Silicosis and Silicotuberculosis

Dr. Basanta Hazarika

Department of pulmonary Medicine

PGIMER, Chandigarh

Introduction

- Silicosis, major occupational lung disease
- Problem in both industrialized and developing countries
- Due to inhalation of crystalline silica, quartz
- Tuberculosis contributes significantly morbidity and mortality

Etiology

- Caused by inhalation of tiny particles of silicon quartz, silicon dioxide
- Workers at greatest risk, who blast rock and sand (miners, quarry workers, stonecutters)
- who use silica-containing rock or sand abrasives (sand blasters; glass makers; foundry, gemstone, and ceramic workers; potters).
- Coal miners are at risk of mixed silicosis and coal workers' pneumoconiosis

Physical and Chemical Properties

- Description Transparent crystals
- Molecular formula SiO2
- Molecular weight 60.09 g/mol
- *Density* 2.65 g/cm3
- Melting point 1610 °C
- Boiling point 2230 °C
- Solubility Practically insoluble in water or acids, except hydrofluoric acid; very slightly sol. in alkali.

Factors that influence the likelihood of progression to silicosis

- Duration and intensity of exposure,
- Form of silicon (exposure to crystalline form poses greater risk than bound form),
- Surface characteristics (exposure to uncoated form poses greater risk than coated form),
- Rapidity of inhalation after the dust is fractured and becomes airborne
- The current limit for free silica in the industrial atmosphere is 100 µg/m3

Prevalence and risks

 Prevalence: 22/1000 miners (1917-20) to <8/1000 miners currently

Risk: 24 years vs 36 years exposure to:

low dust levels: 5% 10%

high dust levels: 15% 40%

Forms of silicosis

Chronic (or Classic) Silicosis

Accelerated Silicosis

Acute Silicosis

Chronic (or Classic) Silicosis

- Most common form of the disease
- Usually follows one or more decades
- Respirable dust containing < 30% quartz
- Pathological hallmark- silicotic nodule
- Usually bilateral upper zones, visceral pleura, regional lymph nodes

Accelerated silicosis

- Results from heavier exposures
- Duration of 5 to 10 years
- More cellular than fibrotic in nature
- More diffuse interstitial pulmonary fibrosis
- Develop superimposed mycobacterial infection
- Scleroderma more frequent in this stage

Acute silicosis (Silicoproteinosis)

- Follows intense exposure to fine dust of high silica content
- Develops within a few months up to 5 years
- Shows all the features of PAP
- Rapid progression to severe HRF
- Radiographic finding –diffuse alveolar filling, lower lung zone

Pathology

Macroscopic:

- Hard gray-black nodules upper lobes and perihilar
- Massive fibrosis large firm masses, shrunken upper lobes, emphysematous lower lobes and subpleural blebs
- PMF (progressive massive fibrosis): upper mid and lower lobes (accelerated silicosis)
- Cavitation (ischaemic necrosis) → secondary TB
 - → silicotuberculosis

Pathology

Microscopic: Silicotic nodule

- Central zone: hialine connective tissue in concentric layers - acellular, no capillaries, varying silica content, occasional ischaemia
- Middle zone: cellular connective tissue
- Peripheral zone: halo of macrophages projecting into parenchyma, high silica content
- Located around respiratory bronchioli, blood vessels, pleural surfaces, interlobular septae

Simple silicosis

 Widespread nodules measuring 2-5 mm in diameter, with a predominance in the middle and upper lung zones.

Radiology

- R/N opacities in the middle and upper lung zone.
- Large, round opacities on the right; conglomerate nodules.
- Eggshell calcification of the mediastinal lymph nodes

Silicosis with progressive massive fibrosis

- Large, conglomerate nodules in both the middle and upper lung zones
- Periphera hyperlucency lung tissue secondary to central migration of the large nodules
- Evidence of volume loss in both upper lobes

Compilcated silicosis

 Conglomerate masses are 1 cm. to 10 cm. in diameter

 There is associated cicatrization atelectasis of the upper lobes, hilar retraction,

 Bibasilar hyperexpansion and emphysema. The masses may undergo ischemic necrosis and cavitation.

Diagnosis: Physiology

 Lung function: -varies from normal to obstructive or restrictive or combination

Diffusion decreased

Hypoxaemia on exertion

Diagnosis: Serology

- Hypergammaglobulinemia
- RF
- ANF
- S-ACE
- Increased incidence of systemic sclerosis described in SA gold miners

Diseases associated with exposure to Silica dust

Chronic obstructive pulmonary disease

Emphysema

Chronic bronchitis

Mineral dust- induced small airway disease

- Lung cancer
- Mycobacterial infection

MTB

NTM

Immune –Related Disease

PSS, RA, CRD, SLE

Complications

- Cor pulmonale
- Spontaneous pneumothorax
- Broncholithiasis
- Tracheobronchial obstruction
- Lung cancer
- Tuberculosis
- Hypoxemic ventilatory failure

Treatment

- Prevent further exposure to silica dust.
- Strongly advise patients to quit smoking
- Immunize against influenza, pneumococci
- No specific therapy for silicosis
- Experimental approaches are whole-lung lavage, aluminum inhalation, and corticosteroids
- Latent tuberculosis infection should be treated with isoniazid
- Complications should be treated appropriately

Prevention

- Dust suppression,
- Process isolation,
- Ventilation,
- Use of non-silica-containing abrasives.
- Respiratory masks
- Surveillance of exposed workers with respiratory questionnaires, spirometry, and chest x-rays is recommended.

Chest X-ray Schedule

Duration Age X-ray schedule

<10 years All age Every 5 years

>10 years <30 years Every 5 years

>10 years 35-44 years Every 2 years

>10 years >45 years Every year

(Donaldson k et al. Ann Occ Hyg 1998;42)

SILICOTUBERCULOSIS

Introduction

- The association of Silicosis and TB has been suspected several hundred years
- In 1902 JS Holdene committee reported that "Stone dust predisposes enormously to TB in the lung"
- Exposure to silica causes a renewed multiplication of bacilli in the healing TB lesions

Data available on Silicotuberculosis

In autopsy material – over 25 %

(Gooding CG at al Lancet, 2:891,1946)

Bacteriological evidence- 12.9%

(Theodas PA Am Re Tuber:65,24 1952)

Hong kong chest service -27%

(Am Rev Respir Dis -1992;145:36-41)

 In India silicotuberculosis incidence -28.6%

(Sikand BK,Pamra SP)

 Tuberculosis is 3 to 7 times higher in person with silicosis

(Gupta SP et al. India J Med Res 1972; 60:1909-15)

Pathogenesis

Iron hypothesis

- Mycobacteria are dependent on iron for growth and produce the iron chelators mucobactin
- Silica particles absorbed body iron and act as a reservoir of iron
- Silicoto-iron complexes may activate dormant tubercle bacilli

Influence of TB

- Exposure of silica has an unfavourable influence on the course of induced TB
- There is more fibrosis is produced by combination
- Synergistic effect of silicosis and TB proliferative fibrous reaction
- TB may complicate simple silicosis as well as advanced disease
- It may develop massive fibrosis

Diagnostic problem

- Symptoms of silicosis and silicoTB are misleading
- Interpretation of the Chest X ray flim of the silicotic is difficult

Diagnosis

- High degree of suspicion
- Radiographic abnormalities in the apical area of either lungs
- Poorly demarcated infiltrates of variable size that do not cross the lung fissures
- Opacities may surround pre-exiting silicotic nodules
- Presence of a cavity in a nodule

Diagnosis

- Frequent sputum examination for AFB
- Mycobacterial culture where high prevalence of atypical mycobacteria
- For early and accurate diagnosis
 FOB, BAL, TBLB
- Therapeutic trial of ATT

Immunodiagnosis

- † levels of total IgE and IgG
- ↑ Fibronectin
- ↑ CD4+ and CD20+ markers
- Concentration of the mucinic antigen 3EG5
 The use of a complex of immunological studies promoted the better early diagnosis of silicotuberculosis.

Diagnosis

 Sputum culture for Mycobacterium tuberculosis L forms is a convenient and rapid way to detection of Mycobacterium tuberculosis

 Detection rate of Mycobacterium tuberculosis L forms significantly increases with deterioration of silicosis.

(Zhonghua Jie He He Hu Xi Za Zhi. 2001 Apr;24(4):236-8.)

Radiology

Rapidly developing soft nodulation

Conglomeate massive shadowing

Evidence of cavitations

(Pancoast HK Am J Roen 14, 381;1925)

Additional finding

- Rapid changes in the radiographic picture
- Development of pericardial or pleural effusion

 Bronchial stenosis especially right middle lobe

(Barras G Schweiz Med. Wochenschr 1970;100:1802-8)

chest x-ray film showing conglomerate silicosis and tuberculous cavity in right middle pulmonary field.

Chest x-ray film showing conglomerate silicosis, tuberculosis, and bullae at both bases

Selection of patients for treatment

- History of exposure to silica.
- X-ray film suggestive of actual silicotuberculosis.
- Serial x-ray film evidence of progression of disease.
- Positive tuberculin test.
- Other evidence of activity, such as hemoptysis, silicosis, pleural effusion, or fever, elevated sedimentation rate,

Silicotuberculosis the results are not as good

- Silicotuberculosis affects not only the parenchyma but also the arteries and the veins.
- There is thickenings of the intima, hyaline and lipoid degenerations, scars in the vessels, impeding the blood circulation.
- Moreover, tuberculous cavities often occur inside silicotic nodes, which can hardly be reached by chemotherapeutic drugs.
- Fibrotic scars can prevent the collapse and scarification of a cavities

Treatment

- SCCT has been established in patients with silicotuberculosis
- Prolongation of the continuation phase from 4 to 6 months decreased the rate of relapse from 22 to 7%

(Blumberg et al. Am J Resp & crit care Med Febb 15- 2003)

 Presently, a closely supervised eight to nine months treatment is recommended

Silicotuberculosis: long-term outcome after short-course chemotherapy

		Silicosis (186)	No silicosis (403)
Age (SD) years	*	40.7 (9.34)	35.5 (8.80)
Environmental mycobacteria	NS	15 (8%)	17 (4%)
Failed initial Rx	NS	2	3
Relapses		29 (17%)	43 (11%)
Time to relapse	NS	2.6 (1.89)	3.1 (2.23)
(SD) years			-
Non-relapses		93 (66%)	222 (65%)
still in mine			
Service at 5 years	NS		

NS: no significant difference.

Tubercle and Lung Disease (I 995) 76, 3942

^{*}P < 0.05.

Treatment and sputum conversion

	roup	Number	Sputum remaining positive	Sputum conversion
1.	24 months or longer	15	1	14
2.	12-24 months	6	0	6
3.	Less than 12 months, or			
	interrupted treatment.	8	3	5
4.	No treatment	1	0	1
To	tal	30	4	26 (86.7%)

Tubercle and Lung Disease (I 995) 76, 3942

Relationship of x-ray changes to treatment

	roup	Improve- ment	A ppearance stationary	Dete- rioration
1.	24 months or longer	7	34	2
	12-24 months	2	20	1
3.	Less than 12 months, or			
	interrupted treatment.	0	35	ā
4.	No treatment	0	27	4
To	tal	9	116	12

Tubercle and Lung Disease (I 995) 76, 3942

Prevention

 Active surveillance of the workers in both pre-employment and post-employment periods

Periodic CXR

Tuberculin test

• Engineering measures to reduce or eliminate the exposure to silica dust