DM Seminar 23.01.04 **Diffusion Capacity** Puneet Malhotra Dept. of Pulmonary Medicine, PGIMER

- Physiology of diffusion
- Terminology
- Measurement of diffusion capacity
- Importance in respiratory diseases

Physiology

Primary function of lung: gas exchange Simple passive diffusion Fick's law of diffusion

Pathway for diffusion

Terminology

North America: "Diffusing capacity" Europe: "Transfer factor" Gas exchange involves more than just diffusion It is also a submaximal index & not a capacity

Why is CO preferred?

- not normally present in alveoli/blood
- transfer is diffusion limited rather than

perfusion limited

Avidly binds to Hb

 CO diffusion is less affected by other factors

Measurement of diffusing capacity **Methods** Single breath-holding method Single expiration method **Rebreathing method** Steady state method **Riley-Lilienthal method** Technique patient conditions inspiratory maneuver breath-hold expiratory maneuver

Single breath vs. Steady state

Easy for the lab Well standardized Less affected by nonuniformity of ventilation Difficult to perform by dyspneic patients, during exercise

Requires no respiratory maneuvers Technically difficult Gives lower values than single breath method

Spirometry, lung volumes

Patient conditions

Avoid conditions that affect PC blood volume (exercise, meals) DLCO least in standing, max in supine position

Diffusion Data					
Helium Inspired	13.94				
Co Inspired	.259				
Helium Expired	11.23				
Co Expired	. 892				
Diffusion Time	10.66				
Inspired Volume	1.02				
DLCO Result:	28.98				
02 Expired	15.70				
1/Theta	8.934				
Hgb	15.00				
V Insp BTPS:	4.41				

Hit any key when ready

QUICK REFERENCE SHORT FORM REPORT

Name :SIN	HAKASH	B. Heig	ht	ID: • 1721	145366 n We	Dat ight :7
Age 125	nace: 1	HEAR				
SPIROMETRY		Normal		Measured		
		Ran	ige	0	Pre	%Norm
FVC	L	4.15	-	3.09	5.21	125
FEV1	L	3.48	-	2.61	4.32	124
FEV1/FVC	*	84	-	76	83	98
FEF25-75	L/S	3.74	-	1.95	4.23	113
PEFR	L/S	7.79	-	3.9	11.28	144
LUNG VOLUMES		Normal		Measured		
DUTU TOAS		Rar	ige		Pre	%Norm
SVC	L	4.88	-	3.83	10.51	215
FRC	Ĩ.	3.1	-	1.64	5.21	168
RU	Ĩ.	1.48		.72	9.5	641
TLC	Ĩ.	6.36	-	4.9	20.01	314
RV/TLC	%	23		14	47	204
DIFFUSION		Normal		Measured		
DITTODIO		Rai	nge	8	Pre	%Norm
DI CO CORI	R	32.68	-	29.81	28.59	87
VA OPTOS	20 A	7.21	-	5.6	5.39	74
DL/VA		5.45	-	4.11	5.31	97

The Report

Calculation of DLCO

 $DLCO = \frac{VA}{T X (PB-47)} X \ln \frac{FACO_{i}}{FACO_{F}}$

T = time of breath hold
PB = barometric pressure
47 = water vapour pressure at 37°C

 $KCO = \frac{DLCO}{VA}$

Factors influencing DLCO

- Physiological
- Technical

•

Physiological **Hb level** DLCO directly correlates with Hb 1g/DI decrease Hb – 4% decrease DLCO 1g/DI increase Hb – 2% increase DLCO

COHb level

increase in COHb reduces **DLCO** in two ways decreases available binding sites on Hb reduces differential driving P across ACM 1% Increase in COHb decreases DLCO by 1%

Alveolar volume (VA)

increase in LV - increase in DLCO expansion of lung - thinning of ACM, increase in d of corner vessels •therefore correct DLCO for volume KCO=DLCO/VA e.g. i. Asbestosis – ILD + Pleural thickening ILD (reduced KCO) Pleural thickening (normal/increased) ii. COPD, Asthma ("increased" DLCO)

Circadian rhythm

DLCO drops 1-2%/hr between 9.30am-9.30pm

Gender & Ethnicity

lower in women for a given height lower in African-Americans, Asians

Age, stature, muscle mass

Smoking and alcohol consumption no smoking for 24 hrs no alcohol for 4 hrs

Exercise

30-40% increase recovery after high-intensity ex - 24 hrs

Body position remain seated for 5 min before procedure

Menstrual cycle

highest just before, least 5-10 days after

Technical factors influencing DLCO

PIO2

- Inversely related
- DLCO increases by 0.31% per mm Hg decrease in PIO2
- USA:FiO2 0.21
- Europe: FiO2 0.17
- PGI: FiO2 0.18
- Discontinue suppl. O2 > 5 min before procedure

Other Technical variables

Inspired volume

- Duration and condition of breath hold
- Deadspace washout volume
- Method of gas analysis
- Method of measuring VA

Diseases causing alterations in DLCO

Increased DLCO

True increase Polycythemia Alveolar haemorrhage L-R shunts Exercise Pseudo-increase Bronchial asthma

Decreased DLCO

ILD

early though nonspecific manifestation monitoring progress & Rx monitoring people at risk

COPD

 Δ of emphysema correlates with severity predicts exercise limitation predicts mortality

Pulmonary embolism

unexplained dyspnoea + reduced DLCO correlates with d^o of obstruction reductions persist for 3 yrs

CCF

Increased in early CCF Decreased in advanced & chronic cases correlates with NYHA class

Misc

Anemia, CRF Alcoholism, smoking RHD, PPH etc.

Example1

57 M, Ex-smoker, Gradually progressive dyspnoea x 6 mo

Measured %predicted

FEV1	2.08	92
FVC	3.45	74
FEV1%	81	
TLC	3.81	73
RV	1.26	54
RV/TLC%	33	
DLCO	5.9	36
DLCO/VA	1.83	53
VA	3.23	

Example 2

65 M, Smoker, prog dyspnoea X 6 yrs

	Measured	%predicted
FEV1	1.12	31
FVC	2.14	43
FEV1%	52	
TLC	9.67	134
RV	6.35	260
RV/TLC%	66	
DLCO	14.5	57
DLCO/VA	4.04	103
VA	3.59	