MEASUREMENTS OF LUNG VOLUME & AIRWAY RESISTANCE

Dr. Sunil Sharma Senior Resident Dept of Pulmonary Medicine

INTRODUCTION

- lung volumes measured by spirometry are useful for detecting, characterising & quantifying the severity of lung disease
- Measurements of absolute lung volumes, RV, FRC & TLC are technically more challenging → limiting use in clinical practice
- Precise role of lung volume measurements in the assessment of disease severity, functional disability, course of disease and response to treatment remains to be determined

- Lung volume are necessary for a correct physiological diagnosis in certain clinical conditions
- Contrast to the relative simplicity of spirometric volumes variety of disparate techniques have been developed for the measurement of absolute lung volumes
- Various methodologies of body plethysmography, nitrogen washout, gas dilution, and radiographic imaging methods

Eur Respir J 2005; 26: 511-522

- "lung volume" usually refers to the volume of gas within the lungs, as measured by body plethysmography, gas dilution or washout
- Lung volumes derived from conventional chest radiographs are usually based on the volumes within the outlines of the thoracic cage & include
 - volume of tissue (normal and abnormal)
 - lung gas volume
- Lung volumes derived from CT scans can also include estimates of abnormal lung tissue volumes

LUNG VOLUMES

• There are four volume subdivisions which

- do not overlap
- can not be further divided
- when added together equal total lung capacity

 Lung capacities are subdivisions of total volume that include <u>two or more</u> of the 4 basic lung volumes

BASIC LUNG VOLUMES

Tidal Volume

- Inspiratory Reserve Volume
- Expiratory Reserve Volume
- Residual Volume

• Tidal volume

 The amount of gas inspired or expired with each breath

Inspiratory Reserve Volume

 Maximum amount of additional air that can be inspired from the end of a normal inspiration

Expiratory Reserve Volume

 The maximum volume of additional air that can be expired from the end of a normal expiration

Residual Volume

- The volume of air remaining in the lung after a maximal expiration
- This is the only lung volume which cannot be measured with a spirometer

BASIC LUNG CAPACITIES

Total Lung Capacity
Vital Capacity
Functional Residual Capacity
Inspiratory Capacity

Total Lung Capacity

- volume of air contained in the lungs at the end of a maximal inspiration
- Sum of all four basic lung volumes
- TLC = RV + IRV + TV + ERV

• Vital Capacity

- The maximum volume of air that can be forcefully expelled from the lungs following a maximal inspiration
- Largest volume that can be measured with a spirometer

•
$$VC = IRV + TV + ERV = TLC - RV$$

• Functional Residual Capacity

- The volume of air remaining in the lung at the end of a normal expiration
- FRC = RV + ERV

Inspiratory Capacity

- Maximum volume of air that can be inspired from end expiratory position
- This capacity is of less clinical significance than the other three
- IC = TV + IRV

MEASURING VITAL CAPACITY AND ITS SUBCOMPONENTS

• Use a spirometer

MEASURING RESIDUAL VOLUME

- Cannot use spirometry
- Measure FRC, then use:RV = FRC ERV
- Residual Volume is determined by one of 3 techniques
 - Gas Dilution Techniques
 - Nitrogen washout
 - Helium dilution
 - > Whole Body Plethysmography
 - > Radiography

Two most commonly used gas dilution methods for measuring lung volume

- open circuit nitrogen (N₂) method
- closed-circuit helium (He) method

Both methods take advantage of

- physiologically inert gas that is poorly soluble in alveolar blood and lung tissues
- both are most often used to measure functional residual capacity

- In the *open-circuit* method, all exhaled gas is collected while the subject inhales pure oxygen
- Initial concentration of nitrogen in the lungs is assumed to be about 0.81
- rate of nitrogen elimination from blood and tissues about 30 mL/min
- measurement of the total amount of nitrogen washed out from the lungs permits the calculation of the volume of nitrogen-containing gas present at the beginning of the manoeuvre

An advantage of the open-circuit method is that permits an assessment of the uniformity of ventilation of the lungs by

- analyzing the slope of the change in nitrogen concentration over consecutive exhalations
- measuring the end-expiratory concentration of nitrogen after 7 minutes of washout
- by measuring the total ventilation required to reduce end-expiratory nitrogen to less than 2%

Am Rev Respir Dis 1980; 121:789-794

The open-circuit method is sensitive to

- Leaks anywhere in the system mouthpiece
- Errors in measurement of nitrogen concentration & exhaled volume
- If a pneumotachygraph is used attention must be paid to the effects of the change in viscosity of the gas exhaled, because it contains a progressively decreasing concentration of nitrogen

Disadvantages

- Does not measure the volume of gas in poor communication with the airways e.g. lung bullae
- Assumes that the volume at which the measurement was made corresponds to the end-expiratory point
- requires a long period of reequilibration with room air before the test can be repeated

Measuring spirometric volumes immediately before measuring FRC can eliminate the assumption of a constant or reproducible end-expiratory volume

CLOSED-CIRCUIT HELIUM DILUTION METHOD

- Subject rebreathe a gas mixture containing helium in a closed system until equilibriation is achieved
- Volume and concentration of helium in the gas mixture rebreathed are measured
- Final equilibrium concentration of helium permits calculation of the volume of gas in the lungs at the start of the manoeuvre

- Thermal-conductivity meter measures the helium concentration continuously, permitting return of the sampled gas to the system
- Because the meter is sensitive to carbon dioxide it is removed from the system by adding carbon dioxide absorber
- Removal of CO₂ & O₂ consumption results in a constant fall in the volume of gas in the closed circuit
- An equivalent amount of oxygen is to be introduced as an initial bolus or as a continuous flow

- Closed-circuit method is sensitive to errors from leakage of gas and alinearity of the gas analyzer
- Fails to measure the volume of gas in lung bullae & cannot be repeated at short intervals
- Test results are reproducible

Scand J Clin Lab Invest 1973; 32:271-277

BODY PLETHYSMOGRAPHY

Three types of plethysmograph

- pressure
- Volume
- pressure-volume/flow

PRESSURE (CLOSED-TYPE)

- Has a closed chamber with a fixed volume in which the subject breathes
- Volume changes associated with compression or expansion of gas within the thorax are measured as pressure changes in gas surrounding the subject within the box
- Volume exchange between lung and box does not directly cause pressure changes
- Thermal, humidity, & CO₂- O₂ exchange differences between inspired and expired gas do cause pressure changes

- Thoracic gas volume and resistance are measured during rapid manoeuvres
- Small leaks are tolerated or are introduced to vent to slow thermal-pressure drift
- Best suited for measuring small volume changes because of its high sensitivity & excellent frequency response
- Measurements are usually brief and are used to study rapid events it need not be leak-free, absolutely rigid, or refrigerated

VOLUME (OPEN-TYPE)

- Has constant pressure and variable volume
- When thoracic volume changes, gas is displaced through a hole in the box wall and is measured
 - spirometer or
 - integrating the flow through a pneumotachygraph
- Suitable for measuring small or large volume changes

To attain good frequency response, the impedance to gas displacement must be very small

• Requires a

- Iow-resistance pneumotachygraph
- sensitive transducer
- fast, drift-free integrator, or
- meticulous utilization of special spirometers

Difficult to be used for routine studies

PRESSURE-VOLUME PLETHYSMOGRAPH

Combines features of both types

- As the subject breathes from the room, changes in thoracic gas volume compress or expand the air around the subject in the box and also displace it through a hole in the box wall
- Compression or decompression of gas is measured as a pressure change
- displacement of gas is measured
 - spirometer connected to the box or
 - integrating airflow through a pneumotachygraph in the opening

 All of the change in thoracic gas volume is accounted for by adding the two components (pressure change and volume displacement)

• This combined approach has

- wide range of sensitivities
- permitting all types of measurements to be made with the same instrument (i.e., thoracic gas volume and airway resistance, spirometry, and flow-volume curves)
- Box has excellent frequency response and relatively modest requirements for the spirometer
- The integrated-flow version dispenses with waterfilled spirometers and is tolerant of leaks

THORACIC GAS VOLUME

- Compressible gas in the thorax, whether or not it is in free communication with airways
- By Boyle's law, pressure times the volume of the gas in the thorax is constant if its temperature remains constant (PV = P'V')
- At end-expiration, alveolar pressure (Palv) equals atmospheric pressure (P) because there is no airflow & V (thoracic gas volume) is unknown
- Airway is occluded and the subject makes small inspiratory and expiratory efforts against the occluded airway

- During inspiratory efforts, the thorax enlarge (ΔV) and decompresses intrathoracic gas, creating a new thoracic gas volume (V' = V + ΔV) and a new pressure (P' = P + ΔP)
- A pressure transducer between the subject's mouth and the occluded airway measures the new pressure (P')
- Assumed P_{mouth} = P_{alv} during compressional changes while there is no airflow at the mouth →pressure changes are equal throughout a static fluid system (Pascal's principle)

Boyle -Mariotte's Law : P x V = constant under isothermal conditions

 $P_A \times TGV = (P_A - \Delta PA)(TGV + \Delta V)$ Expanding and rearranging equation $TGV = (\Delta V / \Delta P_A)(P_A - \Delta P_A)$

Since ΔP_A is very small compared to P_A (<2%) it is usually omitted in the differential term

TGV ~ $(\Delta V / \Delta P_A) \times P_A$ with $P_A = P_{bar} - P_{H2O}$, sat TGV ~ $(\Delta V / \Delta P_A) \times (P_{bar} - P_{H2O}, sat)$

- The measured TGV additionally includes any apparatus dead spaces (Vd,app) as well as any volume inspired above resting end-expiratory lung volume at the moment of occlusion (Vt,occ)
- FRC_{pleth} can be derived from TGV by subtraction of these two volume components

$$FRC_{pleth} = TGV - V_{d,app} - V_{t,occ}$$

- The thoracic gas volume usually measured is slightly larger than FRC unless the shutter is closed precisely after a normal tidal volume is exhaled
- Connecting
 - the mouth-piece assembly to a valve and spirometer (or pneumotachygraph and integrator)
 - using a pressure-volume plethysmograph

makes it possible to measure TLC and all its subdivisions in conjunction with the measurement of thoracic gas volume

Problems

- Effects of Heat, Humidity, and Respiratory Gas Exchange Ratio
- Changes in Outside Pressure
- Cooling
- Underestimation of Mouth Pressure
- Compression Volume

IMAGING TECHNIQUES

- In uncooperative subjects radiographic lung volumes may be more feasible than physiological measurements
- The definition of the position of lung inflation at the time of image acquisition is clearly essential
- Volumes measured carry their own assumptions and limitations, and cannot be directly compared with volumes measured by the other techniques

CONVENTIONAL RADIOGRAPHS

- The principle is to outline the lungs in both A-P & lateral chest radiographs, and determine the outlined areas
 - assuming a given geometry or
 - using planimeters in order to derive the confined volume

Adjustments are made for

- magnification factors
- volumes of the heart
- intrathoracic tissue and blood
- infradiaphragmatic spaces
- In the determination of TLC, 6-25% of subjects differed by >10% from plethysmographic measurements in adult subjects

Academic Press Inc., New York, 1982; pp. 155-163

COMPUTED TOMOGRAPHY

 In addition to thoracic cage volumes, CTs can provide estimates of

- lung tissue and air volumes
- volume of lung occupied by
 - Increased density (e.g. In patchy infiltrates) or
 - Decreased density (e.g. in emphysema or bullae)
- In a study of children, comparable correlations were observed for CT and radiographic measurements as compared with plethysmographic TLC

Am J Respir Crit Care Med 1997; 155: 1649- 1656

• Disadvantage \rightarrow high radiation dose

MAGNETIC RESONANCE IMAGING

- MRI offers the advantage of a large number of images within a short period of time, so that volumes can be measured within a single breath
- Potential for scanning specific regions of the lung, as well as the ability to adjust for lung water and tissue
- despite the advantages of an absence of radiation exposure its use for measuring thoracic gas volume is limited by its considerable cost

Resistive ForcesInertia of the respiratory system (negligible)

Friction

- >lung & chest wall tissue surfaces gliding past each other
- >lung tissue past itself during expansion
- > frictional resistance to flow of air through the airways (80%)

Airflow in the Airways Exists in Three Patterns

- Laminar
- Turbulent
- Transitional [distributed laminar]

 Reynolds number <u>= ρ X Ve X D</u> n

ρ= density
Ve= linear velocity of fluid
D = diameter of tube
η = viscosity of fluid

- Turbulent flow tends to take place when gas density, linear velocity & tube radius are large
- Linear velocity (cm/sec) of gas in the tube is calculated by dividing the flow rate (L/sec) by tube area (cm²)
- Tube area refers to total cross sectional area of the airways of a given generation

- Airflow is transitional throughout most of tracheobronchial tree
- Energy required to produce this flow is intermediate between laminar and turbulent
- Many bifurcations in tracheobronchial tree, flow becomes laminar at very low Reynolds number in small airways distal to the terminal bronchioles
- Flow is turbulent only in the trachea where the radius is large and linear velocities reach high values [during exercise, during a cough]

Airway resistance is easy to measure repeatedly & is always related to the lung volume at which it is measured

- Measurements of RAW useful in differential diagnosis of
 - type of airflow obstruction
 - localization of the major site of obstruction
- Measured during airflow & represents the ratio of the driving pressure and instantaneous airflow

• RAW is determined by measuring the slope (B)of a curve of plethysmograph pressure (x-axis) displayed against airflow (y-axis) on an oscilloscope during rapid, shallow breathing through a pneumotachygraph within the plethysmograph

- Shutter is closed across the mouth-piece, and the slope (α) of plethysmographic pressure (xaxis) displayed against mouth pressure (y-axis) is measured during panting under static conditions
- Because P_{mouth} equals P_{alv} in a static system it serves two purposes
 - Relates changes in plethysmographic pressure to changes in P_{alv} in each subject
 - Relates RAW to a particular thoracic gas volume

Physiologic factors affecting plethysmographic measurement of RAW

Airflow

- RAW pertains to a particular flow rate during continuous pressure-flow curves, so the slope may be read at any desired airflow rate
- RAW is measured at low flows, at which transmural compressive pressures across the airways are small and the relation to Palv is linear
- Airway dynamics measured during forced respiratory maneuvers is associated with
 - large transmural compressive pressures across the airways
 - maximal dynamic airway compression limiting airflow rates and
 - possible alterations in airway smooth muscle tone under such circumstances, RAW may be increased markedly

Volume

- Near TLC, resistance is small, but near RV, resistance is large
- Lung volume may be changed voluntarily to evaluate RAW at larger or smaller volumes in health and disease
- As a first approximation, airway conductance (GAW), the reciprocal of RAW, is proportional to lung volume

Transpulmonary Pressure

- RAW is related more directly to lung elastic recoil pressure than to lung volume
- Subjects with increased lung elastic recoil have a higher GAW at a given lung volume because of increased tissue tension pulling outward on airway walls
- Loss of elastic recoil results in loss of tissue tension and decreased traction on airway walls, so GAW is decreased
- This relationship may be used to analyze the mechanism of airflow limitation in various obstructive ventilatory defects (e.g., bullous lung disease)

Airway Smooth Muscle Tone.

- Airways affected markedly by smooth muscle tone, depending on the state of inflation and volume history
- Relationships are relevant to diseases in which
 - smooth muscle tone is increased (e.g., asthma)
 - low lung volumes are encountered (e.g., during cough, when pneumothorax is present)
- Bronchoconstriction is not demonstrable temporarily after a deep breath or at TLC in healthy subjects
- RAW in healthy subjects may be greater when a given lung volume is reached from RV than from TLC

Panting

- Panting minimizes changes in the plethysmograph caused by thermal, water saturation, and carbon dioxide-oxygen exchange differences during inspiration and expiration
- Improves the signal-to-drift ratio, because each respiratory cycle is completed in a fraction of a second
- gradual thermal changes and small leaks in the box become insignificant compared with volume changes attributable to compression and decompression of alveolar gas
- Glottis stays open, rather than partly closing and varying position, as it does during tidal breathing

IMPULSE OSCILLOMETRY AND FORCED OSCILLATION METHODS

 DuBois and colleagues described an oscillatory method to measure the mechanical properties of the lung and thorax

Eur Respir J 1996; 9:1747-1750

- Use an external loudspeaker or similar device to generate and impose flow oscillations on spontaneous breathing
- Impulse oscillometry measures RAW and lung compliance independently of respiratory muscle strength and patient cooperation

- Sound waves at various frequencies (3 20 Hz) are applied to the entire respiratory system
- piston pump can be used to apply pressure waves around the body in a whole-body respirator
- Slow frequency changes in pressure, flow, and volume generated by the respiratory muscles during normal breathing are subtracted from the Raw data
- permitting analysis of the pressure-flow-volume relationships imposed by the oscillation device

- The elastic forces of the lungs and chest wall oppose the volume changes induced by the applied pressure & decrease as the frequency of oscillation increases
- The total force or pressure that opposes the driving pressure applied by the loudspeaker can be measured as peak-to-peak pressure difference divided by peak-to-peak flow → combination of the resistance and reactance
- This resistance is proportional to the RAW in healthy subjects and patients, although it does include a small component of lung tissue and chest wall resistance as well as the resistance of the airways

OSCILLATING AIR FLOW

- High frequency oscillating air flow is applied to the airways
- Resultant pressure & airflow changes are measured
- Applying a/c theory Raw can be measured contineously

J Appl Physol 1970; 28: 113-16

 Measures total respiratory resistance through out the vital capacity - displaying resistance as function of lung volume

