## Stem Cells in Pulmonary Diseases

Dr Shailesh Agrawal

## Outline

- Introduction
- Mesenchymal stem cells
- Mechanism of action
- Routes, timing and adverse effects
- Role in individual pulmonary disorders
- Conclusion

## Stem Cells

- All adult tissues, including the lung, have some capacity to self repair or regenerate through the replication and differentiation of stem cells resident within these organs
- Knowledge regarding lung resident stem cells remains relatively incomplete
- Considerable interest in the therapeutic potential of exogenous cells, particularly mesenchymal stem/stromal cells (MSCs), for lung diseases

da Silva Meirelles L, Chagastelles PC. 2006. J Cell Sci 119:2204–2213 Mariana A. Antunes, John G. Laffey et al; Journal of Cellular Biochemistry 115:1023–1032 (2014)

## Stem Cells

- Normally resident in the bone marrow
- 2 well distinct subpopulations of cells
- Hematopoietic stem cells(HSCs)
   Supporting blood cell formation
- Mesenchymal stem/stromal cells (MSCs)
  - Constitute a small fraction of cells (0.001%-0.01%)
  - Act in the marrow to facilitate maturation of HSCs
  - Also capable of differentiating into other cell types

Friedenstein AJ, Chailakhyan RK et al. Cloning in vitro and retransplantation in vivo. Transplantation 1974;17:331–40 Mariana A. Antunes, John G. Laffey et al; Journal of Cellular Biochemistry 115:1023–1032 (2014)

## Mesenchymal stromal cells

- No single defined characteristic
- Identified according to the following consensus criteria
  - Adherence to plastic under standard culture conditions
  - Expression of CD105, CD73, and CD90
  - Lack of CD45, CD34, CD14, cd11b, CD79, CD19, and HLA-DR
  - Ability to differentiate into adipocytes, chondrocytes, and osteocytes in vitro

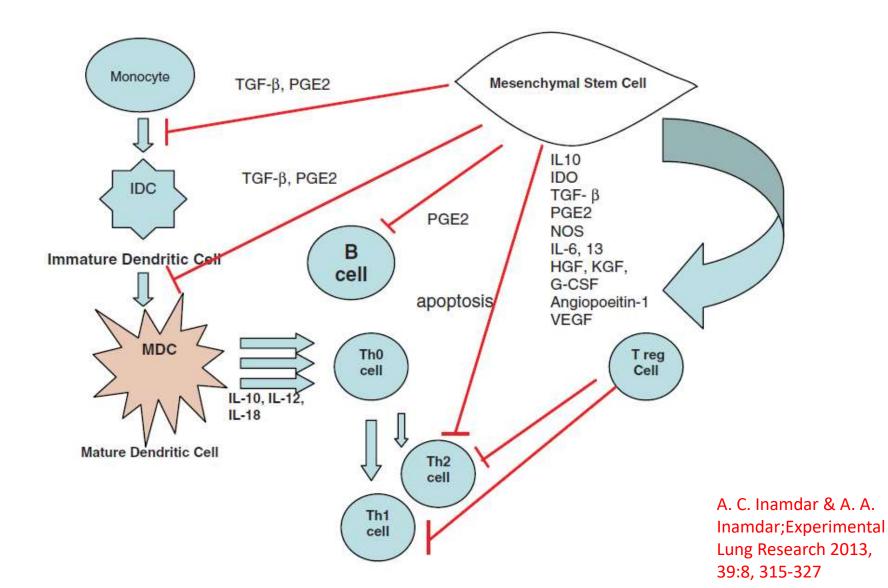
## Mesenchymal stromal cells

- MSCs can be obtained from various sources
  - Bone marrow (BMMSC)
  - Umbilical cord tissue (wharton's jelly derived-WJMSC)
  - Adipose tissue (ATMSC)
  - Umbilical cord blood (UCMSCS)
  - Menstrual blood (MBMSC)
- BMMSCs of either human or animal origin have been studied mainly

# Homing

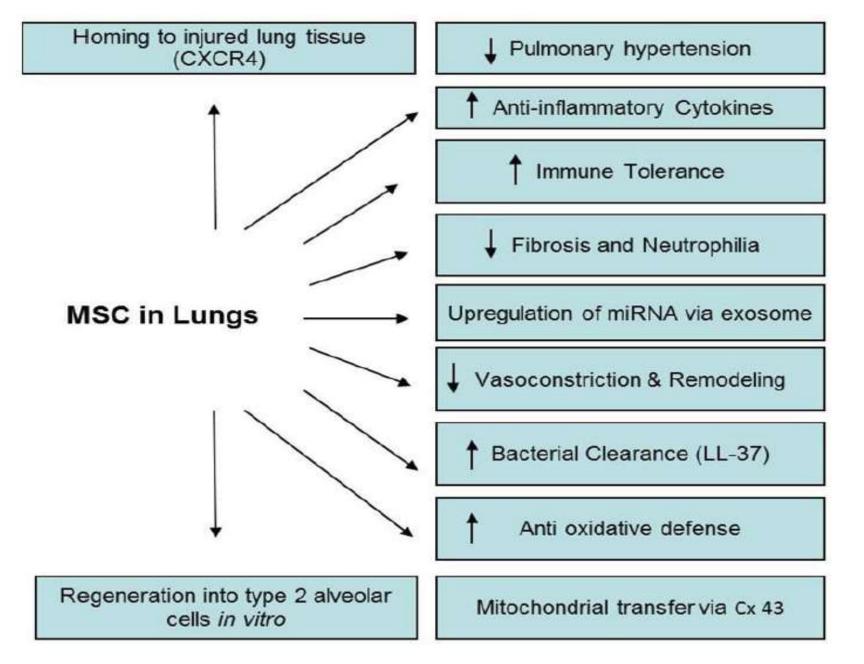
- Chemokine stromal cell derived factor-1 (SDF-1, also known as CXCL12) -mesenchymal cell chemotaxis and organ-specific homing in injured tissue after IV administration
- Interacts with CXCR4 receptor on the surface of these cells
- Intravenously infused MSCs are trapped by the lung vasculature, adding convenience in treatment of lung disoders

## Effects of MSC


- MSCs homed to injured tissue exert their immunomodulatory activity
- Cell-cell contact
- Paracrine mechanisms, secretion of specific mediators
  - angiogenic (VEGF)
  - anti-apoptotic (Bcl-2)
  - anti-inflammatory (IL-10, VEGF, hepatocyte growth factor)


Shi M et al; Haematologica. 2007;92:897–904 Mariana A. Antunes, John G. Laffey et al; Journal of Cellular Biochemistry 115:1023–1032 (2014)  Transfer of cellular materials including mitochondria to injured host cells via microvesicles

Promote a secure environment for host tissue recovery


Shi M et al; Haematologica. 2007;92:897–904 Mariana A. Antunes, John G. Laffey et al; Journal of Cellular Biochemistry 115:1023–1032 (2014)

- In addition, antimicrobial effects are also described
- Includes direct inhibitory effects of MSCs and indirect effects via secretion of immunemediators(like LL-37)
- In murine models of CF, MSCs and MSCderived conditioned medium directly reduced the growth rate and survival of several respiratory pathogens





#### Broekman W, et al. Thorax 2018;73:565–574



A. C. Inamdar & A. A. Inamdar; Experimental Lung Research 2013, 39:8, 315-327

## Preconditioning

- Preconditioning of MSCs with proinflammatory cytokines or hypoxic culture conditions polarises MSCs towards an antiinflammatory profile
- Inflammatory mediators present in areas of tissue damage can alter the secretome of MSCs in such a way that it promotes wound repair

- Initial clinical trials in the late 90s assessed safety of MSCs in non-haematopoietic diseases
- 1<sup>st</sup> evidence on effficacy of MSCs came in 2004 in case report of a paediatric patient with refractory graft-versus-host disease
- This boosted the interest in MSC-based cell therapy in diseases of dysregulated immune responses

Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363:1439–41

## Why so much interest

- Intravenous administration
- No need of conditioning/myeloablation
- No issues with allogeneicity- lack various MHC and costimulatory cell surface antigens
- Possible role as guardians against excessive inflammatory response

Hare JM , Traverse JH et al . J Am Coll Cardiol . 2009 ; 54 (24): 2277 – 2286 Darwin J Prockop and Joo Youn OhMolecular Therapy vol. 20 no. 1 jan. 2012  Preclinical studies reported promising results using MSCs for lung disorders, including asthma, emphysema, pulmonary fibrosis and acute respiratory distress syndrome

| Lung disease          | MSCs source                    | Type of model                       | Outcome/mechanism                                                                                   |               |
|-----------------------|--------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------|---------------|
| Asthma                | BM-human                       | Ovalbumin to<br>BALB/c mouse        | ↓Allergic mediators (eosinophils, macrophages,<br>and neurotrophils)                                |               |
|                       |                                |                                     | ↓Pathophysiological features of asthma<br>↓IFN-α, IL-5,13, macrophage inflammatory<br>protein, iNOS |               |
| Asthma                | BM- C57BL/6J or                | Ovalbumin                           | ↓Allergic mediators (eosinophils)                                                                   |               |
|                       | BALB/c mouse                   |                                     | ↓Airway hypersensitivity and inflammation                                                           |               |
|                       |                                |                                     | ↓ IL-4,5,13 plus                                                                                    |               |
|                       |                                |                                     | Role of T regulatory cells and T helper 1 type                                                      |               |
|                       |                                |                                     | of CD4 T lymphocytes                                                                                |               |
|                       | DM CETPL //L                   | December 4                          | ↑IDO and PGE2                                                                                       |               |
| Asthma                | BM-C57BL/6J or<br>BALB/c mouse | Ragweed                             | ↓Pathophysiological features of asthma<br>↓IgG1, IgE, IL-5,13                                       |               |
|                       | BALB/C mouse                   |                                     | TGF- $\beta$ production via STAT6 pathway                                                           |               |
| Asthma                | <b>BM-Sprague</b>              | Toluene diisocyanate                | ↓Allergic mediators (eosinophils, neurotrophils)                                                    |               |
|                       | Dawley rat                     | fordene unsoejunate                 | $\downarrow$ Collagen deposition, $\alpha$ -SMA, PCNA                                               |               |
| Lung Injury<br>(ARDS) | human-UC                       | E. coli derived LPS                 | ↓Lung inflammation, edema, bacterial load,                                                          |               |
|                       |                                |                                     | myeloperoxidase activity and pro-inflammatory cyt                                                   | tokines       |
| Lung injury           | BM-C57BL/6J                    | E. coli derived LPS                 | ↓Neutropenia, interalveolar thickness and edema,                                                    |               |
|                       | mouse                          |                                     | and injury, pro-inflammatory cytokines                                                              |               |
|                       |                                |                                     | ↑Anti-inflammatory cytokines (IL-1ra,10,13)                                                         |               |
| Lung injury           | BM-human                       | Human ex vivo                       | ↓In extravascular lung water,                                                                       |               |
|                       |                                |                                     | ↑Permeability of lung endothelial barrier ↑Capability of alveolar fluid clearance                   |               |
|                       |                                |                                     | Role of angiopoietin-1 and suppression of                                                           |               |
|                       |                                |                                     | NF-kappaβ                                                                                           |               |
| Lung injury           | BM-human                       | E. coli to C57BL/6J                 | ↓Bacterial growth, neurophila macrophage inflamma                                                   | itory         |
|                       |                                |                                     | protein-2                                                                                           |               |
|                       |                                |                                     | ↑Bacterial clearance                                                                                |               |
|                       |                                |                                     | Expression of human cathelicidin antimicrobial pepti                                                | ide,          |
|                       | DM CEEDI KI                    | 1                                   | hCAP-18/LL-37                                                                                       |               |
| COPD                  | BM-C57BL/6J<br>BMC-Lewis rat   | elastase induced<br>cigarette smoke | ↓ IL-1β, ↑ HGF, EGF, SLPI<br>↑Cell proliferation, pulmonary vascularity, repair                     |               |
| COLD                  | DiviC-Lewis rat                | eigarette shioke                    | of emphysema                                                                                        |               |
|                       |                                |                                     | ↓Apoptosis                                                                                          |               |
| COPD                  | Human BM-and in                | cigarette smoke                     | $\downarrow$ TNF- $\alpha$ , IL-1 $\beta$ , MCP-1, and IL-6                                         |               |
|                       | vitro studies                  |                                     | ↓MMP9 and MMP12                                                                                     |               |
|                       |                                |                                     | $\uparrow$ VEGF and TGF- $\beta$                                                                    |               |
| COPD                  | rat                            | Papain induced                      | ↑Bcl-2 and Bax                                                                                      |               |
|                       |                                |                                     | Differentiation into type II alveolar epithelial cells                                              |               |
| Lung fibrosis         | Human-UC                       | Bleomycin                           | ↑VEGF-A and ↓ apoptosis<br>↓Inflammation and collagen deposition                                    |               |
| Lung norosis          | Tuman-00                       | Dicomycin                           |                                                                                                     | A. C. Inamdar |
| Lung fibrosis         | BM-BALB/c                      | Bleomycin                           |                                                                                                     | namdar;Expe   |
|                       |                                |                                     | TNF- and IL 1 via IL1 receptor                                                                      |               |
| Lung fibrosis         | BM-Sprague                     | Bleomycin                           | ↓Collagen deposition                                                                                | ung Research  |
|                       | Dawley rat                     |                                     | $\downarrow$ TGF- $\beta$ 1, PDGF-A, PDGF-B, and IGF-I, NOS 3                                       | 20.2 215-227  |

#### TABLE 1. Selected Animal Studies on Asthma, ARDS, COPD, and ILD

## Routes

- The migration of MSCs to the injured tissues is central to the efficacy of cell therapy
- Lung offers the intratracheal/endobronchial route as a direct pathway for cell delivery, this route of administration may potentiate MSC efficacy

Antunes et al. Respiratory Research 2014, 15:118 http://respiratory-research.com/content/15/1/118



## RESEARCH

### **Open Access**

# Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema

Mariana A Antunes<sup>1</sup>, Soraia C Abreu<sup>1</sup>, Fernanda F Cruz<sup>1</sup>, Ana Clara Teixeira<sup>1</sup>, Miquéias Lopes-Pacheco<sup>2</sup>, Elga Bandeira<sup>1,2</sup>, Priscilla C Olsen<sup>1</sup>, Bruno L Diaz<sup>3</sup>, Christina M Takyia<sup>4</sup>, Isalira PRG Freitas<sup>5</sup>, Nazareth N Rocha<sup>6</sup>, Vera L Capelozzi<sup>7</sup>, Débora G Xisto<sup>1,2</sup>, Daniel J Weiss<sup>8</sup>, Marcelo M Morales<sup>2</sup> and Patricia RM Rocco<sup>1\*</sup>

- Emphysema was induced in mice by intratracheal (IT) administration of porcine pancreatic elastase weekly for 1 month
- After the last elastase instillation, saline or MSCs (1×10<sup>5</sup>), isolated from either mouse bone marrow (BM), adipose tissue(AD) or lung tissue (L), were administered intravenously (IV) or IT

- In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC)
- IV administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary HTN on echo, while increasing VEGF

- Only BM-MSCs (IV > IT) increased the number of M2 macrophages
- IV administration of lung-derived MSCs led to immediate death of all mice
- Possibly due to larger size of the L-MSCs or with cellular clumping resulting in pulmonary embolism

- Thus, different MSC sources and administration routes variably reduced elastase-induced lung damage
- IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2

## Effective dose for cell therapy

- Effective dose in most animal studies is commonly 1 × 10<sup>6</sup> cells per 30 g mouse
- Equivalent dose for humans would be 2.3×10<sup>9</sup> cells per average human
- Such high doses have not been utilised in human studies

## Effective dose for cell therapy

- No efficacy data on dosing in human studies of pulmonary disorders
- In a study by *Hare et al* safety and efficacy of BM hMSC administered in patients experiencing a first acute MI, IV dose of BM MSC ranged from 0.5, 1.6 and 5 million cells/kg
- There was no evidence of increased toxicity or infusion reaction with the administration of hMSCs at any dose

- Among parameters analyzed for efficacy, VPCs count exhibited clear dose-responsiveness
- Did not differ between the placebo and lowdose cell groups
- Evident in the mid- and high-dose groups

## Timing of cell therapy

- Most animal studies in IPF models have demonstrated that early administration of cells within 24 h of lung injury had promising results in healing fibrotic lesions
- While administration at 30 and 60 days post injury increased fibrosis on scarred lung areas

## Adverse effects

- Possible risks of infusion related reactions
- Stem cells may increase risk of teratogenicity or malignancies
- Unknown organ specific adverse effects

Runzhen Zhao et al. Oncotarget, 2017, Vol. 8, (No. 18)

## Adverse effects of cell therapy

Serious adverse events of cell therapy for respiratory diseases: a systematic review and meta-analysis

Runzhen Zhao<sup>1,\*</sup>, Zhenlei Su<sup>2,\*</sup>, Jing Wu<sup>2</sup> and Hong-Long Ji<sup>1</sup>

- Systematic review and meta-analyses of 23 clinical studies of cell therapy
- Either infusion or instillation of MSCs were well tolerated without serious adverse events causally related to cell treatment

## Menschymal stem cells in COPD

## COPD

- Enhanced chronic inflammatory response in the airways and lung to noxious particles or gases
- Increased numbers of CD8+ (cytotoxic) Tc1 lymphocytes
- Release inflammatory mediators and enzymes
- Damage of structural cells in the airways, lung parenchyma and pulmonary vasculature
- Inflammatory mediators in blood- muscle wasting and cachexia

## COPD

- Current therapies- mainly symptomatic
- No available therapy has been able to reconstitute the alveolar architecture or halt the fibrogenic process
- Potential space for research in MSC therapy for COPD

## Preclinical studies in COPD

| BM-C57BL/6J     | elastase induced         | $\downarrow$ IL-1 $\beta$ , $\uparrow$ HGF, EGF, SLPI                             |
|-----------------|--------------------------|-----------------------------------------------------------------------------------|
| BMC-Lewis rat   | cigarette smoke          | ↑Cell proliferation, pulmonary vascularity, repair<br>of emphysema                |
|                 |                          | ↓Apoptosis                                                                        |
| Human BM-and in | cigarette smoke          | $\downarrow$ TNF- $\alpha$ , IL-1 $\beta$ , MCP-1, and IL-6                       |
| vitro studies   |                          | ↓MMP9 and MMP12                                                                   |
|                 |                          | $\uparrow$ VEGF and TGF- $\beta$                                                  |
| rat             | Papain induced           | ↑Bcl-2 and Bax                                                                    |
|                 | Bar 1982 and a second of | Differentiation into type II alveolar epithelial cells<br>^VEGF-A and 1 apoptosis |

A. C. Inamdar & A. A. Inamdar; Experimental Lung Research 2013, 39:8, 315-327



RESEARCH ARTICLE

Preclinical Studies of Mesenchymal Stem Cell (MSC) Administration in Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis

Xiangde Liu<sup>1</sup>, Qiuhong Fang<sup>2</sup>, Huijung Kim<sup>3</sup>\*

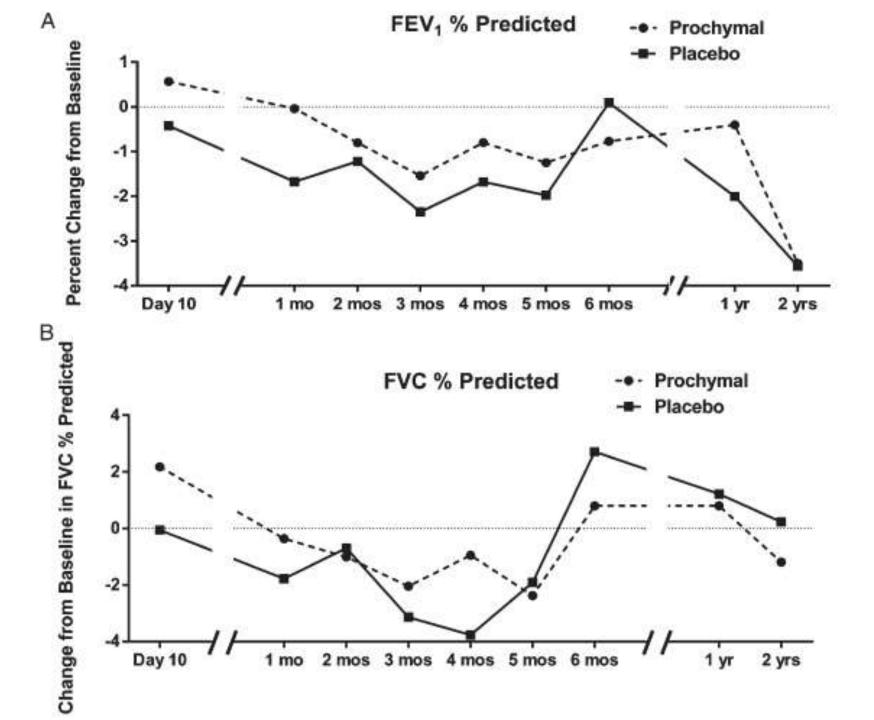
1 Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America, 2 Department of Pulmonary and Critical Care, Beijing Chaoyang Hospital, The Capital Medical University, Beijing, China, 3 Pulmonary and Critical Care Division, WonKwang University, Sanbon Medical Center, Seoul, Korea

- Systemic review of 20 studies
- MSC administration was significantly in favor of attenuating acute lung injury, stimulating lung tissue repair and improving lung function

- Pre-clinical studies demonstrate that MSC hold promise in the treatment of COPD
- Although the COPD models may not truly mimic COPD patients



CHEST


COPD

### A Placebo-Controlled, Randomized Trial of Mesenchymal Stem Cells in COPD

Daniel J. Weiss, MD, PhD; Richard Casaburi, PhD, MD, FCCP; Robin Flannery; Michelle LeRoux-Williams, PhD; and Donald P. Tashkin, MD, FCCP

- •62 patients, Double-blinded multicentric RCT
- •IV infusions of either allogeneic MSCs or vehicle control
- •Monthly infusions for 4 months (100x10<sup>6</sup>cells/infusion)
- •Followed for 2 years after the first infusion

- End points- safety, PFT, and quality-of-life indicators including questionnaires, 6MWT, and assessments of systemic inflammation
- Results- No infusional toxicities/deaths or serious adverse events deemed related to MSC administration

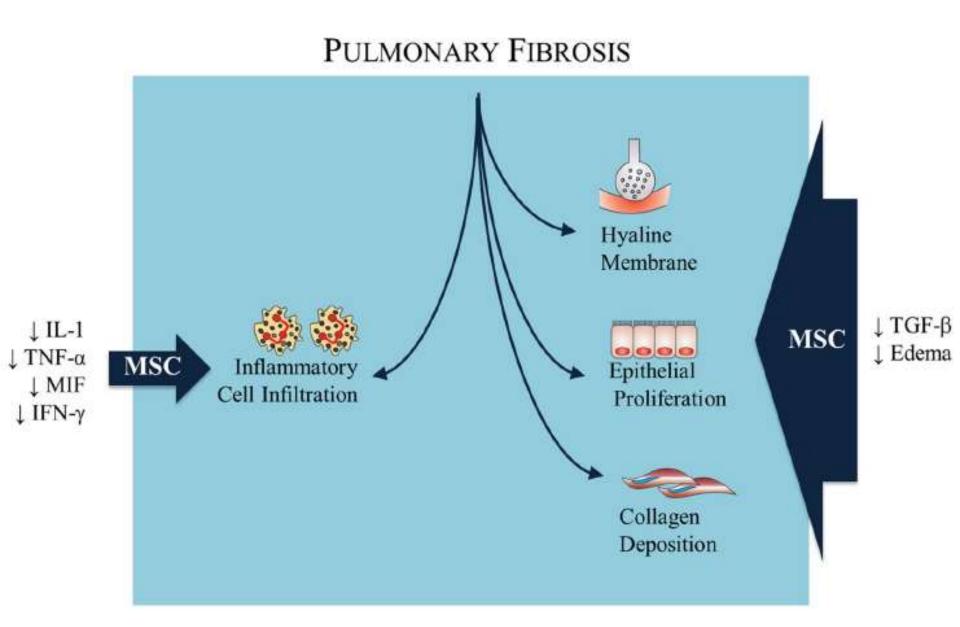


|            | CRP, ng      | g/mL    | TGF-β, ng/mL |                             |  |
|------------|--------------|---------|--------------|-----------------------------|--|
| Study Days | Prochymal    | Placebo | Prochymal    | Placebo<br>36,853<br>39,534 |  |
| Day 0      | 7.55<br>6.87 | 6.38    | 38,555       |                             |  |
| Day 10     |              | 6.17    | 39,269       |                             |  |
| 1 mo       | 4.97         | 6.58    | 40,513       | 40.985                      |  |
| 2 mo       | 5.57         | 4.68    | 41,799       | 42,147                      |  |
| 3 mo       | 4.94         | 3.88    | 41,689       | 36,625                      |  |
| 4 mo       | 6.68         | 5.22    | 41,637       | 34,331                      |  |
| 5  mo      | 4.24         | 7.03    | 43,065       | 34,165                      |  |
| 6 mo       | 9.76         | 6.56    | 37,425       | 31,998                      |  |
| 1 yr       | 5.63         | 3.42    | 34,623       | 30,709                      |  |
| 2 уг       | 5.68         | 4.26    | 44,936       | 35,914                      |  |

- No significant differences in the overall number of adverse events, frequency of COPD exacerbations, or worsening of disease in patients treated with MSCs
- However, no significant differences in PFTs or quality-of-life indicators
- An early, significant decrease in CRP levels in patients with baseline elevated CRP levels

# Explaination for lack of efficacy

- Clinical COPD being a chronic inflammation while animal studies used acute models
- Dosing and treatment schedules used were empirically based on data from MSC trials in other diseases
- Advanced stage disease


- MSCs could be more effective in subgroups of patients with COPD with higher levels of inflammatory markers or during active inflammation (eg, during exacerbations)
- Need to investigate the effect of preconditioning of MSCs

### Mesenchymal Stem cells in ILD

- CTD-ILD: systemic dysregulated immune response, which also involves lungs
  - Abnormal activation and development of autoreactive immune cells
  - Role of HSCT
- Other ILDs: localised inflammation/fibrosis confined to lungs
  - Possible role of MSC therapy

## Preclinical studies in ILD

- Bleomycin-induced IPF models
  - stem cells decreased inflammation, with reductions in neutrophil infiltration, fibrosis, and collagen deposition and an increase in epithelial repair



Mariana A. Antunes, John G. Laffey et al; Journal of Cellular Biochemistry 115:1023–1032 (2014)

- Telomerase mutations have been associated with IPF
- Allogenic MSCs could be the logical option in treating IPF associated with aging, replacing old stem cells with the younger stem cells

### **Idiopathic Pulmonary Fibrosis**

Table 1. Preclinical studies of cell-based therapy for idiopathic pulmonary fibrosis.

| Study                      | Model                                                 | Cell type                                                     | Dose                                     | Cell delivery                          | Time of cell<br>transplantation<br>after injury | Efficacy results                                                                                                                                                                                                                                                                                            |
|----------------------------|-------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ortiz<br>et al.<br>(39)    | Mouse-BLM<br>induced                                  | Bone marrow-MSCs                                              | 5 × 10 <sup>5</sup>                      | Intravenous                            | Immediately<br>after BLM<br>instillation        | Reduced inflammation and collagen deposition                                                                                                                                                                                                                                                                |
| Banerjee<br>et al.<br>[25] | Mouse-BLM<br>induced                                  | Emberyonic-MSCs                                               | 1 × 10 <sup>5</sup>                      | Intratracheal                          | 7 days                                          | Significant reduction inexpression of ECM (extra<br>cellular molecules) (i.e. collagen and fibronectin) and<br>profibrotic (i.e. TGF-β, FGF and VEGF) genes in the<br>lungs                                                                                                                                 |
| Rojas<br>et al.<br>[40]    | Mouse-<br>naphthalene or<br>sulfur dioxide<br>induced | Bone marrow-MSCs                                              | 5 × 10 <sup>5</sup>                      | Intravenous                            | 6 h                                             | Return of expression of IFN-γ, IL-2, IL-1β and IL-4,<br>cytokines toward normal after cell transplantation.<br>Transplanted mesenchymal stem cells through<br>localization or paracrine effect contributed in the<br>rapier                                                                                 |
| Gupta<br>et al.<br>[41]    | Mouse–<br>Escherichia coli<br>endotoxin<br>induced    | Bone marrow-MSCs                                              | 750,000<br>cells in 30<br>µl of PBS      | Intratracheal                          | 4 h                                             | MSC improve survival over 72 h and indices of lung<br>injury at 24 and 48 h, decrease in excess lung water,<br>mediated a downregulation of proinflammatory<br>responses to endotoxin (reducing TNF-α in the<br>bronchoalveolar lavage and plasma) while increasing<br>the anti-inflammatory cytokine IL-10 |
| Zhao<br>et al.<br>[42]     | Rat- BLM<br>induced                                   | Bone marrow-MSCs                                              | 5 × 10 <sup>6</sup>                      | Intravenous                            | 12 h                                            | MSCs differentiated into alveolar epithelial cells,<br>decrease in TGF-β1, PDGF-A, PDGF-B and IGF-I                                                                                                                                                                                                         |
| Cargnoni<br>et al.<br>[43] | Mouse-BLM<br>induced                                  | Placenta-MSCs                                                 | $4 \times 10^6$<br>or<br>$1 \times 10^6$ | Intraperitoneal<br>or<br>Intratracheal | 15 min                                          | Reduction in neutrophil infiltration                                                                                                                                                                                                                                                                        |
| Moodley<br>et al.<br>[44]  | Mouse-BLM<br>induced                                  | Human umbilical<br>cord cells derived<br>from Wharton's jelly | 1 × 10 <sup>6</sup>                      | Intravenous                            | 24 h                                            | uMSCs reduced inflammation and inhibited the expression of transforming growth factor- $\beta$ , interferon- $\gamma$ and the pro-inflammatory cytokines macrophage migratory inhibitory factor and tumor necrosis factor- $\alpha$ . Collagen concentration in the lung was significantly reduced          |

Maliheh Ghadiri et al (2016), Expert Opinion on Biological Therapy, 16:3, 375-387

- Even though preclinical and in vitro data look promising, stem cell approaches in IPF are still at the early experimental stage
- Few human studies on role of MSC in IPF are going on with no published data yet

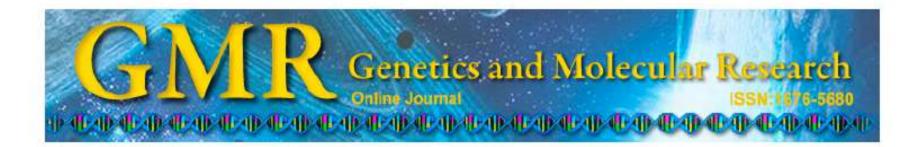
| Agent<br>/treatment                            | Delivery route                          | Study design                                                                                  | Current status                                                  | Objectives                                                                                                                            | Identifier  |
|------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Allogeneic<br>human<br>MSCs                    | Intravenous<br>delivery                 | A Phase I, Randomized, Blinded<br>and Placebo-controlled Trial                                | This study is<br>ongoing, but not<br>recruiting<br>participants | Evaluate the safety, tolerability and potential<br>efficacy of allogeneic human MSCs in treatment of<br>IPF                           | NCT02013700 |
| Autologous<br>adipose<br>derived<br>MSCs       | Intravenous<br>delivery                 | A Prospective, Multicentre,<br>Phase I/II, Open Label,<br>Randomized, Interventional<br>Study | This study is<br>currently recruiting<br>participants           | Evaluate safety and efficacy of autologous adipose<br>derived MSCs in treatment of IPF                                                | NCT02135380 |
| Autologous<br>MSCs                             | Endobronchial<br>infusion               | Phase I, open, multicentre, non-<br>randomized, escalating doses                              | This study is<br>currently recruiting<br>participants           | Evaluate the safety and feasibility of treatment of IPF with MSCs                                                                     | NCT01919827 |
| MSCs                                           | Intravenous<br>delivery                 | Phase I Study                                                                                 | Completed                                                       | Evaluate the potential role of MSCs in treatment of IPF                                                                               | NCT01385644 |
| Clinical<br>grade<br>umbilical<br>cord<br>MSCs | Injected<br>directly into<br>the lesion | Phase I, open, single-centre,<br>non-randomized                                               | This study is<br>currently recruiting<br>participants           | Evaluate the safety and effectiveness of the treatment and evaluate the possible immunomodulatory effects of the umbilical cord MSCs. | NCT02277145 |

#### Table 2. Summary of ongoing clinical trials on IPF.

#### Maliheh Ghadiri et al (2016), Expert Opinion on Biological Therapy, 16:3, 375-387

# Silicosis

- Inhaled silica particles engulfed by alveolar macrophages
- Phagocytosis of the silica particles leads to local inflammation and nitric oxide release, contributing to inflammation and remodeling


### Preclinical studies in silicosis

 In experimental model of silicosis BMMCs reduced inflammation, with attenuation in neutrophil infiltration and inflammatory cytokine levels, and reduce fibrosis, with a decrease in collagen deposition

### **Clinical studies**

- A non-randomized, phase I trial in 3 patients with chronic and accelerated silicosis, demonstrated that intrabronchial instillation of autologous BMMCs(2x10<sup>7</sup> cells) is safe
- Scintigraphy showed an increase in lung perfusion in the basal region up to day 180 after the infusion

## Silicosis



### Treatment of silicosis with hepatocyte growth factor-modified autologous bone marrow stromal cells: a non-randomized study with follow-up

W.W. Liu<sup>1</sup>, H.X. Wang<sup>2</sup>, W. Yu<sup>1</sup>, X.Y. Bi<sup>3</sup>, J.Y. Chen<sup>1</sup>, L.Z. Chen<sup>1</sup>, L. Ding<sup>2</sup>, D.M. Han<sup>2</sup>, Z.K. Guo<sup>1</sup> and Y.X. Lei<sup>4</sup>

WW Liu et al; Genetics and Molecular Research 14 (3): 10672-10681 (2015)

| Cases | Gender | Age | Dust-contact time (year) | Silicosis stages* | Disease course | Types of job  |
|-------|--------|-----|--------------------------|-------------------|----------------|---------------|
| 1     | М      | 37  | 8                        | П                 | 1 y            | Sand blasting |
| 2     | F      | 41  | 5                        | Ι                 | 3 m            | Sand blasting |
| 3     | F      | 37  | 5                        | П                 | 1 m            | Sand blastin  |
| 4     | Μ      | 51  | 18                       | I                 | 1 m            | Mine blastin  |

Table 1. Patient characteristicsof Silicosis.

- Non-randomized study
- 4 patients with pulmonary silicosis who had developed lung fibrosis and received autologous bone marrow MSCs previously transfected by a vector containing human HGF cDNA (MSCs/HGF)

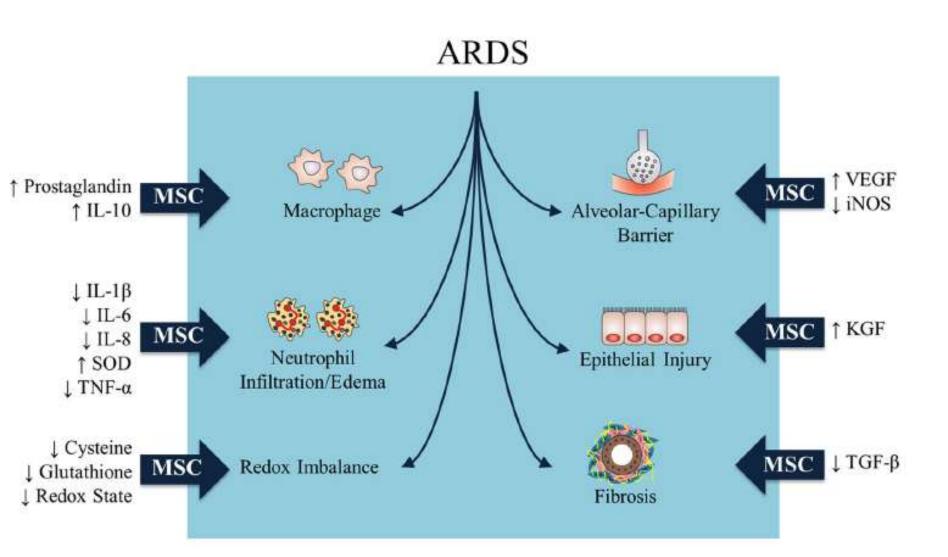
- MSCs/HGF were intravenously administered weekly for three consecutive weeks at a dose of 2 x 10<sup>6</sup> cells/kg
- Pulmonary function, high kilo-voltage chest Xray radiography, computed tomography (CT) scan were evaluated
- The treatment was found to be generally safe

| Cases   | Treatment | FVC%     |      | FEV1%    |      | SpO2     |      |
|---------|-----------|----------|------|----------|------|----------|------|
|         |           | Baseline | Post | Baseline | Post | Baseline | Post |
| 1       | MSCs/HGF  | 89.5     | 91.8 | 85.2     | 87.9 | 87.7     | 92.2 |
| 2       | MSCs/HGF  | 94.1     | 96.8 | 97.4     | 94.1 | 81.2     | 99.0 |
| 3       | MSCs/HGF  | 67.0     | 64.6 | 70.3     | 82.0 | 87.4     | 99.0 |
| 6       | MSCs/HGF  | 75.6     | 85.2 | 71.8     | 88.5 | 90.2     | 99.0 |
| Mean    |           | 81.6     | 84.6 | 81.2     | 88.1 | 86.6     | 97.3 |
| P value |           | >0.0     | 5    | >0.      | 05   | <0.      | 05   |

Table 2. Pulmonary function testing before and 6 months after cell therapy in the cases of silicosis.

Arterial blood oxyhemoglobin saturation was significantly enhanced, accompanied by partial relief of symptoms such as cough and dyspnea
CT scans and chest X-rays demonstrated the disappearance of some silica nodules in two patients
However, no definite conclusion could be drawn to fully

elucidate the beneficial effects of MSCs/HGF


## Radiation induced Lung Injury

- Single transplantation of MSCs in 11 patients with RILI developed after combined chemotherapy and radiation therapy for lymphogranulomatosis or breast cancer was performed in a safety study
- Cell therapy with autologous mesenchymal stem cells did not induce progression of the underlying oncological disease

### **Other Pulmonary disorders**

### ARDS

- Damage to alveolar epithelium and capillary endothelium
- Increased permeability and extravasation of protein-rich fluid into the alveolar space
- Damage worsened by alveolar neutrophil influx



Mariana A. Antunes, John G. Laffey et al; Journal of Cellular Biochemistry 115:1023–1032 (2014)

### Preclinical studies in ARDS

- Hayes et al reported that bone marrow hMSCs enhanced repair following ventilation induced lung injury, enhancing resolution of inflammation and restoration of lung structure
- McAuley et al demonstrated that bone marrow-hMSCs restore alveolar fluid clearance in explanted human lungs

Hayes M, Masterson C, Devaney J, et al. Anesthesiology 2015; 122:363–373 McAuley DF, Curley GF, Hamid UI, et al. Am J Physiol Lung Cell Mol Physiol 2014;306:L809–L815

### Preclinical studies in ARDS

| human-UC             | E. coli derived LPS | ↓Lung inflammation, edema, bacterial load,<br>myeloperoxidase activity and pro-inflammatory cytokines |
|----------------------|---------------------|-------------------------------------------------------------------------------------------------------|
| BM-C57BL/6J<br>mouse | E. coli derived LPS | ↓Neutropenia, interalveolar thickness and edema,<br>and injury, pro-inflammatory cytokines            |
|                      |                     | ↑Anti-inflammatory cytokines (IL-1ra,10,13)                                                           |
| <b>BM-human</b>      | Human ex vivo       | ↓In extravascular lung water,                                                                         |
|                      |                     | ↑Permeability of lung endothelial barrier                                                             |
|                      |                     | ↑Capability of alveolar fluid clearance                                                               |
|                      |                     | Role of angiopoietin-1 and suppression of NF-kappa $\beta$                                            |
| BM-human             | E. coli to C57BL/6J | ↓Bacterial growth, neurophila macrophage inflammatory protein-2                                       |
|                      |                     | ABacterial clearance                                                                                  |
|                      |                     | Expression of human cathelicidin antimicrobial peptide,<br>hCAP-18/LL-37                              |

### **Clinical studies in ARDS**

### Mesenchymal Stem (Stromal) Cells for Treatment of ARDS: A Phase 1 Clinical Trial

Jennifer G. Wilson<sup>1</sup>, Kathleen D. Liu<sup>2</sup>, Hanjing Zhuo<sup>3</sup>, Lizette Caballero<sup>4</sup>, Melanie McMillan<sup>4</sup>, Xiaohui Fang<sup>3</sup>, Katherine Cosgrove<sup>5</sup>, Rosemary Vojnik<sup>6</sup>, Carolyn S. Calfee<sup>7</sup>, Jae-Woo Lee<sup>8</sup>, Angela J. Rogers<sup>6</sup>, Joseph Levitt<sup>6</sup>, Jeanine Wiener-Kronish<sup>9</sup>, Ednan K. Bajwa<sup>5</sup>, Andrew Leavitt<sup>10</sup>, David McKenna<sup>11</sup>, B. Taylor Thompson<sup>5</sup>, and Michael A. Matthay<sup>12</sup>

- Multi-center, open-label, dose-escalation phase 1 clinical trial of a single dose of IV MSCs in patients with moderate-to-severe ARDS as per berlin definition
- The first three patients were treated with low dose MSCs (1million cells/kg)
- Next three patients received intermediate dose MSCs (5 million cells/kg)

 Final three patients received high dose MSCs (10 million cells/kg)

 Primary outcomes included the incidence of pre-specified infusion associated events and serious adverse events

- Serious adverse events were observed in three patients
- 2 patients expired >seven days after the MSC infusion
- 1 patient was discovered to have multiple embolic infarcts
- None of these SAEs were thought to be MSCrelated

### **Clinical studies in ARDS**

- Study demonstrated that bone marrow hMSCs were safe in doses of up to 10 million cells/kg, in a phase 1b dose-escalation study
- Phase 2 study by same group going on
- Similarly Zheng et al demonstrated that adipose-derived hMSCs were well tolerated in their phase 1b study

# Conclusion

- Mesenchymal stem cell therapy is safe
- Promising results in animal studies
- Evidence of efficacy in human studies of nonpulmonary diseases
- Not yet reciprocated in human studies of pulmonary disorders
- Effective route, dose and timing of administration needs to evaluated further
- Phase 2 studies in various diseases going on