Recruitment maneuver in ARDS - Rationale, protocols and utility

Dr. Nandakishore B
Overview of the seminar

• Introduction
• Physiological considerations of ARDS and RMGs
• Rationale of lung recruitment
• Different types of RMGs
• Benefits and complications of RMGs
• Assessment of lung recruitability
Introduction

• In a normal homeostatic condition: Sigh reflex maintains lung compliance and decreases atelectasis. However, during mechanical ventilation, there is no sigh reflex

• One way to maintain oxygenation, FRC, and respiratory system elastance is the application of recruitment maneuvers (RMs), which have become a component of lung-protective ventilation strategies
• Recruitment is the dynamic process of opening previously collapsed lung units by increasing transpulmonary pressure

• Lung units can be kept open by airway pressures that are lower than those required to open them, leading to the concept of recruitment using periodic higher pressure maneuvers with application of PEEP to maintain alveolar patency

Lapinsky SE et al, Critical Care 2005; 9: 60-65
Definition

- Recruitment maneuvers can be defined as a voluntary strategy to increase the transpulmonary pressure transiently with the goal to reopen those alveolar units that are not aerated or poorly aerated but re-openable.
Mechanisms of derecruitment in ARDS

- Increase in extravascular lung water
- Increase weight of lung
- Collapse of alveoli at dependent portion of lung
- Surfactant deficiency
- Heterogenous process
- Selective distribution of VT to normal alveoli
- Collapse of diseased alveoli
- Derecruitment
Mechanisms of injury during tidal ventilation

A-At end-inspiration, patent alveoli may become over-stretched
B-Excessive stresses may be generated at the boundary between aerated and nonaerated lung
C-Dependent alveoli may be repetitively opened and closed producing tissue damage

Pressure–volume curve demonstrating tidal ventilation at various PEEP levels

Tidal ventilation is shown at 12, 18 and 24 cmH₂O with no recruitment effect (solid lines); at 18 cmH₂O with partial recruitment (18a), and at 12 and 24 cmH₂O following an effective recruitment maneuver (12a, 24a)

Physiological effects of RM

Reperfusion is a landmark of functional recruitment

A

Before RM

Anatomical recruitment

Alveolar reaeration

Vessel compression

Overinflation

PaO₂/FI O₂ constant

Increased PaCO₂

Reduced lung compliance

After RM

B

Before RM

Functional recruitment

Alveolar reaeration

No vessel compression

Normal inflation

PaO₂/FI O₂ increased

Decreased PaCO₂

Increased lung compliance

After RM
Recruitment

- ↑ End expiratory lung volume
 - ↓ Strain
- ↓ Lung elastance
 - ↓ Transpulmonary pressure
Rationale of lung recruitment

1. ARDS lung is derecruited and is recruitable
 • Atelectasis results from increased interstitial pressure and weight of the lung
 • It can be enhanced by patient related factors- obesity, ↑ intraabdominal pressure, high levels of inspired oxygen in unstable alveoli, patient disconnection from the ventilator, tracheal suctioning
• Lung in ARDS can be reaerated by increasing transpulmonary pressure

• Lung recruitability has been found to be quite low, averaging 9% of total lung mass, between 5 and 45 cm of H\textsubscript{2}O

• Other investigators have found that all of the lung can be reopened in early ARDS if a sufficient amount of P_L is generated to go over the critical opening pressure (COP) of the lung units

2. Concept of COP of the lung units

- Closed terminal respiratory units should reopen once a minimal amount of regional P_L to maintain patency of small airways and/or alveoli has been reached.
- In humans, COP values have been found to follow a Gaussian distribution with a mode of approximately 25 cm of H_2O or a bimodal distribution with a second mode close to 40 cm H_2O.
- Full range of regional COP was as wide as 0 to 60 cm H_2O.

3. Lung recruitment is beneficial by reducing VILI

- Recruiting the lung is a ventilatory strategy that can decrease VILI:
 - Increase in the aerated lung mass, which contributes to minimize the lung heterogeneity and to increase the size of baby lung
 - Prevention of repeated opening and closure of the terminal respiratory units

Global effect of RM

Increase in VILI
Haemodynamic impairment

Reduction in VILI
Improvement in oxygenation
How to recruit lung: Different types of recruitment maneuvers

1. The **sigh RM** in which higher tidal volume and inspiratory airway pressures are intermittently delivered

2. The **sustained inflation RM** in which a static increase in airway pressure (usually in CPAP mode) is transiently applied (20-40 s)

3. The **extended sigh RM**, where a stepwise PEEP increases is applied in order to increase airway pressure in volume or pressure controlled mode

Sigh RM

• Mimic physiological breathing
• Consists of high VT in controlled mode or high PEEP up to a specific plateau pressure level, for a selected number of cycles
• Pelosi et al: 3 consecutive sighs/ minute at 45 cm H$_2$O plateau pressure
• Improvement in oxygenation, lung elastance, and functional residual capacity compared to patients who did not receive sighs
• High sigh frequency (up to 180/h) was associated with hyperinflation and expression of type Ⅲ procollagen mRNA in lung tissue in experimental models

Clinical studies evaluating sigh maneuvers

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>n</th>
<th>Diagnosis</th>
<th>Study Type</th>
<th>Ventilation Strategy</th>
<th>Gas Exchange</th>
<th>Mortality</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelosi (1999)</td>
<td>10</td>
<td>ARDS</td>
<td>Observational</td>
<td>VT: 6-8 ml/kg PEEP 14±2.2 cmH₂O</td>
<td>PaO₂ significantly increased; reduction of PaCO₂</td>
<td>N=5(50%)</td>
<td>No data</td>
</tr>
<tr>
<td>Pelosi (2003)</td>
<td>10</td>
<td>ARDS (early)</td>
<td>Observational</td>
<td>VT: 7 ml/kg IBW; PEEP 14±3 cmH₂O</td>
<td>PaO₂ significantly increased in both supine and prone</td>
<td>N=4(40%)</td>
<td>No major complications</td>
</tr>
<tr>
<td>Villagrà (2002)</td>
<td>17</td>
<td>ARDS (early: 8 patient were also studied in late phase)</td>
<td>Observational</td>
<td>VT<8 ml/kg PEEP 14±1 cmH₂O</td>
<td>PaO₂ not increased during rM. PaCO₂ increased and pH decreased significantly. Values returned to baseline 15 min after rM in early but remained altered in late ARDs group</td>
<td>No data</td>
<td>No major complications</td>
</tr>
</tbody>
</table>
Sustained inflation RM

• Most widely described RM
• Oczenski, Grasso: 40 cm H₂O for 40 seconds
• Reported to improve oxygenation and lung function and minimize atelectasis in experimental and clinical scenarios
• Has also been associated with risk of hypotension and barotrauma

Procedure of sustained inflation recruitment

• Done after ensuring SBP between 100-200 mmHg and HR between 70-140/min
• Ensure patient is sedated and paralyzed. If FiO$_2$ <1.00, FiO$_2$ to be raised to 1.00 for 5 minutes
• Ventilation mode to be changed to CPAP= most recent PEEP level
• CPAP to be increased over 10 seconds to 40 cm H$_2$O (or 45 if measured BW is > 150% PBW). CPAP to be maintained at 40(or 45) cmH$_2$O for 45 seconds
• The RM to be terminated immediately and CPAP returned to the most recent PEEP level if any of the following signs of distress occurs:
 – A. SBP decreases to 90 mmHg or by > 30 mmHg
 – B. HR increases to >140/min or by >20/min
 – C. SpO2 decreases by 5% and is <90%
• After 45 seconds at CPAP=40(or 45)cm H₂O, CPAP to be decreased over 5 seconds to the pre-RM level
• Most recent ventilation settings will be resumed upon completion or early termination of RM
• If 2 RM s require early termination within a single 24 hour interval, no additional recruitment maneuvers to be attempted for at least 12 hours
Clinical studies evaluating sustained inflation maneuvers

<table>
<thead>
<tr>
<th>Author, year</th>
<th>n</th>
<th>Diagnosis</th>
<th>Study type</th>
<th>Ventilation strategy</th>
<th>Gas exchange</th>
<th>Mortality</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oczenski (2004)</td>
<td>30</td>
<td>ARDS (early)</td>
<td>Randomized</td>
<td>VT 6 ml/kg IBW. PEEP:rM group 15.1±1.2 cmH(_2)O, no-rM group: 14.5±1.3 cmH(_2)O</td>
<td>PaO(_2) significantly increased at 3 min after rM, baseline values were reached again within 30 min</td>
<td>No data</td>
<td>No major complication</td>
</tr>
<tr>
<td>Xi (2010)</td>
<td>110</td>
<td>ARDS</td>
<td>Randomized</td>
<td>VT, rM group 6.6±0.9 ml/kg, no-rM group 6.8±1.1 ml/kg PEEP, rM-group 10.5±3.2 cmH(_2)O, no-rM group 9.7±2.4 cmH(_2)O</td>
<td>No differences in PaO(_2) between two groups</td>
<td>No differences in hospital and 28-day mortality. ICU mortality significantly lower in rM group</td>
<td>Hypotension: in one instance rM was terminated early</td>
</tr>
<tr>
<td>Brower (2003)</td>
<td>96</td>
<td>ALI/ARDS</td>
<td>Cross-over study</td>
<td>VT 6.0±0.8 ml/kg PBW PEEP 13.8±3.0 cmH(_2)O</td>
<td>SpO(_2) were greater within 10 and 60 mins after rMs than after sham rMs; no significant differences at the other time points</td>
<td>No data</td>
<td>Hypotension and low SpO(_2): in 3 instances rMs were terminated early. Barotrauma after one rM and after one sham rM</td>
</tr>
</tbody>
</table>
Clinical studies evaluating sustained inflation maneuvers

<table>
<thead>
<tr>
<th>Author, year</th>
<th>n</th>
<th>Diagnosis</th>
<th>Study type</th>
<th>Ventilation strategy</th>
<th>Gas exchange</th>
<th>Mortality</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasso (2002)</td>
<td>22</td>
<td>ARDS</td>
<td>Observational</td>
<td>VT, rM-responding group 6.1±0.1 ml/kg, rM-non responding group 6.0±0.2 ml/kg PEEP, rM responding group 9.4±2.2 cmH₂O, rM-non-responding group 9.1±2.7 cmH₂O</td>
<td>PaO₂ significantly increased in rM responding group than in non-responding; 20 min after values of PaO₂ tended to return toward baseline values in both groups</td>
<td>No data</td>
<td>Hypotension (transitory) in PEEP non-responding group</td>
</tr>
<tr>
<td>Meade (2008)</td>
<td>125</td>
<td>ALI/ARDS</td>
<td>Observational</td>
<td>VT 8.4±3.0 ml/kg PEEP 10±4 cmH₂O</td>
<td>PaO₂ not significantly increased following the first or subsequent rMs. Augmenting the inflation pressure or duration had no significant effect</td>
<td>No data</td>
<td>Barotrauma: 4(3.2%), ventilator asynchrony: 5 (4%), appeared uncomfortable: 3 (2.4%), experienced transient hypotension: 2 (1.6%)</td>
</tr>
</tbody>
</table>
Clinical studies evaluating sustained inflation maneuvers

<table>
<thead>
<tr>
<th>Author, year</th>
<th>n</th>
<th>Diagnosis</th>
<th>Study type</th>
<th>Ventilation strategy</th>
<th>Gas exchange</th>
<th>Mortality</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meade (2008)</td>
<td>983</td>
<td>ALI/ARDS</td>
<td>Randomized</td>
<td>VT, LOV group 6.8±1.4 ml/kg, control group 6.8±1.3 ml/kg PEEP, LOV group 14.6±3.4 cmH₂O, control group 9.8±2.7 cmH₂O</td>
<td>LOV group had lower rates of refractory hypoxemia and lower mortality rates with refractory hypoxemia; no difference in PaCO₂</td>
<td>Hospital mortality: 36.4% in LOV group and 40.4% in the control group</td>
<td>Hypotension: 4.5%, desaturation: 4.2%, bradycardia or tachycardia: 1.8%, barotrauma: LOV 53 (11.2%) control 47 (9.1%)</td>
</tr>
<tr>
<td>Amato (1998)</td>
<td>53</td>
<td>ARDS(early)</td>
<td>Randomized</td>
<td>VT, protective ventilation 6 ml/kg, Control group 12 ml/kg. PEEP, protective ventilation 16.4 ±0.4 cmH₂O,control group 6.2±0.5 cmH₂O</td>
<td>PaO₂ significantly increased in protective ventilation group;PaCO₂ higher in protective group</td>
<td>28 days mortality:11 (38%) in protective group vs. 17(71%)in control group</td>
<td>Barotrauma: 2 (7%) in protective ventilation vs. 10 (42%) in control group</td>
</tr>
</tbody>
</table>
Optimal duration of a sustained inflation recruitment maneuver

50 ARDS patients, within 24 hours of meeting ARDS criteria

A 40 cmH₂O sustained inflation RM maintained for 30 s after sedation

Volume increase during the RM was measured by integration of the flow required to maintain the pressure at 40 cmH₂O

In early-onset ARDS patients, most of the recruitment occurs during the first 10 s of a sustained inflation RM. However, hemodynamic impairment is significant after the tenth second of RM

Stepwise RM

• Hodgson: PEEP was increased from baseline (range 10-18) to 20, 30 and 40 cm H$_2$O every 2 minutes to achieve maximum alveolar pressure of 55 ± 3 cm H$_2$O, then decreased at 3-minute intervals to 25, 22.5, 20, 17.5, and 15 cm H$_2$O until a decrease of 1% to 2% oxygen saturation from maximum was detected.

• Since stepwise RMs recruit lung units as effectively as sustained inflation with a lower mean airway pressure, they may lead to less hemodynamic compromise and hyperinflation.
• In experimental endotoxin-induced mild ARDS, stepwise RM, compared to sustained inflation, was associated with reduced type II epithelial cell damage and decreased expression of markers associated with fibrosis and endothelial cell damage.
Clinical studies evaluating extended sigh maneuvers

<table>
<thead>
<tr>
<th>Author, year</th>
<th>n</th>
<th>Diagnosis</th>
<th>Study type</th>
<th>Ventilation strategy</th>
<th>Gas exchange</th>
<th>Mortality</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foti (2000)</td>
<td>15</td>
<td>ARDS (only PEEP responders)</td>
<td>Observational</td>
<td>VT 7.9 ml/kg PEEP 13.3±27.7 cmH₂O</td>
<td>PaO₂ and SaO₂ significantly increased after rMs, no difference in PaCO₂</td>
<td>No data</td>
<td>No major complication</td>
</tr>
<tr>
<td>Johanni gman (2003)</td>
<td>12</td>
<td>ARDS (early)</td>
<td>Observational</td>
<td>VT 6.3 ml/kg IBW PEEP 12.3±3.2 cmH₂O</td>
<td>PaO₂ significantly increased 3 mins after rM. 2 hours after the rM, oxygenation fell below 30-min values but remained greater than pre-rM values</td>
<td>No data</td>
<td>No major complication</td>
</tr>
<tr>
<td>Borges (2006)</td>
<td>26</td>
<td>ALI/ARDS (early)</td>
<td>Observational</td>
<td>VT 6 ml/kg PBW PEEP 5-10 cmH₂O</td>
<td>PaO₂ significantly increased</td>
<td>Overall ICU mortality: 11(42.3%), hospital death 14 (57.7%)</td>
<td>No major complication</td>
</tr>
</tbody>
</table>
Clinical studies evaluating extended sigh maneuvers

<table>
<thead>
<tr>
<th>Author, year</th>
<th>n</th>
<th>Diagnosis</th>
<th>Study type</th>
<th>Ventilation strategy</th>
<th>Gas exchange</th>
<th>Mortality</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moràn (2011)</td>
<td>13</td>
<td>ALI/ARDS(early)</td>
<td>Observational</td>
<td>VT 7.8 ml/kg IBW PEEP 15±4 cmH₂O</td>
<td>PaO₂ significantly increased and remained greater than pre-rM values</td>
<td>No data</td>
<td>Transitory hypotension</td>
</tr>
<tr>
<td>Lim (2003)</td>
<td>47</td>
<td>ARDS(early)</td>
<td>Randomized</td>
<td>VT 8 ml/kg PEEP of 10 cmH₂O</td>
<td>PaO₂ significantly increased in rM+PEEP group. PaO₂ in rM-only and in PEEP-only group did not differ. Patients with extrapulmonary ARDS showed greater increase in PaO₂ after rM</td>
<td>rM+PEEP 10 (50%); rM 10 (52.6%); PEEP-only group 7 (87.5%)</td>
<td>No major complication</td>
</tr>
</tbody>
</table>
Clinical studies evaluating extended sigh maneuvers

<table>
<thead>
<tr>
<th>Author, year</th>
<th>n</th>
<th>Diagnosis</th>
<th>Study type</th>
<th>Ventilation strategy</th>
<th>Gas exchange</th>
<th>Mortality</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hogdson (2011)</td>
<td>20</td>
<td>ARDS</td>
<td>Randomized</td>
<td>VT 6 ml/kg in both groups. PEEP, experimental group 15±1 cmH₂O, control group 10±0.5 cmH₂O</td>
<td>PaO₂ significantly increased in experimental group than control group over the first 24 hours and over 7 days</td>
<td>No data</td>
<td>Desaturation in 3 instances at maximum PEEP of 40 cmH₂O (no lasting adverse effects)</td>
</tr>
<tr>
<td>Huh (2009)</td>
<td>57</td>
<td>ARDS</td>
<td>Randomized</td>
<td>VT, Experimental group 7.9±1.9 ml/kg, Control group 8.0±1.4 ml/kg. PEEP, Experimental group 8.4±3.1cmH₂O, Control group 7.0±3.7 cmH₂O</td>
<td>PaO₂ significantly increased and PaCO₂ was higher in decremental PEEP titration group than in control group. PaO₂ and PaCO₂ levels were not different between 2 groups during follow up</td>
<td>Overall mortality 37%. 28 and 60 day mortality did not differ between 2 groups</td>
<td>Barotrauma: 3 (11%) in experimental vs 3 (11%) in control group</td>
</tr>
</tbody>
</table>
Open lung tool

Real time monitoring option that looks at the changes in lung mechanics during the clinical application of a recruitment strategy.
3 graph windows.
Lung recruitment using OLT
Effect on oxygenation

20 studies
Oxygenation was significantly increased after a RM (PaO2 / FiO2 ratio: 251 vs 139 mm Hg; P< 0.001)

• Improvements in oxygenation after RM have been demonstrated in many studies. However, many studies report a rapid decline in these oxygenation gains over the subsequent 24 hours, some within 15 to 20 minutes of the RM.

• Type of RM used and post RM PEEP applied may affect the sustainability of the effect.

Complications of RMds

• Hemodynamic compromise
• Barotrauma
• Desaturation
Hemodynamic effects of RM-Mechanism

Recruitment maneuver

- Hypoventilation
 - Acute moderate hypercapnia
 - Reduction in systemic vascular resistance
 - Reduction in Cardiac preload
 - Elevated intrathoracic pressure

 - Hypotension

- Increased pulmonary Vascular resistance
 - Left shift interventricular septum
 - Diminished LV output
SI vs PCV-RM: Hemodynamic effects

N=40 patients of ARDS
SI was achieved by raising peak inspiratory pressure to 45 cmH$_2$O and sustaining it for 40s. The PCV was set to obtain a 45 cmH$_2$O peak inspiratory pressure for 2m I:E 1:2 PEEP 16 RR 8.

Iannuzzi M, et al, Minerva_Anestesiol 2010;76: 692-8
N= 20 patients of ARDS
15± 3 cm H₂O pressure-controlled ventilation
PEEP was ↑ from baseline (range 10-18) to 20,30,and 40 cm H₂O every 2 min to achieve maximum alveolar pressure of 55 + 3 cm H₂O, then ↓ at 3-min intervals to 25, 22.5,20,17.5, and 15 cm H₂O until a decrease of 1% to 2% oxygen saturation from maximum was detected.

8 of 20 patients desaturated and exhibited transient circulatory depression during RM

A comparison of changes between saturators and desaturators in arterial and venous oxygen saturation, shunt fraction, and central arterial-venous oxygenation difference

No evidence of significant harm or increased risk of barotrauma despite the use of higher PEEP and recruitment maneuvers.

Among patients in the experimental group, 366 received at least 1 recruitment maneuver following the initial recruitment maneuver at study initiation.

81 patients (22.1%) developed a complication associated with a recruitment maneuver:
- 61 (4.5%) resulted in a MAP < 60 mm Hg
- 58 (4.2%) were associated with SpO₂ < 85%
- 24 (1.8%) were associated with bradycardia or tachycardia
- 4 (0.3%) were associated with cardiac arrhythmia
- 4 (0.3%) were associated with a new air leak through an existing thoracostomy tube

In 3 patients, clinicians detected new barotrauma immediately following a recruitment maneuver.
Meta-analysis: Effect on barotrauma

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>ARM Events</th>
<th>Total</th>
<th>Control Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio</th>
<th>Year</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long 2006</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>14</td>
<td>1.2%</td>
<td>0.18 [0.01, 3.39]</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Wang 2007</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>14</td>
<td>1.5%</td>
<td>1.00 [0.07, 14.45]</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>Meade 2008</td>
<td>53</td>
<td>475</td>
<td>47</td>
<td>508</td>
<td>78.2%</td>
<td>1.21 [0.83, 1.75]</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>Huh 2009</td>
<td>3</td>
<td>30</td>
<td>3</td>
<td>27</td>
<td>4.7%</td>
<td>0.90 [0.20, 4.09]</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Xi 2010</td>
<td>0</td>
<td>55</td>
<td>0</td>
<td>55</td>
<td></td>
<td>Not estimable</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Hodgson 2011</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td></td>
<td>Not estimable</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Liu 2011</td>
<td>2</td>
<td>50</td>
<td>4</td>
<td>50</td>
<td>4.0%</td>
<td>0.50 [0.10, 2.61]</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Kacmarek 2014</td>
<td>6</td>
<td>99</td>
<td>8</td>
<td>101</td>
<td>10.4%</td>
<td>0.77 [0.28, 2.13]</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>749</td>
<td>779</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>1.07 [0.77, 1.48]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events 65

Heterogeneity: Tau² = 0.00; Chi² = 3.12, df = 5 (P = 0.68); I² = 0%

Test for overall effect: Z = 0.38 (P = 0.70)

Effect on severe hypoxemia requiring rescue therapies

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>ARM</th>
<th>Control</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lim 2003</td>
<td>8</td>
<td>2</td>
<td>1.60 [0.43, 5.96]</td>
<td>2003</td>
</tr>
<tr>
<td>Wang 2007</td>
<td>3</td>
<td>4</td>
<td>0.75 [0.20, 2.75]</td>
<td>2007</td>
</tr>
<tr>
<td>Meade 2008</td>
<td>22</td>
<td>52</td>
<td>0.45 [0.28, 0.73]</td>
<td>2008</td>
</tr>
<tr>
<td>Huh 2009</td>
<td>16</td>
<td>13</td>
<td>1.11 [0.66, 1.85]</td>
<td>2009</td>
</tr>
<tr>
<td>Hodgson 2011</td>
<td>0</td>
<td>2</td>
<td>0.20 [0.01, 3.70]</td>
<td>2011</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>549</td>
<td>567</td>
<td>0.76 [0.41, 1.40]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 49 73
Heterogeneity: Tau² = 0.23; Chi² = 9.06, df = 4 (P = 0.06); I² = 56%
Test for overall effect: Z = 0.88 (P = 0.38)

Effect on in-hospital mortality

What is the impact of RM on VILI?

Recruitment maneuver

Excessive transalveolar pressure

High end inspiratory lung volume

Mechanical stretch on alveolar epithelium and macrophages

Release of inflammatory mediators

VILI

Recruitment maneuver

Prevent atelectrauma

Reduced shear stress on alveolar wall

Reduced level of cytokines

Reduced risk of VILI
How to assess lung recruitability?

• Recruitment maneuvers (RM) are not without risks. To reduce the number of patients unnecessarily exposed can prevent potential complications.

• Lung recruitability could provide valuable information before RM application to prevent possible deleterious effects.
Factors potentially involved in the variability of response to RM in ARDS

<table>
<thead>
<tr>
<th>ARDS related</th>
<th>Focal vs nonfocal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early vs late</td>
</tr>
<tr>
<td></td>
<td>Severe vs moderate</td>
</tr>
<tr>
<td></td>
<td>Associated vasoactive drugs</td>
</tr>
<tr>
<td>RM-Related</td>
<td>Type of RMs</td>
</tr>
<tr>
<td></td>
<td>Distribution of lung perfusion</td>
</tr>
<tr>
<td></td>
<td>Transpulmonary pressure</td>
</tr>
<tr>
<td></td>
<td>Timing of application</td>
</tr>
<tr>
<td></td>
<td>Patient positioning</td>
</tr>
<tr>
<td>Post-RM strategy</td>
<td>Post-RM PEEP</td>
</tr>
</tbody>
</table>

• The earlier or exudative phase of ARDS has better chance of RM success compared with a later or fibrotic phase
• Patients with extrapulmonary etiology of ARDS have better response to recruitment
• Those with diffuse changes on imaging studies have better chance of RM success than those with focal changes
• Patients with severe ARDS respond better to RM and the high respiratory system elastance is associated with better response to recruitment in clinical trials

Recruitment occurs along the entire volume–pressure curve well above the lower inflection point and even above the upper inflection point, with a definite spatial distribution (ventral to dorsal and cephalad to caudal).

CT scan provides morphological (focal and nonfocal distribution of lung injury) and functional information, allows the estimation of potentially recruitable lung (i.e., the amount of lung tissue in which aeration can be restored) and to differentiate between recruitment (an increase in gas volume in previously poorly aerated and nonaerated lung regions) and inflation.
• The advantages of CT must be balanced against potential risks of transporting critically ill patients, additional cost and additional radiation dose
• Best reserved for solving clinical dilemmas and for clinical research than for routine use
Oxygenation

• Improvement in oxygenation is usually associated with the reexpansion of nonaerated lung areas and has been used in several studies to discriminate between responders and nonresponders to recruitment.

• Absence of change in PaO$_2$ does not necessarily mean absence of anatomical recruitment.

• Changes in oxygenation alone may not directly reflect recruitment because oxygenation may be influenced by other factors affected by RMs, such as cardiac output.

DLCO

Prospective study of 16 mechanically ventilated patients with ARDS
Measurement of DLCO, using a bag-in-box system between the circuit Y-piece and the ET tube that allows a rebreathing maneuver without patient disconnection

DLCO measurement supplies information about functional lung recruitment, which is influenced by, but does not coincide with, mechanical recruitment and cannot be entirely predicted by changes in PaO$_2$/FiO$_2$ or in mechanical lung properties

Lung compliance

- Patients with ARDS who have higher % of potentially recruitable lung have poorer oxygenation and lung compliance in addition to higher levels of dead space
- Increase in static lung compliance after recruitment maneuver application could be reflective of improved lung aeration
- This parameter lacks sensitivity and specificity to precisely assess lung status and should therefore be used in conjunction with other parameters

Alveolar recruitment and dead space

• Tusman et al found that $V_{D_{alv}}$ and $V_{D_{alv}}/V_{T_{alv}}$ were closely correlated with atelectatic lung areas on CT scan and had a high specificity and sensitivity [$V_{D_{alv}}$ (0.89 and 0.90), $V_{D_{alv}}/V_{T_{alv}}$ (0.82 and 1.00)] for detecting early lung collapse during a PEEP trial following a recruitment maneuver.

• As lung closing and opening is not easy to evaluate at the bedside, monitoring of dead space may be useful for detecting lung collapse and for establishing open-lung PEEP after a recruitment maneuver (PEEP associated with the lowest dead space value during the descending limb of the recruitment maneuver).

Monitoring changes in lung volume at the bedside

- EELV measurement using an automatized system based on the nitrogen washout/washin technique that is incorporated into a ventilator is an acceptable surrogate of gas volume computed from lung density measures by CT.
- Changes in EELV analyzed solely should however be interpreted with caution as EELV does not permit one to differentiate the volume caused by recruitment of previously nonaerated lung units and the volume as a result of the inflation of already open alveoli.

Lung ultrasonography and alveolar recruitment

Abutting ultrasound lung comets arising from the pleural line

Irregularly spaced and abutting ultrasound lung comets arising from a subpleural consolidation

Lung ultrasonography and alveolar recruitment

Illustration of PEEP-induced lung recruitment detected by ultrasound

• A statistically significant correlation was found between PEEP-induced lung recruitment, evaluated by the P-V curves method, and the ultrasound reaeration score calculated from changes in the ultrasound pattern of each of the 12 lung regions (Rho= 0.88; P <0.0001)

• Although LUS is an easily repeatable technique, it nevertheless remains time-consuming, unsuitable for continuous monitoring and inappropriate to detect lung hyperinflation

Principle of electrical impedance tomography (EIT) and the functional EIT image (fEIT). Electrical excitation currents are applied between pairs of adjacent surface electrodes (1 to 16); the resulting voltages are measured between the other electrodes (U). In the fEIT image, impedance variation induced by the tidal volume is divided into a 32×32 matrix. Each pixel contains the individual tidal impedance variation, creating an image of ventilation distribution.
Regional ventilation changes by EIT

The increase or decrease in regional ventilation between PEEP (ΔfEIT) steps is displayed in a color-coded matrix. Electrical impedance tomography (EIT) can provide a good estimate of the amount of tidal recruitment and may be useful to individualize ventilatory settings.

Bikker IG et al, Crit Care. 2010; 14: R100
Future directions

• Thus far, no RCT has aimed to show whether the presence or absence of RM among the constituent elements of a protective ventilator strategy bundle makes a difference

• A RCT designed to answer this question with sufficient statistical power, the alveolar recruitment for ARDS trial, is ongoing
Take home message

• RMs in ARDS improve oxygenation in majority of patients
• Routine use of RMs cannot be recommended or discouraged; it should be considered for use on an individualized basis in patients with ARDS who have life threatening hypoxemia
• Should be considered if SpO$_2$ decreases by \geq 5% or PaO$_2$ drops by \geq 15 mmHg within 5 minutes of disconnection during suction or coughing or agitation and the same lasts for \geq 10 minutes
• If a recruitment maneuver is conducted, a decremental PEEP trial must be done to determine the minimum PEEP that sustains the benefits of the recruitment maneuver
THANK YOU