TROPICAL MEDICINE FOR THE PULMONOLOGIST (MALARIA, HYDATID DISEASE, AMOEBIASIS, LEPTOSPIROSIS)

DR. AMIT RAODEO

MALARIA
INTRODUCTION

- Malaria remains a major public health problem in endemic areas.
- Responsible for 1.5 to 2.7 million deaths each year worldwide.
- Tropical African countries are estimated to contribute >90% of the total malaria incidence and great majority of malarial deaths.
- Respiratory tract involvement ranging from upper respiratory symptoms to ARDS is seen in 3-10% cases.
- Incidence of pulmonary edema was around 1 per 1000 cases in a large study from Vietnam.

SEVERE MALARIA

Definition: Presence of P. falciparum asexual parasitaemia and no other obvious cause of their symptoms, the presence of one or more of the following clinical/laboratory features is classified as severe malaria

CLINICAL:
- a) Prostration
- b) Impaired consciousness
- c) Respiratory distress (acidotic breathing)
- d) Multiple convulsions
- e) Circulatory collapse
- f) Pulmonary edema
- g) Abnormal bleeding
- h) Jaundice
- i) Hemoglobinuria

LAB:
- a) Severe anaemia
- b) Hypoglycemia
- c) Acidosis
- d) Renal impairment
- e) Hyperlactataemia
- f) Hyperparasitaemia
COMPARISON BETWEEN LEPTOSPIROSIS, MALARIA AND DENGUE

<table>
<thead>
<tr>
<th>Clinical difference</th>
<th>Leptospirosis</th>
<th>Malaria</th>
<th>Dengue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splenomegaly</td>
<td>+</td>
<td>++</td>
<td>+ or -</td>
</tr>
<tr>
<td>Subconjunctival hemorrhage</td>
<td>Classically present</td>
<td>Can be present Rare</td>
<td>Can be present</td>
</tr>
<tr>
<td>Myalgia</td>
<td>Classically present</td>
<td>Usually present</td>
<td>Can be present</td>
</tr>
<tr>
<td>Hemoptyis</td>
<td>Common</td>
<td>Uncommon</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Encephalopathy</td>
<td>Uncommon</td>
<td>Common</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>Common</td>
<td>Uncommon</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>Less common</td>
<td>Uncommon</td>
<td>common</td>
</tr>
</tbody>
</table>

COMPARISON BETWEEN LEPTOSPIROSIS, MALARIA AND DENGUE

<table>
<thead>
<tr>
<th>Lab difference</th>
<th>Leptospirosis</th>
<th>Malaria</th>
<th>Dengue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>Normal unless bleeding</td>
<td>Anemia</td>
<td>Elevated/normal unless bleeding</td>
</tr>
<tr>
<td>TLC</td>
<td>Leucocytosis</td>
<td>Usually normal/leucocytosis can be present</td>
<td>Normal/leucopenia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased TLC bad prognostic sign</td>
<td></td>
</tr>
<tr>
<td>Potassium levels</td>
<td>Hypokalemia common</td>
<td>Hyperkalemia (IV Hemolysis/ ARF) / hypokalemia</td>
<td>Normal/raised/reduced</td>
</tr>
<tr>
<td></td>
<td>Hyperkalemia poor prognostic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIC</td>
<td>Uncommon</td>
<td>Common</td>
<td>Common</td>
</tr>
<tr>
<td>P.S</td>
<td>Left shift</td>
<td>Malarial parasite</td>
<td>Atypical lymphocyte</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>Uncommon</td>
<td>Common</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Pulmonary involvement</td>
<td>Pulmonary hemorrhage ArDS</td>
<td>ARDS Fluid overload Pulmonary sequestration due to parasite</td>
<td>Less common ALI/ARDS</td>
</tr>
<tr>
<td></td>
<td>Pneumonia Diffuse nodular shadows Cardiogenic pulmonary edema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABG</td>
<td>Normal anion gap, acidosis more common</td>
<td>High anion gap metabolic acidosis (lactic)</td>
<td>Lactic acidosis less common</td>
</tr>
<tr>
<td>Ascites / bilateral pleural effusion</td>
<td>Absent</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Common</td>
<td>Less common</td>
<td>Less common</td>
</tr>
</tbody>
</table>
HOW COMMON IS MALARIA AS CAUSE OF ARDS?

<table>
<thead>
<tr>
<th>Pathogenic Causes of ARDS</th>
<th>Number of Patients</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe pneumonia</td>
<td>27</td>
<td>51.8</td>
</tr>
<tr>
<td>Sepsis</td>
<td>25</td>
<td>52.0</td>
</tr>
<tr>
<td>Malaria</td>
<td>7</td>
<td>42.9</td>
</tr>
<tr>
<td>Enteric fever</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>“Viral” syndrome</td>
<td>4</td>
<td>25.0</td>
</tr>
<tr>
<td>Direct tracheobronchial injury</td>
<td>8</td>
<td>50.0</td>
</tr>
<tr>
<td>Aspiration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drowning</td>
<td>4</td>
<td>25.0</td>
</tr>
<tr>
<td>Toxic fume inhalation</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat embolism</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>10</td>
<td>50.0</td>
</tr>
<tr>
<td>Postoperative complications</td>
<td>3</td>
<td>33.3</td>
</tr>
<tr>
<td>Paraquat poisoning</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Others</td>
<td>5</td>
<td>60.0</td>
</tr>
</tbody>
</table>

PATHOGENESIS OF ALI/ARDS IN MALARIA

Fig. 2. Schematic summary of the possible pathophysiology steps of malaria-related ALI and ARDS. ARF = acute renal failure.
PATHOGENESIS OF ARDS AND PULMONARY EDEMA IN MALARIA

MALARIAL PARASITE

- Risk factors:
 - Extremes of age
 - Pregnancy
 - Non-immune adults
 - Immunocompromised host
 - Acidosis
 - Thrombocytopenia
 - Delayed treatment
 - Hyperparasitemia

- Activation of host immunological responses (TNF, IL-1, γIFN, etc.)

- Sequestration & capillary blockade by parasitized red blood cells (CD-36, thromboponin, ECAM-1)

- ARDS / Pulmonary Edema

- Co-factors or aggravating factors
 - Aspiration pneumonia
 - Gram-negative infection
 - Fluid overload

DIFFERENTIAL DIAGNOSIS OF HYPOXEMIA IN MALARIA

1) ARDS
2) Fluid overload
3) Aspiration pneumonia
4) Gram negative bacteremia
5) Sequestration of parasitized RBCs in pulmonary vasculature
BACTERIAL SUPERINFECTION IN MALARIA

- Both community acquired as well as nosocomial infections are common.
- Mechanism:
 - 1) Transient immunosuppression.
 - 2) Impaired splanchnic perfusion-translocation of gut bacteria.
- Most common infection is aspiration pneumonia.
- Recommendation: - Empirical antibiotics in severely ill patients without delay.

COMMUNITY ACQUIRED BACTERIAL INFECTIONS IN SEVERE MALARIA

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SEVERE MALARIA (n=93)</th>
<th>LESS SEVERE MALARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of episodes</td>
<td>13 (14%)</td>
<td>6 (6%)</td>
</tr>
<tr>
<td>Number of patients</td>
<td>13 (14%)</td>
<td>6 (6%)</td>
</tr>
<tr>
<td>Site of infection</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Bacteremia</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Lab Diagnosis of Malaria

<table>
<thead>
<tr>
<th>METHOD</th>
<th>ADVANTAGE</th>
<th>DISADVANTAGE</th>
</tr>
</thead>
</table>
| 1) Thick blood film | - Sensitive (>0.001% parasitemia)
- Species specific
- Inexpensive. | - Requires experience.
- Underestimates true count. |
| 2) Thin blood film | - Rapid
- Species specific.
- Provides prognostic information in severe malaria. | - Insensitive (>0.05% parasitemia).
- Uneven distribution of P. vivax. |
| 3) PFHRP2 dipstick or card test | - Rapid
- Sensitivity similar to or slightly less than thick film (>0.001% parasitemia). | - Detects only P. falc.
- Remains +ve after weeks of infection.
- Does not give quantitative analysis. |
| 4) Plasmodium LDH dipstick or card test | - Rapid
- Sensitivity similar to PFHRP2 dipstick.
- Less sensitive diagnosis for P. vivax, malariae and ovale. | - Slightly more difficult than PFHRP2.
- Miss low levels of parasitemia with other malarias.
- Does not provide quantitative analysis. |
| 5) Membrane concentration methods with acridine orange staining | - Sensitivity similar or superior to that of thick films (~ 0.001% parasitemia).
- Ideal for processing large no. of samples rapidly. | - Does not specify or quantitate.
- Requires fluorescence microscopy. |

Prognostic Markers in Malaria

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SURVIVORS (n=83)</th>
<th>NONSURVIVORS (n=10)</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrousable coma, n(%)</td>
<td>25(30)</td>
<td>9(90)</td>
<td><0.001</td>
</tr>
<tr>
<td>Severe anaemia, n(%)</td>
<td>7(8)</td>
<td>1(10)</td>
<td>1</td>
</tr>
<tr>
<td>Renal failure, n(%)</td>
<td>40(48)</td>
<td>7(70)</td>
<td>0.3</td>
</tr>
<tr>
<td>Pulmonary edema, n(%)</td>
<td>5(6)</td>
<td>5(50)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypoglycemia, n(%)</td>
<td>3(4)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Shock, n(%)</td>
<td>12(15)</td>
<td>8(80)</td>
<td><0.001</td>
</tr>
<tr>
<td>Bleeding/DIC, n(%)</td>
<td>19(23)</td>
<td>3(30)</td>
<td>0.7</td>
</tr>
<tr>
<td>Seizures, n(%)</td>
<td>2(2)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Acidosis, n(%)</td>
<td>11(13)</td>
<td>8(80)</td>
<td><0.001</td>
</tr>
<tr>
<td>Coma and acidosis, n(%)</td>
<td>2(2)</td>
<td>8(80)</td>
<td><0.001</td>
</tr>
<tr>
<td>Coma and shock, n(%)</td>
<td>3(4)</td>
<td>8(80)</td>
<td><0.001</td>
</tr>
<tr>
<td>Parasitemia of more than 5%, n(%)</td>
<td>32/79(41)</td>
<td>7/9(78)</td>
<td>0.07</td>
</tr>
</tbody>
</table>
TREATMENT OF SEVERE FALCIPARUM MALARIA

<table>
<thead>
<tr>
<th>Trial</th>
<th>No. of patients</th>
<th>Drugs</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SEAQUAMAT)</td>
<td>1461</td>
<td>Artes(730) Vs. Quin(731)</td>
<td>34.7% absolute mortality</td>
<td>Lancet 2005; 366: 717–25</td>
</tr>
<tr>
<td>Faculty of Tropical Medicine, Mahidol University</td>
<td>131</td>
<td>Artes Vs. Quin</td>
<td>Faster Parasite clearance, mortality</td>
<td>Clin Infect Dis. 2003 Jul 1;37(1):7-16</td>
</tr>
<tr>
<td>Faculty of Tropical Medicine, Mahidol University</td>
<td>102</td>
<td>Artem(50) Vs. Quin(52)</td>
<td>Faster Parasite clearance, mortality</td>
<td>Trans R Soc Trop Med Hyg. 1995 Nov-Dec;89(6):668-71.</td>
</tr>
</tbody>
</table>

CURRENT RECOMMENDATION

- Artimisinin derivatives like artesunate, artimether are drug of choice for severe malaria.
- Artesunate has the advantage of being water soluble and can be given I.V.
CURRENT RECOMMENDATION FOR EXCHANGE BLOOD TRANSFUSION

- Currently there are no randomized control trials to show any benefits of exchange blood transfusion over conventional therapy.
- Procedure is hazardous and availability of blood is a limiting factor.
- Currently WHO does not recommend exchange blood transfusion in the management of severe malaria.

OTHER ADJUVANT THERAPY

- Corticosteroids
 - No survival benefit
 - GI bleed
- Anticonvulsants
 - Phenobarb
- Others
 - Adrenaline
 - Heparin
 - Prostacyclin
 - Pentoxyfylline - No established role
 - Cyclosporin A
 - Iron chelators
 - Anti TNF
ROLE OF aPC IN MALARIA/LEPTOSPIROSIS

<table>
<thead>
<tr>
<th>Report</th>
<th>Clinical scenario</th>
<th>Inference</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drotrecogin alfa (activated) in severe falciparum malaria</td>
<td>severe falciparum malaria parasitaemia levels of 40% MODS</td>
<td>aPC for 96 hrs f/b gradual improvement</td>
<td>Anaesthesia, 2006, 61, pages 899–902</td>
</tr>
</tbody>
</table>

LEPTOSPIROSIS
INTRODUCTION

- Zoonotic disease.
- Transmitted by contact with infected urine and rarely blood of infected rodent.
- Penetration recurs through intact mucous membrane or abraded skin.

PATHOGENESIS

- Septicemic phase – vascular injury
- Immune phase – immune complex deposition
PATHOGENESIS OF LUNG INJURY

- In contrast to liver and kidney, isolation of leptospires is uncommon from lung tissue.
- Antigenic debris is also less common in lungs.
- Widespread but subtle inflammatory process.
- Presence of antibody along the septal wall in infected guinea pigs may suggest an autoimmune response similar to Goodpastures disease (Abs to type IV collagen). But renal tissue did not reveal glomerulonephritis characteristic of Goodpasture disease.
- The exact mechanism is largely unknown.

CLASSICAL FEATURES OF LEPTOSPIROSIS

- Biphasic illness - 1) Septicemic phase
 2) Brief afebrile period
 3) Immune phase
 (liver and kidney)
- Diagnosis in early phase is commonly missed.
- Hence Faine proposed a clinical scoring system which has good sensitivity (81.8%) and specificity (72.9%).
- Usually helpful in excluding diagnosis because of high negative predictive value.

J Postgraduate Med. 2005 Sept. 51(3), 169
LUNG INVOLVEMENT

- 1st publication of lung involvement in leptospirosis is attributable to Moeschlin in 1943.
- Varies between 20%-70% in all cases in various studies.
- Pulmonary examination ranges from normal to extensive alveolar hemorrhage and respiratory failure.
- Patients with severe alveolar hemorrhage can die within 24 hrs.
- BAL examination in patients with leptospirosis by D. Couedic and colleagues found that alveolar hemorrhage was present in all patients with sign/symptom of respiratory involvement and 7/10 patients in asymptomatic patients.

LUNG INVOLVEMENT (CONTD)

- There is absence of significant inflammation in areas of hemorrhage.
- Usually associated with hepato-renal involvement but can occur in the absence of these.

J. Infect. Disease. 1998;178:1457-63

LAB DIAGNOSIS OF LEPTOSPIROSIS

<table>
<thead>
<tr>
<th>TEST</th>
<th>ADVANTAGE</th>
<th>DISADVANTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) MICROSCOPY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGM</td>
<td>Convenient</td>
<td>Lacks sensitivity and specificity.</td>
</tr>
<tr>
<td>Immunofluorescent staining</td>
<td>Can be done on blood, urine or rarely CSF.</td>
<td>10,000 leptospira/ml for visualization is necessary.</td>
</tr>
<tr>
<td>Immunoperoxidase staining</td>
<td>Can be done on blood, urine or rarely CSF.</td>
<td>10,000 leptospira/ml for visualization is necessary.</td>
</tr>
</tbody>
</table>
LAB DIAGNOSIS OF LEPTOSPIROSIS

B) SEROLOGY

<table>
<thead>
<tr>
<th>TEST</th>
<th>ADVANTAGE</th>
<th>DISADVANTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT</td>
<td>Gold standard
Highly sensitive
Detests group specific Abs.</td>
<td>Complex
Requires maintaining strains for preparation of Ag.</td>
</tr>
<tr>
<td>IgM ELISA</td>
<td>Most widely used (sensitivity 100% and specificity 93%)</td>
<td></td>
</tr>
<tr>
<td>IgG ELISA</td>
<td></td>
<td>High rate of false positive.</td>
</tr>
<tr>
<td>Indirect Fluorescent Antibody test</td>
<td>Rapidity</td>
<td></td>
</tr>
<tr>
<td>Microscopic slide agglutination</td>
<td>High sensitivity and specificity</td>
<td></td>
</tr>
<tr>
<td>CIEP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D) Molecular diagnosis

1) Dot blotting
2) In situ hybridization
3) PCR

<table>
<thead>
<tr>
<th>TEST</th>
<th>ADVANTAGE</th>
<th>DISADVANTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C) Culture</td>
<td>Gives confirmed diagnosis</td>
<td>Low sensitivity
Cumbersome
Requires atleast 1 month before can be declared negative</td>
</tr>
<tr>
<td>D) Molecular diagnosis</td>
<td>Useful for DNA detection in serum and urine.
Useful when other tests fail to establish diagnosis.
Used for post mortem diagnosis.</td>
<td>Inability to identify serovar.
Cost and availability.</td>
</tr>
</tbody>
</table>
PROGNOSTIC MARKERS

- Multivariate analysis revealed three variables associated with mortality

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ODDS RATIO</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemodynamic disturbance</td>
<td>6 (CI 0.9-38.5)</td>
<td>0.005</td>
</tr>
<tr>
<td>Serum creatinine>265.2umol/l</td>
<td>10.6 (0.9-123.9)</td>
<td>0.02</td>
</tr>
<tr>
<td>Serum potassium>4</td>
<td>19.9 (1.2-342)</td>
<td>0.009</td>
</tr>
</tbody>
</table>

TREATMENT OF LEPTOSPIROSIS

- Ceftriaxone was found effective in severe leptospirosis in a study by Raptis et al.

- 23 patients were given ceftriaxone out of which 21 survived. No significant ADR noted.

Int J Antimicrobial Agent 2006 Sept, 28(3): 259-61
TREATMENT OF LEPTOSPIROSIS

- A prospective, open label, randomized trial in Thailand was conducted in 2000-2001, where they compared ceftriaxone (1 gm/day for 7 days) with sodium penicillin G (1.5 MU 6 hrly for 7 days).
- Both were found equally effective with median duration of fever was 3 days and equal number of deaths (5) were found in each group.

ROLE OF STEROIDS IN LEPTOSPIROSIS

- [Graph showing the number of patients and deaths in severely ill cases (APACHE > 60) with and without steroids. The graph indicates a statistically significant difference (p < 0.025).]
AMOEBIASIS

INTRODUCTION

- Protozoan infection caused by Entamoeba histolytica.
- Third most common cause of death from parasitic diseases after malaria and schistosomiasis worldwide.
- Extraintestinal manifestations are the most common cause of death.
EXTRAINTESTINAL SITES INVOLVED

1) Amoebic liver abscess - most common.
2) Pleuro-pulmonary – second most common.
3) Pericardial.
4) Brain.
5) Genitourinary tract.

RISK FACTORS FOR AMOEBIASIS

1) Lower socio-economic class
2) Poor hygiene
3) Lack of safe drinking water
4) Male homosexuals
5) Travellers
6) Prisoners
RISK FACTORS FOR PULMONARY AMOEBIASIS

1) Malnutrition
2) Alcoholism
3) ASD with left to right shunt

MODES OF PULMONARY INVOLVEMENT

- Primary - Very rare
 - Inhalation of dust containing cysts.
 - Aspiration of cysts or trichozoites of amoeba.
- Secondary - Infrequent.
 - Hematogenous spread from colon.
- Tertiary - Most common. Extension of amoebic liver abscess
ROUTES OF INVOLVEMENT

<table>
<thead>
<tr>
<th>Routes of involvement</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Abcess extending from liver</td>
<td>37.2</td>
</tr>
<tr>
<td>2) Bronchohepatic</td>
<td>19.6</td>
</tr>
<tr>
<td>3) Empyema extending from liver</td>
<td>17.6</td>
</tr>
<tr>
<td>4) Hematogenous spread without liver involvement</td>
<td>14.3</td>
</tr>
<tr>
<td>5) Hematogenous lung abcess and independent liver abcess</td>
<td>10.4</td>
</tr>
</tbody>
</table>

TYPES OF LUNG INVOLVEMENT

<table>
<thead>
<tr>
<th>Types of lung involvement</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Heptobronchial fistula</td>
<td>47</td>
</tr>
<tr>
<td>2) Pleural effusion and empyema</td>
<td>19</td>
</tr>
<tr>
<td>3) Lung abscess</td>
<td>14</td>
</tr>
<tr>
<td>4) Consolidation</td>
<td>10</td>
</tr>
</tbody>
</table>
CLINICAL FEATURES

- Fever of weeks duration and right upper abdominal and right pleuritic type of chest pain.
- Dramatic presentation of severe pain, respiratory distress and shock.
- Hepatomegaly in 50% cases.
- Hemoptysis is common followed by expectoration of anchovy sauce like pus.
- Bile in sputum is important clue toward hepatic origin.

DIAGNOSIS

- When to suspect amoebiasis-
 1) Elevated hemidiaphragm.
 2) Hepatomegaly.
 3) Pleural effusion.
 4) Basal pulmonary involvement in patient from endemic area >3 years age.
DIAGNOSIS

- Lateral radiograph: -
 1) Upward hump like prominence which can be anterior, middle or posterior. Anterior hump is more common.
 2) Consolidation which may have cavitation.
 3) Pleural effusion.
 4) Hydropneumothorax-bronchopleural fistula.
 5) Cavity with air fluid level in case of bronchial communication.

DIAGNOSIS

Stool examination: -
- Limited value.
- Only positive in 15-33% cases of extraintestinal amoebiasis.
- Pathogenic and nonpathogenic amoeba can be differentiated by zymodeme analysis, ELISA, RFLP.

Sputum examination: -
- Usually sterile and paucicellular unless superinfected.
ROLE OF ULTRASONOGRAPHY

- Monitoring response to therapy.
- To detect small pleural effusion.
- To look for subpulmonic collection.
- To differentiate from bacterial empyemas – loculations and septations are rare in amoebic empyemas.

WHAT IS ROLE OF CT SCAN?

- Can detect intrapleural fluid anywhere in the thorax example beneath scapula or within fissure which is usually missed by USG.
- Guide interventional procedure.
- To differentiate empyema with bronchopleural fistula from lung abscess.
IMMUNOLOGICAL TESTS IN AMOEBIASIS

A) Conventional-
1) IHA
2) ELISA for IgG and IgM; IgM is more specific
3) IFAT

B) Newer-
1) Gal or GalNAC inhibitable - Potential role in extraintestinal adherence lectin IgM amoebiasis.
2) Gal-GalNAC Ag by ELISA - >90% sensitivity before treatment.
3) E.histolytica Ag detection kit - useful for sputum and pleural fluid.
4) DNA by PCR - most sensitive method of detection of pleuropulmonary amoebiasis.

DIFFERENTIAL DIAGNOSIS OF AMOEBIASIS

- Lung carcinoma
- Pulmonary tuberculosis
- Lung abscess
- Sarcoidosis
- Hydatidosis

- Presence of palpable liver can be mistaken as secondary.
- Anterior basal segment of right lower lobe involvement is characteristic of amoebic origin.
TREATMENT OF AMOEBIASIS

- Oral or parenteral metronidazole 800 mg (35-50 mg/kg/day) three times daily for 5-10 days is the treatment of choice.
- Chloroquin and emetine are other alternatives but should be avoided because of potential cardiovascular side effects.

PULMONARY HYDATID
INTRODUCTION

- Hydatidosis is one of the most geographically widespread zoonoses in the world.
- Four species of Echinococcus are recognised.

EPIDEMIOLOGY OF HYDATID DISEASE

<table>
<thead>
<tr>
<th>Species</th>
<th>Geographical distribution</th>
<th>Definitive Host</th>
<th>Intermediate Host</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. granulosus</td>
<td>Mediterranean region, eastern Europe, Africa, South America, middle east, China, Australia, New Zealand</td>
<td>Dogs</td>
<td>Sheeps</td>
<td>Feco-oral route</td>
</tr>
<tr>
<td>E. multilocularis</td>
<td>Arctic, Asia, Western central europe</td>
<td>Foxes, Wolves</td>
<td>Rodents</td>
<td>Ingestion</td>
</tr>
<tr>
<td>E. Vogeli</td>
<td>South America</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>E. oligarthia</td>
<td>South America</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
LUNG INVOLVEMENT IN HYDATID

- Through transdiaphragmatic thoracic involvement- most common.
- Hematogenous dissemination.
- Lymphatic dissemination.

Sometimes lesions develop in area of lung remote from diaphragm-
1) Hematogenous spread.
2) Transbronchial spread.
3) Rupture of liver abscess into inferior vena cava and thromboembolic disease which may progress to pulmonary hypertension and cor pulmonale.
PLEURO-PULMONARY MANIFESTATIONS OF HYDATID

DIAGNOSIS OF HYDATID DISEASE

1) Specific serum antibodies.
2) Chest X-ray –
 - Solitary lesions- 60% cases.
 - Multiple –unilateral/bilateral lesions in 25-50%.
 - Ruptured cyst-Consolidation surrounding area.
 It communicates with bronchus-air fluid level.
 - Miniscus sign or crescent sign.
 - Cumbo’s sign (onion peel sign).
 - Water lily sign.
 - Mass within a cavity.
 Newer signs
 - Rim sign.
 - Inverse crescent sign.
TREATMENT OF PULMONARY HYDATID

- Surgery is the mainstay of the therapy – as complete elimination of parasite can only lead to cure.
- The principle is to preserve as much lung tissue as possible.
- Akin et al observed that radical resection is too aggressive and often not necessary.
- Paraenchyma around a hydatid cyst is often affected by lesion and may show chronic congestion, hemorrhage, bronchopneumonia or interstitial pneumonia.
- These changes often resolve after surgery, hence parenchymal resection is rarely indicated.

TREATMENT OF PULMONARY HYDATID (CONTD)

Conservative surgery are preferred.
1) Enucleation.
2) Pericystectomy.
3) Simple cystectomy.
4) Cystectomy with cappitionage.
- Spillage of daughter cyst is to be avoided.
- Recurrence can occur but fresh infection is also reported in person living in endemic area.

Bilateral pulmonary hydatid :
- One stage/two stage surgery.
- Larger cyst/ruptured cyst area treated first.
RECENT ADVANCES IN THE TREATMENT OF PULMONARY HYDATID

- Thoracophrenotomy is less invasive & preferred method of surgery in cases of combined lung & liver hydatid

 Br.J.surg.2005;92(6);729-33

- Recent reports have described VATS in pulmonary hydatid.

TREATMENT OF PULMONARY HYDATID (CONT'D)

- **Medical therapy:**
 - Advocated by few authors.
 - Mebendazole/Albendazole.
 - 68-70% of patients with pulmonary hydatid show some degree of response.
 - 25-34% cure rates have been documented.
 - Considering high risk of complications, hydatidosis patients should be followed closely.

 PARASITOL. INT. 2005;54;135-138
DRAWBACKS OF MEDICAL THERAPY

- Poor compliance and ADR due to long course of treatment.
- Poor follow up – most patients are from rural areas.
- Poor cure rates.
- High risk of complications.

CONSENSUS

- Lung hydatids produce more complications than liver, hence all patients of pulmonary hydatid irrespective of size or presence/absence of complications are to be surgically treated.
- Medical therapy should be used to prevent recurrence.
- Recommended regimen – mebendazole 1 month preoperative & 3 interrupted courses postoperatively
TROPICAL PULMONARY EOSINOPHILIA (FILARIASIS IN LUNG)

INTRODUCTION

- One of the many syndromes with pulmonary infiltrates and peripheral blood eosinophilia.
- Originally described in India in 1940.
- ILD thought to be due to immunological hyperresponsiveness to human lymphatic dwelling filarial parasites- W.bancrofti and B.malayi.
DIAGNOSTIC CRITERIA FOR TPE

- Cough worse at night.
- count >3300/cube mm.
- Clinical Residence in filarial endemic areas.
- Eosinophil and hematological response to DEC.
- Filarial antibody test has little value.

RESP. MED. 1999;93:655-659

PATHOGENESIS

- Out of 90 million people infected worldwide, <1% manifest symptoms of TPE.
- Exact reason is not known.
- Intense inflammation of lung parenchyma to trapped microfilaria which are released into circulation by adult worms residing in lymphatic system.
- Microfilaria are always absent in peripheral blood smear.
- Sometimes detected in lung biopsy specimens.
PATHOGENESIS (CONTD...)

- BAL of affected individuals reveal that polyclonal IgE and filarial specific IgM, IgG and IgE accumulate in the lung.
- Eosinophilic alveolitis.
- Profound dysregulation in otherwise tightly regulated IgE Ab response.
- Limited evidence to suggest underlying genetic basis.
- Usually complete resolution after therapy with DEC but in some cases some degree of irreversible interstitial fibrosis occurs.
- Pathogenesis in some aspects analogues to atopic asthma
 - obstructive ventilatory picture.
 - partial reversibility with beta2 agonists.
 - high levels of serum IgE.