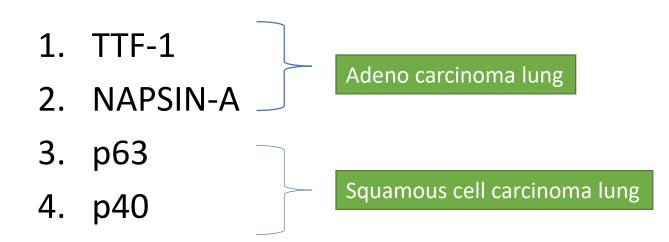
	Cisplatin/ Pemetrexed (n = 839)		Cisplatin/ Gemcitabine (n = 830)			
Toxicity	No. of Patients	%	No. of Patients	%	P	
Hematologic			_			
Neutropenia	127	15.1	222	26.7	<.001	
Anemia, hemoglobin	47	5.6	82	9.9	.001	
Thrombocytopenia, platelets	34	4.1	105	12.7	< .001	
Leukopenia	40	4.8	63	7.6	.019	
Nonhematologic						
Febrile neutropenia	11	1.3	31	3.7	.002	
Alopecia, any grade	100	11.9	178	21.4	< .001	
Nausea	60	7.2	32	3.9	.004	
Vomiting	51	6.1	51	6.1	1.000	
Dehydration, any grade	30	3.6	17	2.0	.075	
Fatigue	56	6.7	41	4.9	.143	

Scagliotti et al. J Clin Oncol.2008 Jul 20;26(21):3543-51

HOW TO DIFFERENTIATE SQUAMOUS VS OTHER NSCLC?

Biopsy or cytology specimen intended for initial diagnosis

- Make an accurate diagnosis using the 2015 WHO classification
- Preserve the tissue for molecular studies, especially if the patient has advanced-stage disease
- "NSCC-NOS" should be reserved only for cases in which immunohistochemical testing is uninformative or ambiguous


NSCLC CLASSIFICATION

- Adenocarcinoma AIS vs MIA vs Invasive adeno carcinoma
 - AIS lepidic growth, <u><</u>3 cm
 - MIA- lepidic growth, < 3 cm and < 5 mm invasion
 - Invasive Adenocarcinoma acinar, papillary, micropapillary, lepidic, or solid growth, > 5 mm invasion
- Squamous cell carcinoma keratinization and/or intercellular bridges and express IHC for squamous differentiation
- Adenosquamous carcinoma (resection specimen preferred) Each type constituting atleast 10 % of the tumour
- Large cell carcinoma Undifferentiated NSCC, the diagnosis requires a thoroughly sampled resected tumor and cannot be made on non- resection or cytology specimens
- Sarcomatoid carcinoma-
 - Pleomorphic carcinoma contains at least 10% spindle and/or giant cells
 - Carcinosarcoma- NSCC + sarcoma elements
 - Pulmonary blastoma fetal adenocarcinoma + primitive mesenchymal stroma

ROLE OF IHC IN INITIAL DIAGNOSIS

When adenocarcinoma or squamous cell carcinomas are poorly differentiated, and the defining morphologic criteria that would allow for specific diagnosis are inconspicuous or absent

IHC MARKERS FOR NSCLC

WHAT IS TTF-1?

• TTF -1

- Nuclear transcription protein that is expressed in epithelial cells of the embryonal and mature lung and thyroid
- Seen in 70-90 % primary lung adenocarcinoma cases
- Metastatic adenocarcinoma to the lung negative for TTF1
- Thyroid metastases positive for PAX 8 and thyroglobulin in addition to TTF-1
- Rare cases of TTF-1 positivity from gynaecologic tract and pancreatobiliary system also possible (Radiology and clinical scenario important in these circumstances)

WHAT IS NAPSIN A?

- Napsin A
 - An aspartic proteinase expressed in normal type II pneumocytes and in proximal and distal renal tubules
 - Appears to be expressed in >80% of lung adenocarcinomas

TTF-1 VS NAPSIN A

Neither TTF-1 nor Napsin A is specific for lung primary adenocarcinoma

9	TTF-1 (+)	TTF-1 (–)	Surgical archives of University of Rochester Medical Center, Rochester, NY,
N = 120			From 2004 to 2009
Lung primary adenocarcin	noma		
Napsin A $(+)$	95 (79.2%)	10 (8.3%)	
Napsin A $(-)$	4 (3.3%)	11 (9.2%)	
N = 37			
Metastatic carcinomas			TTF -1 + Napsin A better than either alone
Napsin A $(+)$	0	0	
Napsin A (-)	8 (21.6%)	29 (78.4%)	

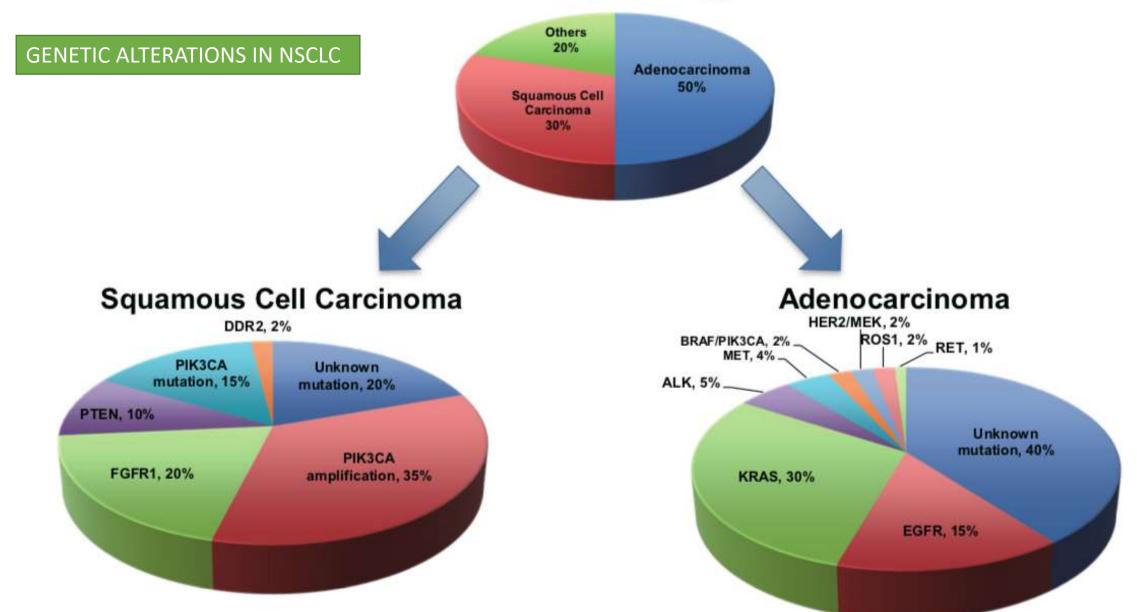
Ye et al. App Immunohistochem Mol Morphol. 2011 Jul;19(4):313-7

p63 AND p40

- p53 tumour suppressor gene 2 isoforms producing p63 and p40
- p63 is responsible for proliferation and differentiation of epithelial progenitor cells
- Focal or weak p63 expression has been seen in upto 30 % adenocarcinoma cases
- p63 is more expressed in differentiated cells while p40 is seen in the stem-like cell populations

p40 VS p63 - WHICH IS BETTER ?

N= 70, Retrospective study Previously diagnosed as primary lung squamous cell carcinoma (n=35) and lung adenocarcinoma (n=35) January 2008 to December 2016


	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	p-value
p40	77.1	100	100	81.4	<.001
p63	85.7	62.9	69.8	81.5	<.001

Affandi KA, et al. Journal of Pathology and Translational Medicine 2018; 52: 283-289

NCCN 2019 GUIDELINES

- A limited number of immunostains with one lung adenocarcinoma marker (TTF1, napsin A) and one squamous carcinoma marker (p40, p63) should suffice for most diagnostic problems
- Tumors that lack squamous cell morphology and show co-expression of p63 and TTF1 are preferably classified as adenocarcinoma
- A simple panel of TTF1 and p40 may be sufficient to classify most NSCC-NOS cases
- IHC should be used to differentiate primary lung adenocarcinoma from squamous cell carcinoma, large cell carcinoma, metastatic carcinoma, and primary pleural mesothelioma (particularly for pleural specimens)

NSCLC by histology

Chan et al. Transl Lung Cancer Res 2015;4(1):36-

TARGETABLE GENETIC ALTERATIONS IN MOLECULAR TESTING (1) Mutations EGFR KRAS BRAF HER2 MET ALK ROS1 FGFR1 METEGFR RET NTRK1 FGFR1/3 HER2 NRG1 (2) Gene rearrangements (3) Amplifications

Shim et al. J Pathol Transl Med. 2017 May; 51(3): 242–254.

MOLECULAR TESTING METHODS

Category	Mutation	Gene rearrangement	Amplification
DNA	Direct sequencing	FISH	FISH
	PCR-based methods	NGS	qPCR
	NGS		NGS
RNA		RT-PCR (fusion transcript)	Real-time PCR (mRNA overexpression)
		NGS	
Protein	IHC (mutation-specific antibody)	IHC (protein expression)	IHC (protein overexpression)

Shim et al. J Pathol Transl Med. 2017 May; 51(3): 242–254.

NEED FOR MOLECULAR TESTING

GENER ATION	ТКІ	SELECTIVITY	REV/IRREVER	APPROVAL STATUS	FDA APPROVED DOSE/day	APPROVAL TIME
1 st	Geftinib	WT EGFR	Reversible	FDA, EMA	250 mg OD	As 1 st line July 2015
	Erlotinib	WT EGFR	Reversible	FDA, EMA	150 mgOD	As 1 st line May 2013
	Icotinib	WT EGFR	Reversible	CFDA	125 mg TDS	June 2011
2 ND	Afatinib	WT EGFR + other HER	Irreversible	FDA, EMA, CFDA	40 mg OD	As 1 st line July 2013
	Dacomitinib	WT EGFR + other HER	Irreversible	NO (awaiting)	-	-
3 RD	Osimertinib	MUTANT EGFR	Irreversible	FDA, EMA	80 mg OD	As 2 nd or 3 rd line Nov 2015 AS 1 ST LINE APRIL 2018
	Olmutinib	MUTANT EGFR	Irreversible	KFDA	800mg/day	May 2016

TARGETED THERAPIES APPROVED

ALK

1st Line therapy Alectinib Brigatinib Ceritinib Crizotinib

Subsequent therapy Alectinib Brigatinib Ceritinib Lorlatinib

ROS 1

Crizotinib Ceritinib

BRAF V600E

1st line therapy Dabrafenib/trametinib

Subsequent therapy Dabrafenib/trametinib

PDL1

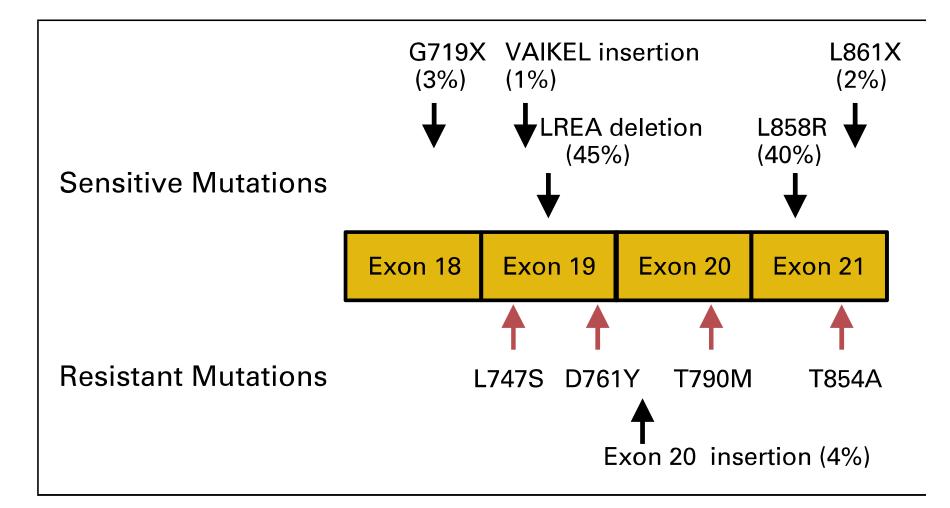
First-line therapy

- Pembrolizumab (PDL 1 ≥ 50 %) NON SQUAMOUS
- (Carboplatin or cisplatin)/ pemetrexed/pembrolizumab
- Carboplatin/paclitaxel/bevacizumab/ atezolizumab
 SQUAMOUS
- (Carboplatin or cisplatin)/(paclitaxel or albumin-bound paclitaxel)/ pembrolizumab (squamous)

Gene	Frequency	Frequency
MUTATIONS		
KRAS	5%–10% in ADCs	MEK inhibitors
HER2	1%–2% in ADCs	Trastuzumab, afatinib
MET	3%–4% in ADCs	Crizotinib, cabozantinib
GENE FUSIONS		
RET	1% in ADCs	Cabozantinib, vandetanib, alectinib
NTRK1	< 1% in ADCs	Entrectinib
FGFR1/3	1% in NSCLCs	FGFR inhibitor
AMPLIFICATIONS		
FGFR1	13%–22% in SQCs	FGFR inhibitor
EGFR	8%–9% in SQCs,	EGFR inhibitor
MET	2%–4% in ADCs	Crizotinib
HER2	1%–2% in ADCs	Trastuzumab, afatinib

NON FDA APROVED TARGETED AGENTS

Shim et al. J Pathol Transl Med. 2017 May; 51(3): 242–254


SAMPLES TO TESTED

- Bronchial brushings
- Bronchial washings
- Sputum
- FNA biopsy
- Core needle biopsy
- Endobronchial biopsy and
- Transbronchial biopsy

EGFR MUTATION

- EGFR gene is located on the short arm of chromosome 7 (7p)
- Transmembrane tyrosine kinase receptor
- 1. Extracellular, ligand-binding domain
- 2. Transmembrane domain
- 3. Cytoplasmic TK domain

EGFR MUTATIONS

Ohashi et al. Journal of Clinical Oncology. 2013;31(8):1070-1080

EGFR TESTING METHODOLOGIES

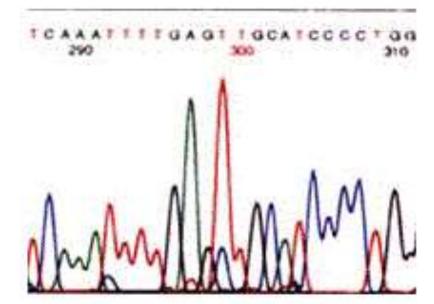
SCREENING METHODS

- 1. Sanger sequencing,
- 2. Next Generation Sequencing (NGS),
- 3. High Resolution Melt Analysis (HRMA) and
- 4. Pyrosequencing

TARGETED METHODS

- 1. ddPCR
- 2. Real-time polymerase chain reaction (PCR)
- 3. Next-generation sequencing (NGS)

SANGERS SEQUENCING TECHNIQUE


- Also known as Dideoxy sequencing or chain termination
- Uses 2 nucleotides
- Dideoxynucleotides (ddNTP's) contain a hydrogen group on the 3' carbon instead of a hydroxyl group (OH)
- 2. Normal nucleotides (NTP's)
- Principle

ddNTP's, when integrated into a sequence, prevent the addition of further nucleotides

SANGERS SEQUENCING TECHNIQUE

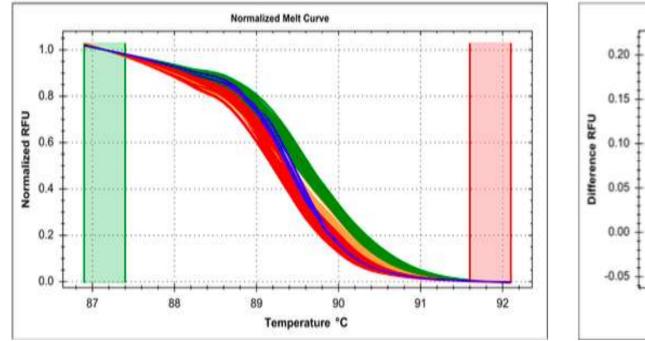
Method

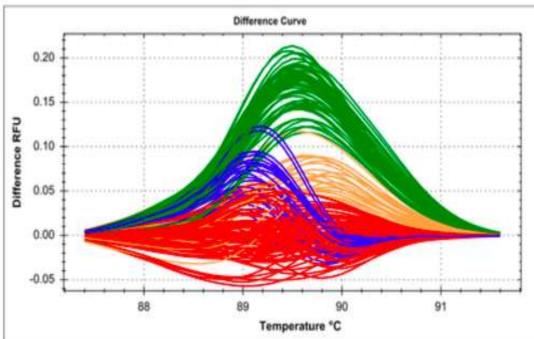
- 1. DNA heat denaturation
- 2. Fluorescent labelled primer addition to template strand
- 3. Addition of ddNTPs to the primer
- 4. Polyacrylmide gel electrophoresis
- 5. Laser reading of the bands
- 6. Results displayed as a chromatogram

Khoo et al. Transl Lung Cancer Res 2015;4(2):126-141

SANGERS SEQUENCING TECHNIQUE

- Advantages:
- 1. Considered the gold standard for characterizing all mutations
- 2. Wide variety of mutations can be detected (SNVs, small insertions/duplications/deletions)
- Disadvantages:
- 1. Limited in detecting gene copy number changes
- 2. Low sensitivity (mutant DNA should be present in atleast 20% of the total DNA)


HIGH RESOLUTION MELT ANALYSIS (HRMA)


- Cheap, rapid and sensitive mutation screening (or scanning) method
- Principle:

The DNA containing the mutation will "melt" at a different temperature compared to the wild type DNA

- Method:
- 1. DNA is amplified using RT-PCR with fluorescent dyes
- Increments in temperature to a point where the double stranded DNA (with high fluorescence) will "melt apart" to become single stranded DNA fragments (low fluorescence)
- 3. This difference in melt curve signature is used to detect the presence or absence of a mutation

RFU- RELATIVE FLUORESCENCE UNITS

Slomka et al. Int. J. Mol. Sci. 2017, 18, 231

PYROSEQUENCING

- Sequencing by synthesis
- Principle:

Chemiluminescent detection of inorganic pyrophosphate to detect specific base additions

- Method:
 - Utilises the template containing the region of interest, primers, DNA polymerase and a set of enzymes/substrates
 - Pyrophosphate is released each time a nucleotide is sequentially incorporated onto the 3'end of a DNA which through an enzymatic reaction results in light emission.

PYROSEQUENCING

Advantage:

Allows detection of mutations in tumor samples as low as 5%

Best used to detect SNVs

Diasadvantage:

Limited in its ability to detect gene copy number changes

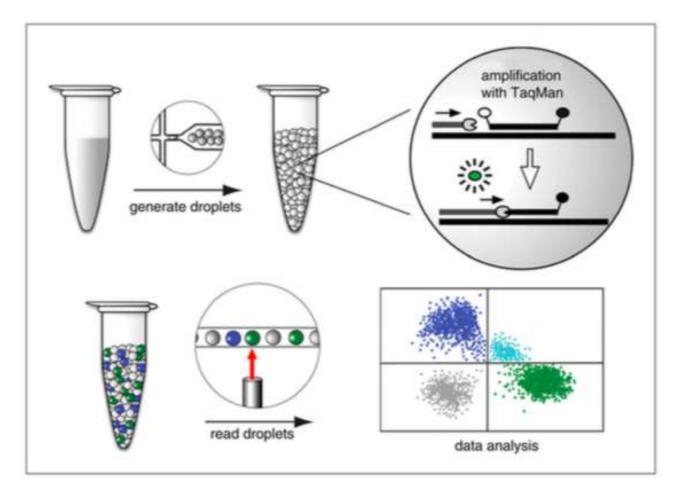
Slomka et al. Int. J. Mol. Sci. 2017, 18, 237

REAL TIME PCR FOR EGFR DETECTION

1. The **cobas** EGFR Mutation Test v2 (**cobas** EGFR test) is a real-time PCR test

- 2. Qualitative detection of 42 mutations in exons 18, 19, 20, and 21 of the (EGFR) gene
- 3. Tumor tissue and human plasma from non-small cell lung cancer (NSCLC) patients

n = 118 tissue samplesn = 74 plasma samplesRT PCR vs Next Generation Sequencing (NGS)


RESULTS

TISSUE

Limit of detection for detecting EGFR mutations of FFPET samples is ≤ 5% mutation level Compared to NGS, had PPA of 87%, NPA of 100%, and OPA of 93% PLASMA

LoD for detecting EGFR mutations in plasma samples is \leq 100 cp/mL compared to NGS had PPA of 80.0%, NPA of 94.9%, and OPA of 87.8%

DIGITAL DROPLET PCR

- PCR mix is partitioned into thousands of nanolitersized droplets using specialized oil and microfluidics technology
- subjected to thermal cycling
- A PCR reaction only occurs in those droplets carrying the target DNA
- TaqMan probe hybridizes to an internal site of the PCR product
- The probe has a 5' fluorophore whose fluorescence is quenched by a 3' quencher
- Once the DNA polymerase reaches the probe during the extension step, the probe is cleaved by the polymerase's 5' to 3' exonuclease activity
- This action liberates the fluorophore from the quencher so that the fluorescence can be detected when excited by the appropriate wavelength of light

The counts of positive and negative droplets for each target are related to the target's concentration in the sample by the Poisson function

Mazaika and Homsy et al. Curr Protoc Hum Genet. ; 82: 7.24.1-7.24.13

DIGITAL DROPLET PCR

- Advantages:
- 1. Simpler, faster, and less error prone than real-time qPCR
- 2. CNV analysis, rare variant detection, SNP genotyping, and transcript quantification
- 3. Quantify nucleic acid concentration without the need for standard samples

ddPCR vs RT PCR for EGFR MUTATION DETECTION

 $iQC index = \frac{iQC \ copies}{Input \ DNA \ copies}$

Retrospective comparative clinical study n=228 ddEGFR and cobas EGFR (RT - PCR)tests for the detection of *EGFR* mutations in NSCLC

		cobas EGFR Test			
Retrospective comparison study, Applied iQC index $(n = 171)$		MD	MND	Total	
ddEGFR Test	MD	111	10*	121	
	MND	2	48	50	
	Total	113	58	171	
PPA (95% C.I.)	98.23% (93.75-99.78%)				
NPA (95% C.I.)	82.76% (70.57-91.41%)				
OPA (95% C.I.)	92.98% (88.06-96.32%)				
PPV (95% C.I.)	91.74% (85.33-95.97%)				
NPV (95% C.I.)	96.00% (86.29-99.51%)				

FFPE samples with iQC index \geq 0.5 are preferred

Kim SS et al. Sci Rep. 2018 Jan 11;8(1):543

ddPCR vs RT PCR FOR EGFR MUTATION DETECTION

FFPE tumor samples obtained from patients between 2013 and 2014

Sample name	Gender	Age, years	NSCLC histology subtype	Stage	ARMS- qPCR	ddPCR (copy numbers)	Consistenc
N001	F	58	Adenocarcinoma	IIB	WT	WT	Yes
N002	М	47	Adenocarcinoma	IIIA	L858R	L858R (164)	Yes
N003	F	57	Squamous cell	IIA	WT	WT	Yes
N004	М	68	Adenocarcinoma	IIA	Del	Del (84)	Yes
N005	М	72	Adenocarcinoma	IIB	WT	WT	Yes
N006	F	75	Adenocarcinoma	IIIB	WT	T790M (7)	No
N007	F	58	Adenocarcinoma	IIB	Del	Del (153)	Yes
N008	М	73	Adenocarcinoma	ПВ	WT	WT	Yes
N009	М	62	Squamous cell	IIIA	WT	WT	Yes
N010	F	54	Squamous cell	IA	WT	WT	Yes

Mutation rates as low as 1% were stably detected by ARMSqPCR, While plasmid samples with mutation rates from 5 to 0.1% were reliably detected by ddPCR

Zhang *et al*. Exp Ther Med. 2015 Apr;9(4):1383-1388

RT PCR VS IHC VS DIRECT SEQUENCING

% mutant DNA relative to wild-type DNA	Therascreen EGFR Mutation Test kit (n = 18) ^{\$} , *	% mutant DNA relative to wild-type DNA	Direct sequencing (n=19) [§] , *		Direct sequencing	9				
10%	9/18 (50%)	10%	1/19 (5%)	EGFR mutations	Sensitivity (%)	95% CI	Specificity (%)	PPV (%)	NPV (%)	Accuracy (%)
170	0 10 (0 /0)	20%	6/19 (31%)	Exon 19 deletions	100	100-100	100	100	100	100
3%	15/18 (83%)	25%	6/19 (31%)	L858R	100	100-100	100	100	100	100
	\frown	30%	12/19 (63%)	Exon 20 insertions	67.7	58.5-74.9	100	100	99.2	99.2
5%	18/18 (100%)	N.D.	7/19 (37%)	All mutations	94.7	90.9-98.6	100	100	99.1	99.2

DIRECT SEQUENCING VS RT PCR

Angulo et al. .PLoS One. 2012;7(8

RT PCR VS IHC VS DIRECT SEQUENCING

		Direct sequenc	ing				
ІНС	EGFR mutations	Sensitivity (%)	95% CI	Specificity (%)	PPV (%)	NPV (%)	Accuracy (%)
E746-A750	E746-A750 deletion	 88.9	82.3–95.4	100	100	98.8	98.9
E746-A750	All exon 19 deletion	72.7	63.5-82	100	100	96.3	96.6
L858R	L858R	40	29.5–50.5	100	100	96.3	96.4
E746-A750 + L858R	E746-A750 deletion + L858R	71.4	61.6-81.2	100	100	94.4	95.1
E746-A750 + L858R	All mutations	46.7	35.9–57.5	100	100	89.3	90.2
		Threrascreen E	GFR Mutation	Test kit			
ІНС	EGFR mutations	Sensitivity (%)	95% Cl	Specificity (%)	PPV (%)	NPV (%)	Accuracy (%)
E746-A750	All exon 19 deletion	66.7	56.6-76.7	100	100	96.2	96.4
E746-A750 L858R	All exon 19 deletion L858R	66.7 40	56.6–76.7 29.3–50.7	100 100	100 100	96.2 96.2	96.4 96.2
E746-A750 L858R E746-A750 + L858R							

IHC – NOT GOOD METHOD TO SCREEN FOR EGFR MUTATIONS DUE TO LOW SENSITIVITY

Angulo et al. .PLoS One. 2012;7(8

NEXT GENERATION SEQUENCING

NEED:

- Previously discussed methods of sequencing allow for a few genes per run, resulting in a time consuming and expensive diagnostic
- Consider intratumor heterogeneity
- Higher sensitivity of NGS to detect low frequency mutations

NEXT GENERATION SEQUENCING

- Also known as Massively parallel sequencing
- Simultaneous read of DNA sequences in a parallel way and is characterized by a high speed and relatively low cost
- Several NGS platforms

NGS - STEPS

- 1. Sample preparation -DNA isolation, fragmentation/target region capture, and library construction
- 2. Sequencing each fragment of the library is read multiple times
- 3. Analysis of bioinformatic data
 - 1. Alignment of sequencing reads to a reference genome using specific algorithms
 - 2. Filtering phase that removes all off-target reads and low quality data
 - Coverage (read depth) that reports the number of reads for each region that has been sequenced and the value ranges from approximately 30X to 500X depending on NGS analysis
 - 4. Variant calling that reports all genetic variants (single nucleotide variation, insertion/deletion (indel), and copy number variations) using specific software
 - 5. Annotation step that defines all relevant variants linked to the pathogenesis

Coco et al. Current Drug Targets, 2015, 16, 47-59

NGS APPROACHES

- DISCOVERY NGS investigate the whole mutational spectra of type/subtypes of cancer to discover any recurrent somatic mutations in a specific tumor
 - WGS Whole genome sequencing
 - WES Whole Exome sequencing
 - WTS Whole Transcriptome sequencing
- TARGET NGS cancer panels focus on a small number of genes frequently mutated in a specific cancer type or disease

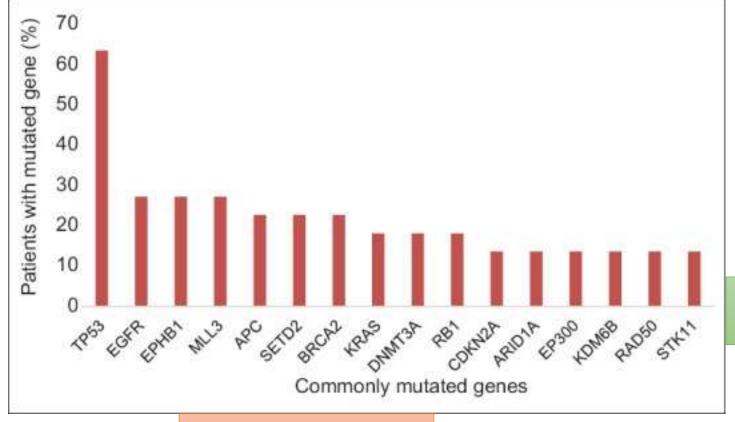
NGS APPROACHES

- Whole genome sequencing- Passenger mutations also identified (? Significance)
- Whole exome sequencing and Whole transcriptome sequencing-
- 1. Faster
- 2. Passenger mutations avoided

TARGETED NGS IN LUNG CANCER

Variable	Total (%)
Tumors tested	22
Age, year (range)	64 (32-84)
Sex: Male	16 (72.7)
Lung adenocarcinoma	18 (81.8)
ROSE	12 (54.5)
Confirmed smokers	17 (77.3)
Stage IV	20 (91)

N=22 NSCLC RETROSPECTIVE STUDY January 2014 to July 2015 NGS Panel target- 467 cancer-associated genes

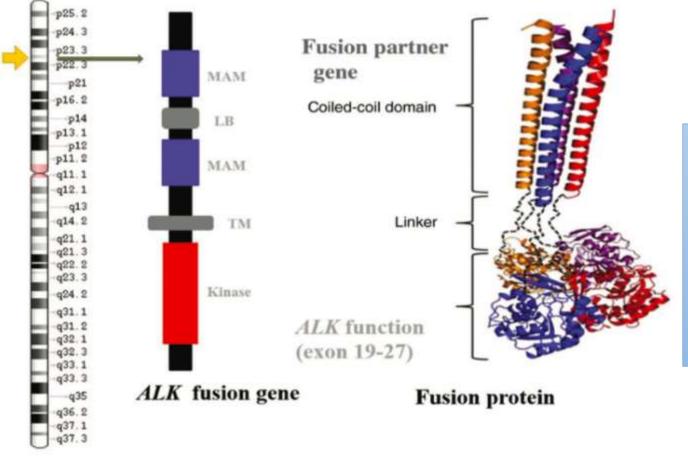

ROSE: Rapid on-site evaluation from pathology at the time of biopsy

Biopsy Type	Full analysis	Tissue insufficient for analysis	Testing failure	Total
Surgical biopsy	5	0	0	5
Trans-thoracic CT-guided CNB	7	0	0	7
CNB-other	2	0	0	2
EBUS FNA	4	1	0	5
Endoscopic forceps biopsy	2	0	0	2
Effusion	I	0	0	Ĩ
Total				22

CT: Computed tomography, EBUS: Endobronchial ultrasound, FNA: Fine-needle aspiration, CNB: Core needle biopsy

DiBardino et al. Cytojournal. 2017; 14: 7

FINAL VERDICT ON EGFR TESTING


NGS RESULTS ON NSCLC

NGS using a large targeted gene panel was performed successfully in 94% of small biopsy and cytology samples compared to 100% of resections

VERDICT on EGFR TESTING– NGS > ddPCR> RT PCR > direct sequencing

DiBardino et al. Cytojournal. 2017; 14: 7

ALK REARRANGEMENT 5' end from EML4 gene replaces native ALK 5' end

MAM, TM, transmenbrane; LB, ligand-binding

3' end from native ALK gene

Located on the short arm of chromosome 2

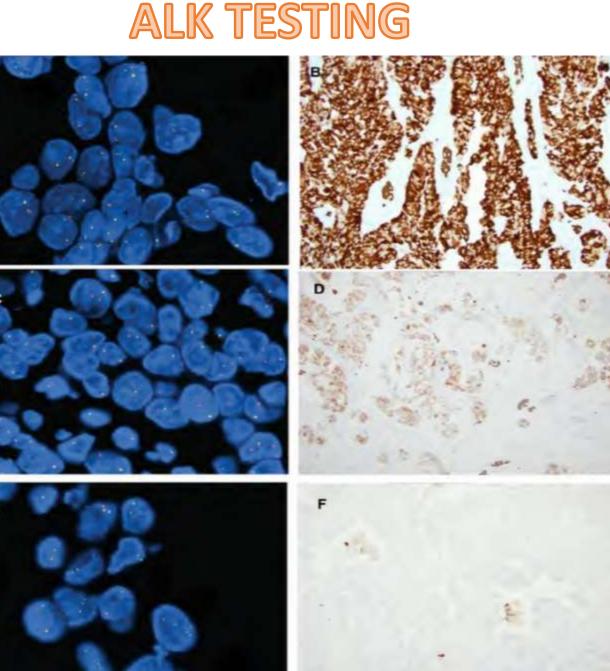
- Most mutations of the ALK gene are translocations
- Most common ALK-EML4 fusion -inversion rearrangement at p21-p23
- Constitutive ALK kinase activity
- Rearrangements of the ALK gene with other partner genes have also been described

ALK TESTING METHODS

- Fluorescence in situ hybridization (FISH),
- Immunohistochemistry (IHC),
- Real Time-PCR (RT-PCR) and
- Next generation sequencing (NGS).

ALK TESTING BY FISH- PRINCIPLES

- Considered the Gold standard
- The Vysis LSI ALK break apart FISH probe kit (Abbott Molecular) US Food and Drug Administration (FDA) approved
- Initially 50 tumor cells are counted
- A sample is considered positive if > 25 cells out of 50 (> 25/50 or > 50%) test positive
- A sample is considered equivocal if 5 to 25 cells (10 to 50%) test positive
- If the sample is equivocal, a second reader should evaluate the slide


ALK TESTING BY FISH- PRINCIPLES

- Equivocal sample is considered to be positive for ALK rearrangement if at least 15% of tumor cells show rearrangement (15/100)
- Here both 3' and 5' part are given different colour signals to interpret positivity

SINGLE RED SIGNAL FROM 3' TELOMERIC PART

NEGATIVE GREEN SIGNAL FROM 5' CENTOMERIC PART OR FUSED YELLOW SIGNAL

IHC- STRONG +VE

IHC WEAK +VE

IHC -VE

Dacic et al. Oncotarget.2016 Dec 13; 7(50): 82943-82952

ALK TESTING BY FISH

- Mixed pattern in FISH (split signal + single orange signal) is considered negative
- Single orange signal pattern is prone to false positivity, hence should be correlated with IHC and/ NGS

NEED FOR ALK TESTING BY IHC

- FISH +ve only indicates whether the ALK gene is broken at the DNA level and does not determine whether there has been a productive rejoining of the DNA producing a functional fusion protein
- Case reports indicate lack of therapeutic benefit with ALK inhibitors even in those with ALK +ve by FISH
- The "break-apart" signal pattern resulting from the intrachromosomal deletion and inversion event in the setting of polysomy typical of lung cancer is subtle and easily missed
- Not available in all labaratories

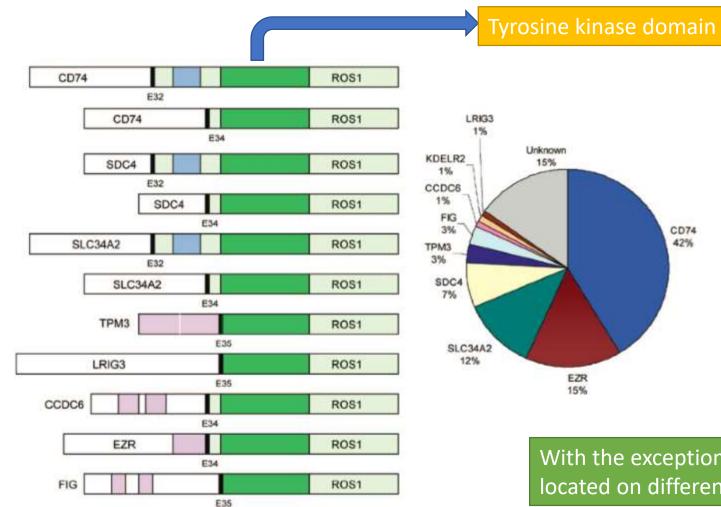
ALK TESTING BY IHC

- N=153, Lung Adenocarcinomas, IHC by ALK1 vs D5F3 compared to FISH
- Mouse monoclonal antibody ALK1
- Rabbit monoclonal antibody D5F3

FISH was performed on FFPE tumor tissues using a break-apart probe specific to the ALK locus (Vysis LSI ALK Dual Color)

	LUNG ADENOCARCINOMA (n= 153)			
	D5F3 antibody	ALK1 antibody		
Sensitivity(%)	100	67		
Specificity (%)	99	97		
Positive predictive value	96	78		
Negative predictive value	100	95		

Mino-Kenudson et al. *Clin Cancer Res.* 2010 March 1; 16(5): 1561–1571


METHOD	FISH	ІНС	RT-PCR	NGS
FUSION TYPES	NO SPECIFICATION	NO SPECIFICATION	ONLY EML4-ALK FUSION	ALL KINDS
SENSITIVITY	10-15%	5-10%	1-5%	1-5%
TIME(DAYS)	2-3	0.5	1	5-7
COST	MEDIUM	LOW	MEDIUM	HIGH
FFPE MATERIAL	YES	YES	YES	YES
FRESH MATERIAL	NO	NO	YES	YES
AMOUNT OF TISSUE	ONE TISSUE SECTION (3 micrometre thick)	ONE TISSUE SECTION (3 micrometer thick)	0.1-0.5 microgram RNA	2-3 microgram DNA
OTHER MUTATIONS	NO	NO	NO	YES
TECHNICAL SKILL	MEDIUM	LOW	MEDIUM	HIGH
DIAGNOSTICIAN REQUIRED	MEDIUM	LOW	MEDIUM	HIGH
APPLICABILITY TO AVERAGE LAB	MOST	ALL	SOME	SOME X. Du et al. Thora

COMPARISON OF ALK TESTING METHODS

- Tyrosine kinase receptor
- Located in Chromosome 6
- 3 domains
 - (a) a glycoprotein-rich extracellular domain,
 - (b) a transmembrane domain, and
 - (c) an intracellular tyrosine kinase
- 9 different *ROS1* fusion partners have been identified in NSCLC
- *ROS1 CD74 fusion-* the most common

ROS-1 REARRANGEMENTS

With the exception of *FIG* and *EZR*, *ROS1* fusion partners are located on different chromosomes than the native *ROS1* gene

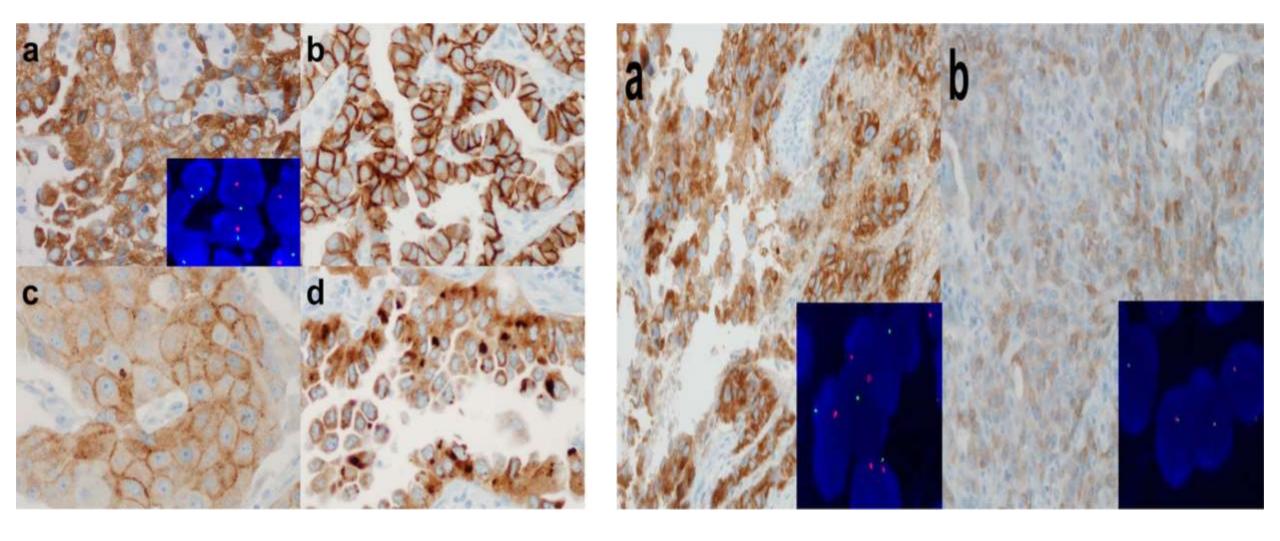
Shaw et al. The Oncologist. 2013;18:865–875

COMPARISON OF FISH AND IHC FOR ALK AND ROS1

RETROSPECTIVE COHORT (already known genetic alterations) Jan 2005-jan 2012, never smokers IHC performed to detect ROS 1 and ALK N= 219 FISH +ve if > 15 % tumour cells show split signal or single red/green signal IHC performed using Ventana automated immunostainer IHC clone for ROS1- D4D6 IHC clone for ALK - D5F3

PROSPECTIVE COHORT Feb 2013- May 2013 IHC performed to detect ROS1 and ALK and confirmed by FISH N= 111

COMPARISON OF FISH AND IHC FOR ALK AND ROS1


IHC results were scored by intensity (0/1/2/3) and extent (%) by 3 pathologists Intensity= 0- no detectable staining,

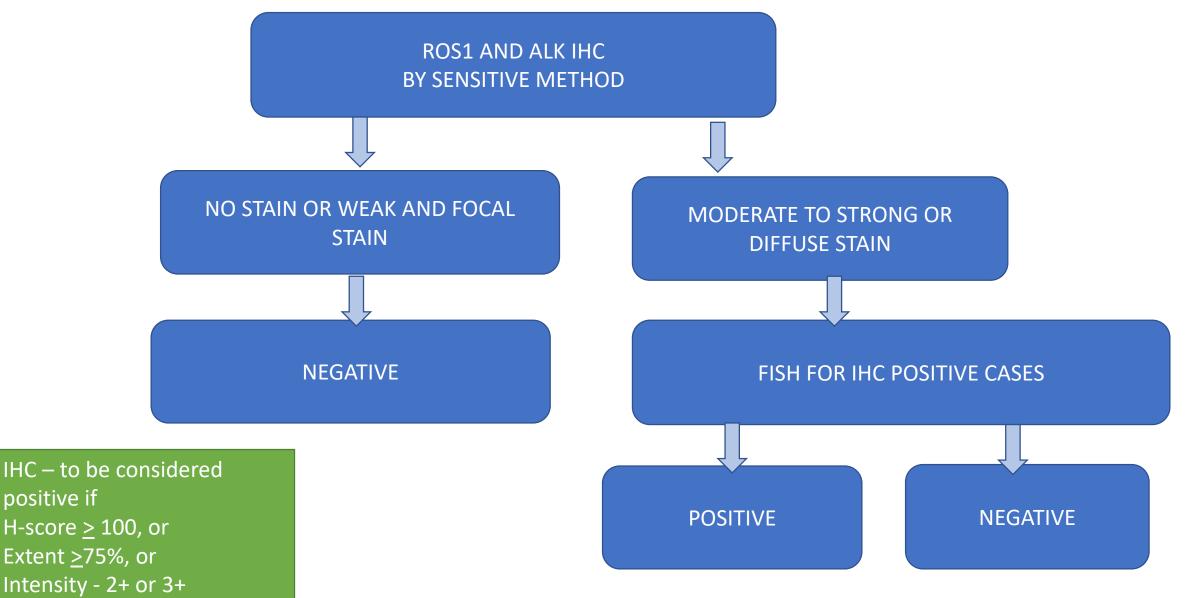
1+ for weak reactivity mainly detectable at high magnification

2+ or 3+ for more intense (moderate or strong, respectively) reactivity easily detectable at low magnification

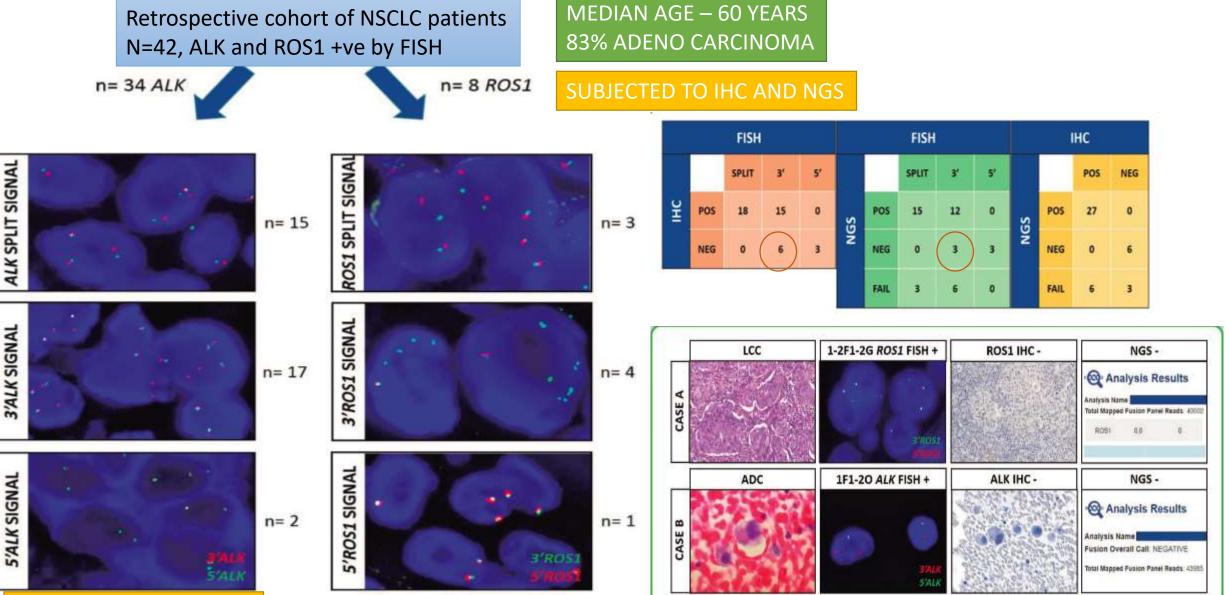
 $H - score (I^*E) + (I^*E) + (I^*E) (score range 0-300)$

		ROS 1		ALK	
Cutoff		Sensitivity	Specificity	Sensitivity	Specificity
H-score	>0	100%	86.4%	100%	99.4%
	≥50	100%	94.3%	100%	99.7%
	≥100	100%	97.8%	100%	100%
	≥150	92.3%	98.4%	95.0%	100%
	≥200	84.6%	99.7%	75.0%	100%
	≥250	53.8%	100%	20.0%	100%
Extent	≥25%	100%	92.4%	100%	99.7%
	≥50%	100%	95.6%	100%	100%
	≥75%	100%	96.8%	100%	100%
ntensity	≥2+	100%	95.0%	100%	99.4%
	=3+	84.6%	98.4%	75%	100%

FISH AND IHC FOR ROS1

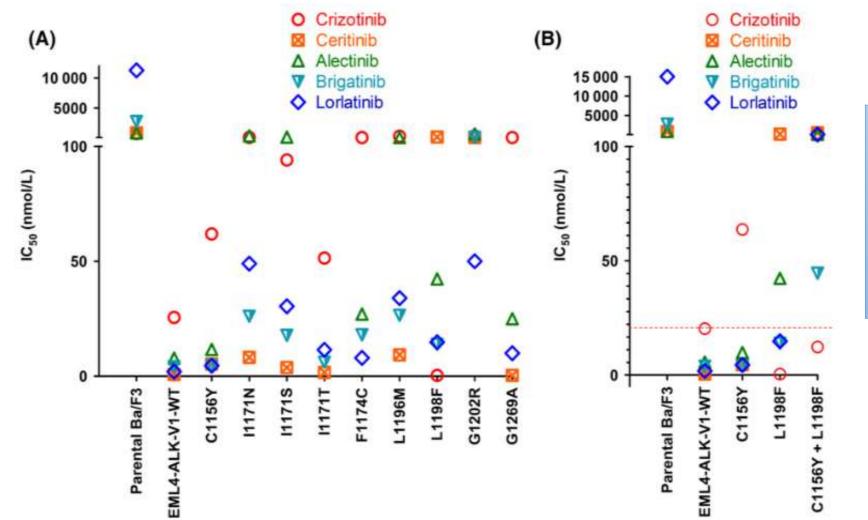

FISH AND IHC FOR ALK

FISH VS IHC IN ROS -1 REARRANGEMENT


TECHNIQUE	FISH	IHC
SENSITIVITY	HIGHER	HIGHER
SPECIFICITY	HIGHER	LOWER
DETECT UNKNOWN/NOVEL FUSIONS	YES	YES
TECHNIQUE	CUMBERSOME	RELATIVELY EASY
FORMALIN FIXED TISSUE	YES	YES
SPECIFIC FUSION PARTNERS	NOT IDENTIFIED	NOT IDENTIFIED
INTRACHROMOSOMAL FUSIONS (eg FIG)	CAN BE MISSED	
TURNAROUND TIME	SLOW	RELATIVELY FAST
SMALL TISSUE	NO	YES

PROPOSED ALGORITHM

positive if


ROLE OF NGS IN ALK AND ROS-1

ISOLATED 5' - NEGATIVE

Torrus, Xavier. (2018). Detection of ALK and ROS1 Rearrangements Using Next Generation Sequencing in Lung Cancer: Comparison between FISH, IHC and NGS..

ALK RESISTANCE MUTATIONS

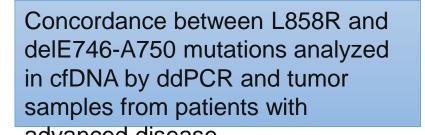
- SOME EVIDENCE OF BENEFIT IN TESTING ALK RESISTANCE PATTERN BEFORE CHANGING THERAPY
- NEED FURTHER STUDIES

IHC VS FISH vs NGS IN ALK AND ROS-1 REARRANGEMENTS FINAL VERDICT

- FISH is considered the gold standard for both ALK and ROS -1
- NGS could be used as a screening test depending upon the initial tissue available
- NGS could be used to confirm discordant results between FISH and IHC

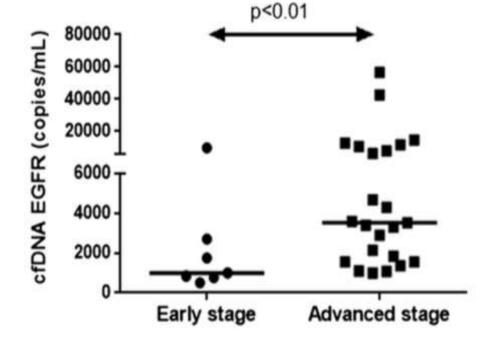
BRAF MUTATION

• BRAF is a proto-oncogene encoding a serine/threonine protein kinase which promotes cell proliferation and survival

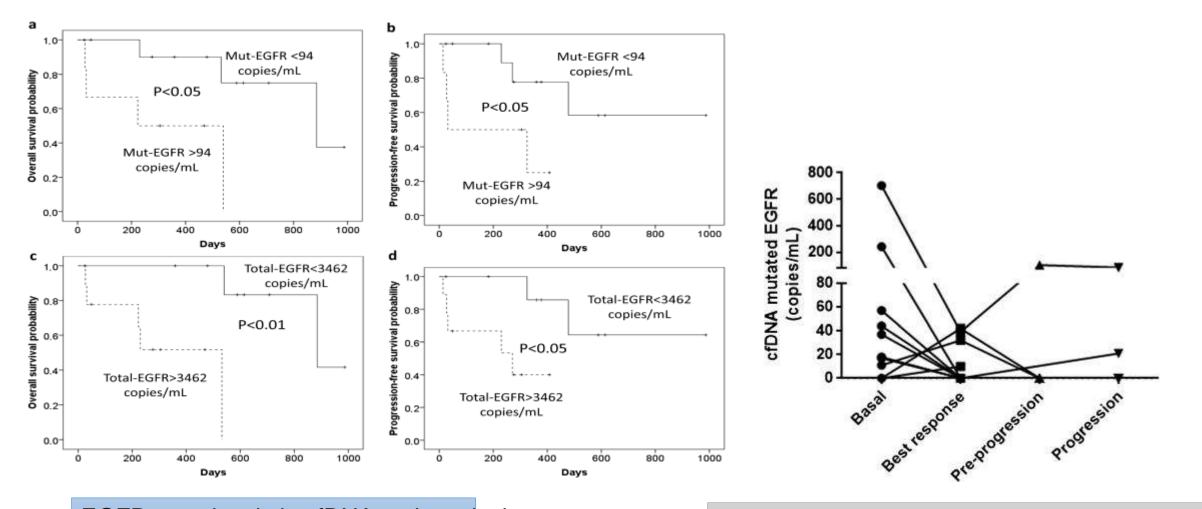

- Most common glutamate substitution for valine at codon 600 (V600E)
- Mutually exclusive from other known oncogenic driver mutations

TESTING METHODS
 Direct sequencing
 PCR
 NGS

Baik et al. The Oncologist 2017;22:786–796


ROLE OF LIQUID BIOPSY IN EGFR MUTATION

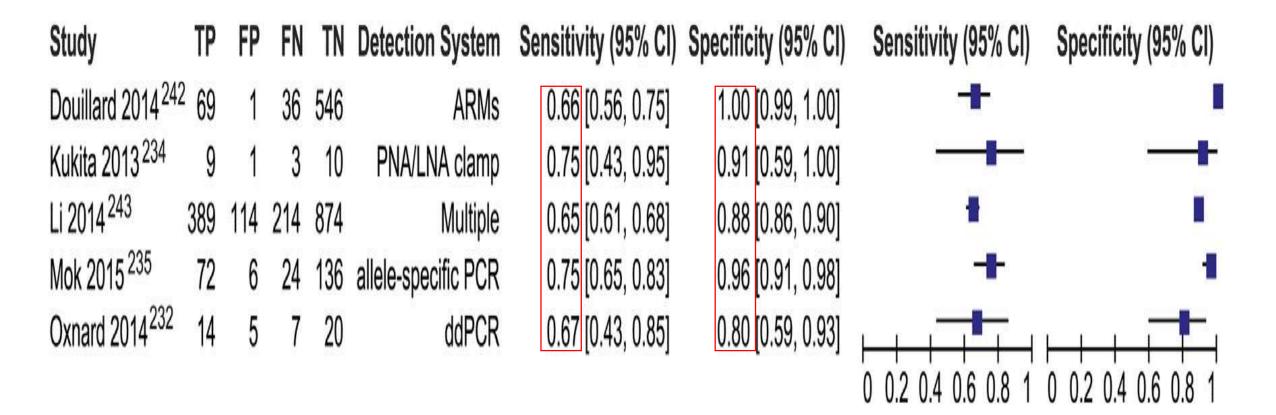
		Tumor samples			n=450 , N	SCLC
		+	2	Total	Kappa index	Significance
L858R						
cfDNA	+	5 (22 %)	2 (9%)	7	0.679	<i>P</i> = 0.001
		1 (4 %)	15 (6 %)	16		
	Total	6	17	23		
delE746-A75	0					
cfDNA	+	5 (22 %)	4 (17 %)	9	0.310	<i>P</i> = 0.154
	-	3 (17%)	9 (43 %)	12		
	Total	8	13	21		



Circulating EGFR expression levels in patients with early and advanced NSCLCs

Alegre et al. Tumour Biol. 2016 Oct;37(10):13687-13694

ROLE OF LIQUID BIOPSY IN EGFR MUTATION



EGFR copy levels in cfDNA and survival

Alegre et al. Tumour Biol. 2016 Oct;37(10):13687-13694

Longitudinal study of EGFR-mutated copy levels during treatment with EGFR-TKI

T790M TESTING IN LIQUID BIOPSY

Lindeman et al. Journal of Thoracic Oncology. 2018 (13): 323-358

VERDICT ON LIQUID BIOPSY IN EGFR TESTING

- cfDNA can detect mutations not previously detected in tumor samples due to tumour heterogeneity
- T70M mutation status at baseline and follow up can also be detected by cfDNA which might be missed by tumour tissue analysis
- Levels of cfDNA at baseline and follow up have prognostic value
- EGFR mutation analysis in blood can be considered as a complementary test to tumor analysis, but not as subrogate

ROLE OF LIQUID BIOPSY IN ALK AND ROS-1 REARRANGEMENTS

•					Characteristics	Overall population (n=66, %)
Across 6 inter	national centers			Age	 Median (range) 	57 (22-93)
Jan. 2015 to A	-			Sex	 Male Female 	29 (44%) 37 (56%)
	L positive status was de on (FISH/IHC or NGS)	termined by standa	rd of care practice at	Stage at diagnosis	• I-II / III • IV	2 (3%) / 7 (11%) 56 (85%)
Analysis of EN	/IL4-ALK fusions and RC	S1 fusions was perf	ormed using the	Histology	 Adenocarcinoma Squamous Other 	63 (95%) 1 (2%) 1 (2%)
InVision [®] plat	IOrm			Smoking	 Non smoker Former smoker Current smoker 	40 (61%) 18 (27%) 7 (11%)
STEP 1	STEP 2	STEP 3	STEP 4	Molecular diagnosis	 Immunohistochemistry FISH Other (NGS) 	33 (50%) 45 (68%) 2 (3%)
Plasma Collection	InVision [™] Library Preparation	Bioinformatics Analysis	Report Generation for Oncologist	Type of rearrangement	 ALK fusion ROS1 fusion 	59 (89%) 7 (11%)
	SNV/Indel and CNVs eTAm-Seq	69,000 x GCAGCTCATCACGCAGCTCATGCCCT GCAGCTCATCACGCAGCTCATGCCCT GCAGCTCATCACGCAGCTCATGCCCT	Description Description Description EVENDAL Description Description Events Description Description	Therapy at collection	 Treatment naïve 1st generation TKI 2nd generation TKI Next generation TKI Others 	20 (30%) 11 (17%) 11 (17%) 18 (27%) 6 (9%)
Mutant ctDNA	Gene Fusion Selective PCR	GCAGCTCATTACGCAGCTCATGCCCT				
DNA	ALK	TTTGTGATTAAGCCTGGTCCTCATGG TTTGTGATTAAGCCTGGTCCTCATGG TTTGTGATTAAGCCTGGTCCTCATGG				

Epstein M, et al. PLoS ONE (2018) 13(3): e0193802

ROLE OF LIQUID BIOPSY IN ALK AND ROS-1 REARRANGEMENTS

	ctDNA Positive <u>ALK</u> fusion N (%)		ctDNA Positive <u>ROS</u> fusion (N, %)
At diagnosis or treatment- <u>naïve</u> (n=21)	15 (71%)	At diagnosis or treatment- <u>naïve</u> (n=6)	6 (100%)
During ongoing <u>response</u> (n=57)	7 (12%)	During ongoing <u>response</u> (n=0)	0 (0%)
At <u>PD</u> (n=15)	8 (53%)	At <u>PD</u> (n=1)	1 (100%)

The detection of *ALK and ROS1* fusion in plasma is feasible in routine clinical practice, with good sensitivity for clinically actionable *ALK* and *ROS1* structural rearrangements in untreated advanced NSCLC patients

Sensitivity for ALK was 71% and 100% for ROS1 in treatment-naïve patients

Epstein M, et al. PLoS ONE (2018) 13(3): e0193802

ROLE OF LIQUID BIOPSY IN ALK AND ROS-1 REARRANGEMENTS

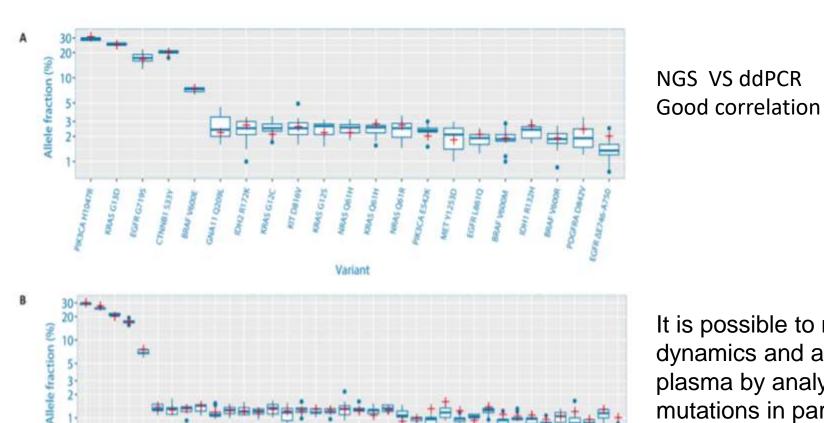
	ctDNA Positive <u>ALK</u> fusion N (%)		ctDNA Positive <u>ROS</u> fusion (N, %)
At diagnosis or treatment- <u>naïve</u> (n=21)	15 (71%)	At diagnosis or treatment- <u>naïve</u> (n=6)	6 (100%)
During ongoing <u>response</u> (n=57)	7 (12%)	During ongoing <u>response</u> (n=0)	0 (0%)
At <u>PD</u> (n=15)	8 (53%)	At <u>PD</u> (n=1)	1 (100%)

The detection of *ALK and ROS1* fusion in plasma is feasible in routine clinical practice, with good sensitivity for clinically actionable *ALK* and *ROS1* structural rearrangements in untreated advanced NSCLC patients

Sensitivity for ALK was 71% and 100% for ROS1 in treatment-naïve patients

Epstein M, et al. PLoS ONE (2018) 13(3): e0193802

NGS ON LIQUID BIOPSY


AKT1	ALK	BRAF	CCND1	CDKN2A							
CTNNB1	• EGFR	• ERBB2	ESR1	▲ FGFR1			Laboratory 1			Laboratory 2	
CITATOL	- com	•			AF (%)*	Sensitivity (%)	90% CI (Lower)	90% CI (Upper)	Sensitivity (%)	90% CI (Lower)	90% CI (Upper)
FGFR2	FGFR3	FOXL2	GATA3	GNA11	1%-1.3%	99.17	97.40	99.85	100.00	98.96	100.00
					0.5%-0.65%	99.63	98.26	99.98	97.66	95.43	98.97
GNAQ	GNAS	HRAS	IDH1	IDH2	0.25%-0.33%	89.17	85.29	92.30	90.28	86.91	93.00
	1010		- LUTT	1.000	0.13%-0.16%	69.26	64.31	73.89	67.71	62.88	72.26
KIT	KRAS	MED12	MET	MYC	0.06%-0.08%	37.41	32.50	42.52	30.86	26.10	35.95
NFE2L2	NRAS	PDGFRA	РІКЗСА	PPP2R1A]						
PTEN	RET	STK11	TP53	U2AF1]						
STK11 (Indels - Exon Covera 96.3%), CDKN2A (88 nd Indels - Hotspot R	.3%), PTEN (70%)	 CNVs, SNVs CNV only 	and Indels							

In Vision NGS panel for liquid biopsy

Enhanced version of TAm-Seq technology using multiplex PCR

Gale D et al. PLoS One. 2018 Mar 16;13(3):e0194630

NGS ON LIQUID BIOPSY

Variant

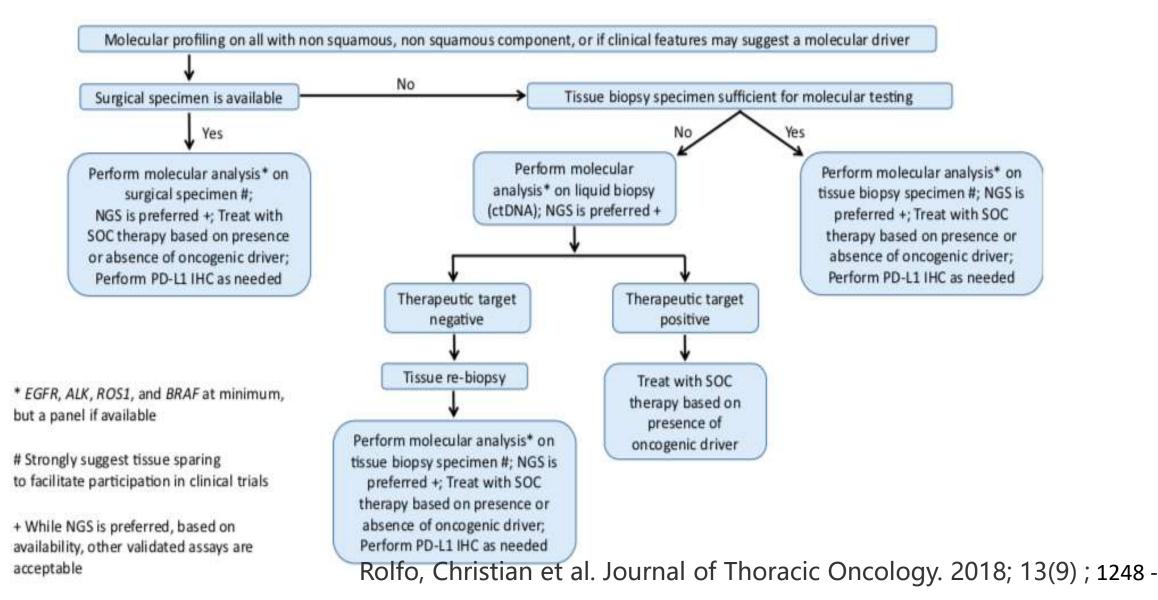
Manus Gia Manus Gala M It is possible to monitor tumor dynamics and assess evolution in plasma by analysis of multiple mutations in parallel across seriallycollected samples rather than focusing on single hotspot mutations.

Gale D et al. PLoS One. 2018 Mar 16;13(3):e0194630

ctDNA EXTRACTION AND ANALYSIS

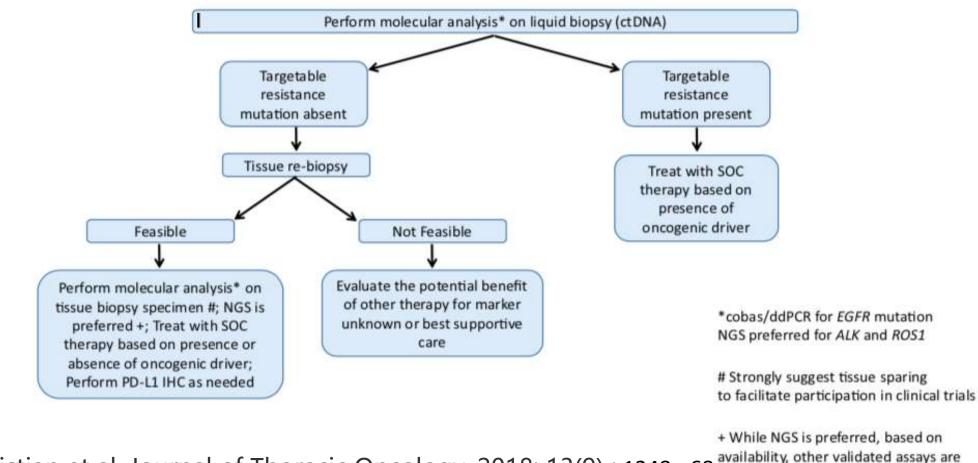
- Ethylenediaminetetra-acetic acid (EDTA) tubes for plasma extraction or the use of preservative tubes designed specifically for cell-free **DNA** isolation
- The suggested maximum time from blood withdrawal to plasma extraction is 2 hours for EDTA tubes and 3 days for preservative tubes.
- 20 ml blood (no standard volume)
- Methods : qPCR (Cobas FDA Approved), ddPCR, BEAMing (beads, emulsions, amplification and magnetics), NGS (Illumina /Ion- Torrent)

Rolfo, Christian et al. Journal of Thoracic Oncology. 2018; 13(9); 1248 -


IASLC RECOMMENDATIONS ON LIQUID BIOPSY IN MOLECULAR TESTING

- ddPCR could be considered for the detection of sensitizing EGFR mutations and a positive result should be sufficient for initiating therapy targeting these alter- ations; however, a negative result should prompt further evaluation with either a NGS-based test using ctDNA or using DNA from a tumor biopsy
- PCR-based methods should not be routinely used for ALK or ROS1 rearrangement detection from ctDNA.
- NGS platforms are reliable and preferred over PCR
- A negative result from NGS for oncogenic driver alterations is not sufficient to exclude therapy and requires a confirmation from tumor biopsy

Rolfo, Christian et al. Journal of Thoracic Oncology. 2018; 13(9) ; 1248 -


IASLC RECOMMENDATIONS ON LIQUID BIOPSY IN MOLECULAR TESTING

Patient with advanced treatment naive NSCLC

IASLC RECOMMENDATIONS ON LIQUID BIOPSY IN MOLECULAR TESTING

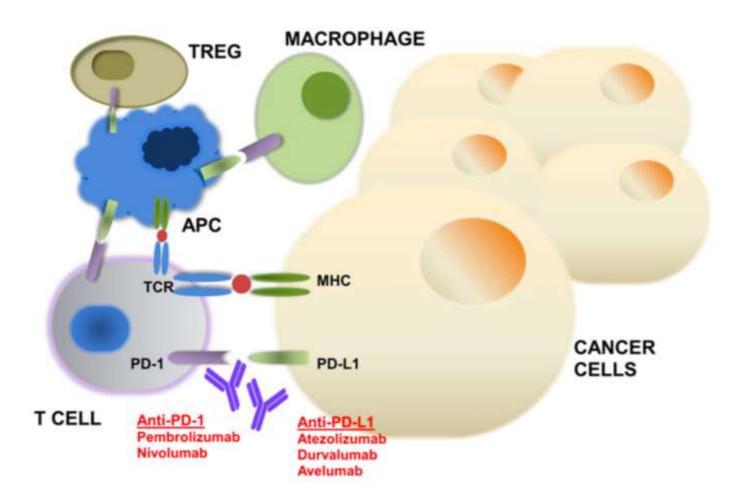
Patient with NSCLC progressive or recurrent disease during treatment with TKI

Rolfo, Christian et al. Journal of Thoracic Oncology. 2018; 13(9) ; 1248 - 68 acceptable

PCR VS NGS IN LIQUID BIOPSY

LIQUID BIOPSY METHOD	PCR	NGS
TURNAROUND TIME	2-3 days	13 days
MULTIPLE MUTATIONS SIMULTANEOUS DETECTION	NO	YES
TUMOUR SUPPRESSOR GENES	NO	YES
MUTANT DNA QUANTIFICATION	NO	YES
COST	LOWER	HIGHER

Rolfo, Christian et al. Journal of Thoracic Oncology. 2018; 13(9) ; 1248 -


	ASCO (2018)	ESMO (2018)	NCCN (2019)
TISSUE	Cell blocks or smear	Cytology or smear	Biopsy or cytology
IHC for Adeno vs Squamous	No recommendation	Limited IHC panel	Limited IHC panel can be used if Morphology inconclusive
TYPE OF CANCER TO BE TESTED	 An adenocarcinoma component; Nonsquamous, non-small-cell histology Any non-small-cell histology when clinical features indicate a higher probability of an oncogenic driver (eg, young age [< 50 years]; light or absent tobacco exposure) 	Same	Same
MOLECULAR ASSAY USED	Should be able to detect in tissue with less than 20 % cancer cells	No recommendation	No recommendation
SITE OF TISSUE	Primary or Metastatic	Same	No recommendation

	ASCO (2018)	ESMO(2018)	NCCN(2019)
EGFR	All advanced adenocarcinoma to be tested	Same	 RT PCR Sangers technique with tumour
	IHC and FISH not recommended		enrichment 3. NGS
	Post progression, T790M		
	to be tested using assays able to detect mutation in < 5% viable cells		Post progression,T790M to be tested using technique with analytic sensitivity of a minimum of 5% allelic fraction If T790M –ve, Other methods of resistance to be tested (MET amplification/HER2 amplification)

	ASCO (2018)	ESMO	NCCN
ROS1	All advanced adeno carcinoma to tested	Same	Same
	 IHC - screening test in patients with advanced lung adenocarcinoma Positive ROS1 IHC results should be confirmed by a molecular or cytogenetic method 	Same	Same RT PCR and NGS not advised as they might miss novel fusions
BRAF	All advanced lung adenocarcinoma to be tested	Same	Same Techniques: 1. RT PCR 2. Sangers technique 3. NGS
ALK	Routine testing advised in all adenocarcinoma	Same	Same
	IHC is an equivalent alternative to FISH	Same	 D5F3 IHC can be used to replace FISH, still FISH confirmation encouraged RT PCR and NGS not advised as they might miss novel fusions
	Post progression on ALK TKI- Routine testing of ALK mutational status not recommended	May soon be recommended	Unclear

	ASCO (2018)	ESMO(2018)	NCCN (2019)
PDL1 testing	No recommendation	All advanced NSCLC	Metastatic NSCLC with negative EGFR, ALK, ROS and BRAF genetic variations
	No recommendation	 IHC 22C3 assay 28-8 and SP263 IHC clones may be alternative tests 	IHC advised
NGS	No statement	 Preferred over other methods if available 	NGS may not detect all genetic alterations

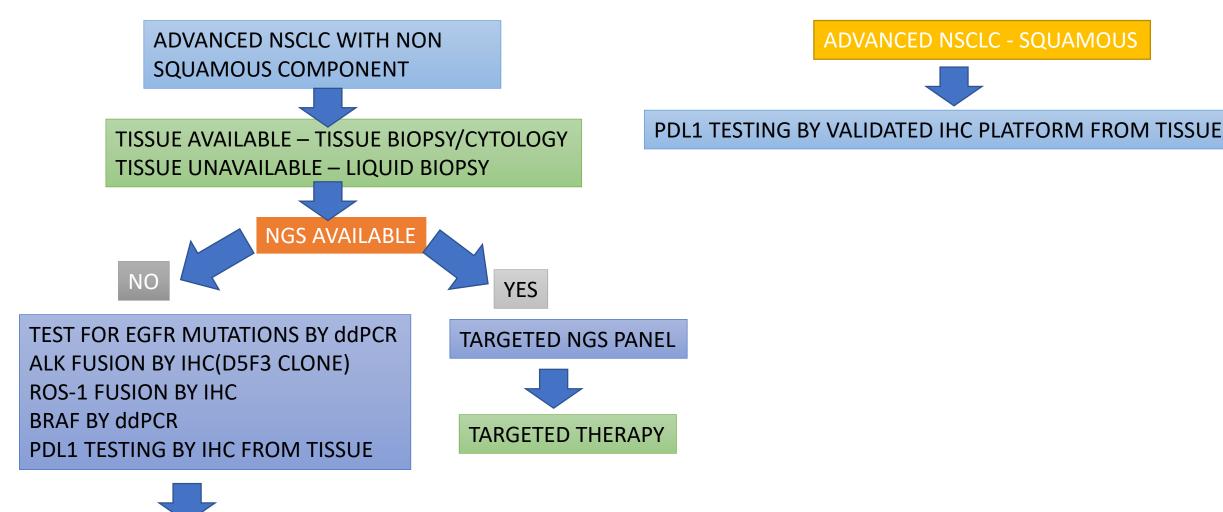
PD1 AND PDL1 INHIBITORS

Gong et al. Journal for ImmunoTherapy of Cancer (2018) 6:8

TRIAL	DRUG	INDICATION	IHC CLONE USED	STAINING PLATFORM USED
KEYNOTE-001	pembrolizum ab	PD-L1 positive (≥1%) progressing after platinum-based therapy (n=550)	22C3	DAKO
KEYNOTE-024		Metastatic NSCLC with ≥50% PD-L1 expression (n = 305)	22C3	DAKO
KEYNOTE-021	Pembrolizum ab	First line (in combination with platinum-doublet chemotherapy) n=123	22C3	DAKO
CheckMate 017	Nivolumab	Previously treated metastatic squamous NSCLC with platinum-based chemo n=272	28-8	DAKO
CheckMate 057	Nivolumab	Previously treated metastatic Non squamous NSCLC with platinum-based chemo n=582	28-8	DAKO
POPLAR	Atezolizumab	Second-line	SP142	VENTANA
PACIFIC	Durvalumab	Maintenance post concurrent chemo radiotherapy in locally advanced NSCLC She	SP263 oll et al. Arch Pathol La	VENTANA b Med—Vol 140, April 2

Gong et al. Journal for ImmunoTherapy of Cancer (2018) 6:8

PDL1 TESTING BY IHC


			S	TAINING	RMS			
			Dako			tana	Le	ica
		Center 1	Center 2	Center 3	Center 4	Center 5	Center 6	Center 7
	28-8	Ref.	0.94	0.79	0.8	0.73	0.6	0.58
	22C3	Ref.	0.91	0.82	0.81	0.77	0.5	0.62
IHC CLONES	SP263	0.83	0.83	0.86	0.81	Ref.	0.83	0.86
IHC	SP142	0.68	0.38	0.61	0.43	0.45	0.78	0.81
	E1L3N	0.63	0.65	0.77	0.6	0.81	0.75	0.78

COMPARE PDL1 TESTING BY VARIOUS IHC CLONES AND STAINING PLATFORMS 7 CENTRES n=41

ORANGE BOXES- STANDARDIZED KITS REST OF THE BOXES – LABARATORY DEVELOPED KITS GREEN BOXES – CONCORDANT RESULTS (Kappa value≥ 0.75) RED BOXES – INSUFFICIENT CONCORDANCE (Kappa value < 0.75)

	ASCO (2018)	ESMO	NCCN
KRAS, RET, MET, ERBB2(HER2)	No routine testing	Same	KRAS can be tested as a prognostic marker at baseline
cfDNA Primary diagnosis	No role in primary molecular testing, But can be used when tissue is limited or insufficient	No recommendation	If a patient is medically unfit for invasive tissue sampling or tissue inadequate
cfDNA Post Progression	May be used to detect T790M after EGFR TKI progression (but no recommendation)	Same but negative test to be confirmed by tissue testing	Liquid biopsy can be used but negative results to be confirmed by tissue testing
Multiplexed genetic sequencing panels	Preferred	NGS preferred	NGS preferred

TAKE HOME MESSAGE

ADVANCED NSCLC - SQUAMOUS

EGFR SENSITIVE MUTATION / BRAF MUTATION DETECTED – START THERAPY ALK FUSION DETECTED BY D5F3 NEED NOT BE CONFIRMED- START THERAPY ROS-1 FUSION DETECTED BY IHC NEED TO BE CONFIRMED BY FISH AND START THERAPY