Dr. Gyanendra Agrawal Senior Resident Dept of Pulmonary Medicine # OXYGEN AND CARBONDIOXIDE CASCADE #### Introduction - Oxygen indispensable for life - Substrate used in the greatest quantity - No storage system - Continuous supply required - Carbondioxide major by-product of energy metabolism ## Mechanisms of oxygen transport - Convection (bulk flow) - Diffusion - Chemical combination with hemoglobin - 30-100 fold increase in O₂ transport - 15-20 fold increase in CO₂ transport # Oxygen Cascade - Uptake in the lungs - Carrying capacity of blood - Global delivery from lungs to tissue - Regional distribution of oxygen delivery - Diffusion from capillary to cell - Cellular use of oxygen # Oxygen Cascade - Uptake in the lungs - Carrying capacity of blood - Global delivery from lungs to tissue - Regional distribution of oxygen delivery - Diffusion from capillary to cell - Cellular use of oxygen ## Oxygen uptake in the lungs - Inspired O₂ concentration - Barometric pressure - Alveolar ventilation - Diffusion of O₂ from alveoli to pulm capillaries - Distribution and matching of ventilation and perfusion ### Alveolar ventilation - Depends on rate of breathing and tidal volume (V_T) - Hyperbolic relationship between alveolar ventⁿ and P_AO₂ - Affected by disorders of respiratory centre and respiratory muscles - High-frequency ventilation allows lower tidal volumes while maintaining MV ## Third gas effect Administration of nitrous oxide Large quantities of more soluble gas replace smaller quantities of less soluble nitrogen Net transfer of 'inert' gas from alveoli into body Temporary increase in O₂ concentration **FINK EFFECT** # Diffusion from alveoli to pulmonary capillaries $$O_2$$ diffusion = $K \times S/d \times \Delta P$ # Diffusion from alveoli to pulmonary capillaries - P_AO₂ is main determinant of PaO₂ - (A-a) gradient describes the overall efficiency of oxygen uptake - Capillary blood is fully oxygenated before traversing ¼ distance of alveolar capillary interface # V/Q matching -'True shunt' v/s 'effective ' shunt -Clinical correlates High PEEP strategy Prone ventilation ## Hypoxemia #### Causes of arterial hypoxaemia #### Alveolar hypoventilation - Respiratory depression from sedation or analgesia - Respiratory muscle weakness: - Prolonged mechanical ventilation - Catabolic effects of critical illness - Muscle relaxants or steroids - Phrenic nerve damage (cardiac surgery or trauma) - Neuromuscular disorders (Guillain-Barré, etc) - Obstructive airways disease #### *Diffusion* - Pulmonary oedema - Acute respiratory distress syndrome (particularly with fibrosis in later stages) #### Ventilation-perfusion mismatch - Alveolar collapse - Acute respiratory distress syndrome - Pneumothorax - Obstructive airways disease - Drugs—pulmonary vasodilators # Oxygen Cascade - Uptake in the lungs - Carrying capacity of blood - Global delivery from lungs to tissue - Regional distribution of oxygen delivery - Diffusion from capillary to cell - Cellular use of oxygen # Carriage of O₂ in blood 2% in plasma98% in hemoglobin # Hemoglobin saturation - Extent to which the Hb is combined with O₂ - Depends on PO₂ of the blood - Phenomenon of "cooperativity" - $P_{50} \sim 28 \text{ mm Hg}$ - Rapid and reversible reaction # Factors affecting OEC - pH - Pco₂ - Temperature - 2,3 DPG - Percentage of fetal Hb #### Oxygen hemoglobin dissociation curve (Oxyhemoglobin equilibrium curve) Chest 2005; 128:554S-560S ### **Bohr Effect** - Christian Bohr (1855-1911) - Effect of Pco₂ on OEC - Concept of permissive hypercapnia # 2,3- Diphosphogleycerate - Formed in the Rapoport-Luebering shunt of the glycolytic pathway - DPG mutase activity increased at high pH - Decreased DPG in stored blood - Increased in anemia - high altitude # Oxygen content (CaO₂) Total amount of O₂ present in 100 ml of blood $$(1.34 \times Hb \times SaO_2) + (0.003 \times PaO_2)$$ - $CaO_2 = 20 \text{ vol } \%$ $CvO_2 = 15 \text{ vol } \%$ - O₂ content decreased in - Hypoxemia (low PO₂) - Anemia (low Hb) - Hypercarbia, acidemia, hyperthermia (low SaO₂) ### Effect of anemia and CO Anemia → ↓Hb → ↓O₂ carrying capacity of blood & ↓ O₂ content #### Carbon Monoxide - affinity for Hb 250 fold relative to O₂ - Competes with O₂ binding - L shift- interfere with O₂ unloading at tissues - Severe tissue hypoxia # Oxygen Cascade - Uptake in the lungs - Carrying capacity of blood - Global delivery from lungs to tissue - Regional distribution of oxygen delivery - Diffusion from capillary to cell - Cellular use of oxygen # Oxygen delivery (DO₂) - Quantity of O₂ made available to body in one minute – O₂ delivery or flux - Equal to cardiac output X arterial oxygen content - DO₂ is approximately 1000 mL/min # Oxygen consumption (VO₂) Total amount of O₂ consumed by the tissues per unit of time $$VO_2 = 10 \times CO \times (CaO_2 - CvO_2)$$ Normal resting O₂ consumption ~250 mL/min in adult humans $$OER = VO_2/DO_2$$ # DO₂ – VO₂ relationship Jindal SK, Agarwal R. Oxygen Therapy. 2nd Ed. pp78 # DO₂ – VO₂ relationship in critically ill Slope of maximum OER is less steep Reduced extraction of oxygen by tissues Does not plateau (consumption remains supply dependent even at "supranormal" levels of DO₂) Critical level of DO₂ range from 2.1 to 6.2 mL/min/kg # Mechanisms causing failure of global oxygen delivery - Reduction in cardiac output - Fall in hemoglobin concentration - Failure of oxygen uptake by blood # Failure of oxygen delivery Relative effects of changes in PaO₂, Hb and CO on DO₂ in a critically ill # DO₂ during exercise - During exercise - O₂ requirement may be 20 times - Blood remains in capillary blood < ½ N time - But saturation not affected - Full saturation in first ½ of N time - Increased diffusion capacity - Additional capillaries open up - V/Q ratio improves - Dilatation of both alveoli and capillaries - OEC shifts to right- ↑ CO2, ↓ pH, ↑ temp, ↑ 2,3 DPG # Oxygen Cascade - Uptake in the lungs - Carrying capacity of blood - Global delivery from lungs to tissue - Regional distribution of oxygen delivery - Diffusion from capillary to cell - Cellular use of oxygen # Regional distribution and Oxygen consumption | Organs | Blood Flow,
mL/100 g | Arterial-Venous Difference,
Volume % | Vo₂,
mL/mir | |-----------------------------------|-------------------------|---|----------------------| | Heart
Brain
Kidney
Liver | 70
50
400 | 11.4
6.3
1.3 | 23.9
47.9
15.9 | | GI tract Skeletal muse | 29
ele 35 | $4.1 \\ 4.1$ | 20.9
29.3 | | Skin | 2.5 | 6.4 | 60.8 | Perfusion pressure is an important determinant Chest 2005; 128:554S-560S # Oxygen Cascade - Uptake in the lungs - Carrying capacity of blood - Global delivery from lungs to tissue - Regional distribution of oxygen delivery - Diffusion from capillary to cell - Cellular use of oxygen ## Cellular use of oxygen - Important for aerobic metabolism - EMP pathway - Krebs' cycle - Can be inhibited by cellular metabolic poisons - Exogenous (e.g. cyanide) or - Endogenous (e.g. endotoxins in septic shock) # Clinical features of tissue hypoxia - Dyspnea - Altered mental state - Tachypnea or hypoventilation - Arrhythmias - Peripheral vasodilatation - Systemic hypotension - Coma - Cyanosis (unreliable) - Nausea, vomiting, and gastrointestinal disturbance ## Issues in critically patient - Disordered regional distribution of blood flow - Both between and within organs - Loss of autoregulation - Use of vasopressors - Capillary microthrombosis after endothelial damage - Cytokines induced disordered cellular O₂ use ## Issues in critically patient - Decreased O2 carrying capacity of blood - Phlebotomy - Hemorrhage secondary to trauma / surgery - Inflammation - Nutritional deficiencies - Decreased erythropoietin production - Altered dissociation profile of OEC - Acidosis, fever - Decreased 2,3 DPG # Issues in critically patient - Cardiac dysfunction in ICU patients - Underlying organic heart disease - Insufficient DO₂ to the coronary circulation, precipitated by anemia - Subendocardial ischemia from LVH - Compromised myocardial contractility from the effects of inflammatory cytokines - Inappropriate intravascular fluid status ### **CARBONDIOXIDE CASCADE** # Blood transports more CO₂ than O₂ - CO₂ is twenty fold more soluble than O₂ in plasma - CO₂ content reflects the sum of CO₂ in the blood in all three forms - $CaCO_2 = 48 \text{ vol } \% \quad CvCO_2 = 52 \text{ vol} \%$ - Each time blood circulates through the body, 4 vol% of CO₂ is removed from the tissues and delivered to the lungs to be exhaled ## Dissolved CO₂ - Only ~5% of total arterial content is present in the form of dissolved CO₂ - 0.3 ml of CO₂/100 ml in absolute terms - During heavy exercise may increase up to sevenfold ## Carbonic anhydrase (CA) - Key enzyme in CO₂ transport - Catalyzes reaction in both direction (~5000 fold) - Not present in plasma - 7 isozymes - CA II in RBCs and CA IV membrane bound isozyme present in pulmonary capillaries - Inhibited by thiazides and acetazolamide #### Chloride shift - Hamburger in 1918 - HCO₃⁻ exchange with Cl⁻ ions across RBC membrane - Passive process - Mediated by membrane bound protein 'band 3' - Band 3 anchoring site for ankyrin and spectrin ## CO₂ bound as carbamate - CO₂ reacts directly with Hb - Reversible reaction with a loose bond - Depends on - O₂ satⁿ of Hb and 2,3 DPG (binding to Hb) - H⁺ concⁿ (both Hb & plasma proteins) - However, ↑ Hb desat and ↑ in H⁺ concⁿ work in opposite direction ## **Haldane Effect** JBS Haldane [1892-1964] #### Molecular basis for Haldane Effect Reduced Hb is better than oxygenated Hb in combining with-- - 1. H⁺ ions - 2. CO₂ to form carbamino compounds in turn assisting blood to load more CO₂ from the tissues #### Haldane Effect Binding of O₂ with hemoglobin tends to displace CO₂ from the blood Leads to ↑ uptake of CO₂ in the tissues and ↑ release of CO₂ in the lungs Approximately doubles the amount of CO₂ released from the blood in the lungs and that picked up in the tissues # Coupled transport within the red cell in peripheral tissues ## Influence of CO₂ on blood pH - Carbonic acid—bicarbonate buffer system resists blood pH changes - If H⁺ concentrations in blood begin to rise, excess H⁺ removed by combining with HCO₃⁻ - If H⁺ concentrations begin to drop, carbonic acid dissociates, releasing H⁺ ## Hypercapnia #### Signs of ventilatory failure: - Tachypnea - Acidemia - Increased pulsus paradoxus - Hyperinflation - Somnolence / Decreased mental status ## Hypercapnia - Etiologies $$P_a co_2 \quad \alpha \quad \frac{Vco_2}{RR (V_T - V_D)}$$ #### ↑VCO₂ (Hypermetabolism) $\mathbf{\Lambda}\mathbf{\Lambda}^{\mathsf{L}}$ Fever Seizures Sepsis Hyperalimentation Skeletal muscle weakness Impaired neuromuscular transmission ↓ Lung / chest wall compliance Airway obstruction **COPD** **Asthma** Obstructive sleep apnea #### **↓RR (Central hypoventilation)** Drugs **Brainstem lesions** Obesity-hypoventilation syndrome 个V **Excessive PEEP**