Nuclear Medicine Techniques in Pulmonology

Single most important application of pulmonary scintigraphy: Evaluation of suspected PE
 Other indications

 Quantitative analysis of relative lung perfusion before lobectomy/pneumonectomy
 ARDS

VENTILATION SCINTIGRAPHY

Radiopharmaceuticals

Radioactive gases

- Xe¹³³ (most common)
- Xe¹²⁷
- Kr^{81m}
- Xe¹³³: t1/2 5.27 days Relative low energy (81-Kev)of its photon
 Difficult to perform V scan after using Tc^{99m} for Q scan
 ∴ V scan performed first in
 - combined V/Q scan

<u>Radioaerosols</u>

- DTPA
 - (Tc^{99m} Pentetate)
- Ideal aerosol size: 0.1-0.5µ
- Localize in alveoli without significant large airway deposition

Protocol for xenon-133 ventilation scintigraphy

- Technique: Radioactive gas
- Patient preparation: None
- Dosage and route of admission
 - Xenon133:10 to 20mCi dosage by inhalation
- Procedure
 - Use a wide-field-of-view camera with a parallel hole, all purpose collimator and a 20% window centered at 81 keV
 - The patient is seated with the camera positioned in the posterior view

- First breath: patient exhales fully and is asked to take a maximal inspiration and hold it long enough, if possible, to obtain 100k counts
- Equilibrium: Obtain two sequential 90 sec images while the patient breathes normally
- Washout: Obtain sequential 45 sec posterior image then left and right posterior oblique images and a final posterior image
- Sitting position better: full Dm excursion, easier to obtain oblique views
- Radio aerosols:
 - DTPA Nebulized over several min.[25-75mCi]
 - Views obtained [similar to gas studies]

PERFUSION SCINTIGRAPHY

- Tc^{99m} labelled Human Albumin Microspheres (Tc^{99m} HAM)
- Tc^{99m} labelled macroaggregated albumin (Tc^{99m} MAA)
- (Commonly used) ■ Tc99m MAA: 10-30µ
- Clearance from lungs
 - Mech. degradation of particles to smaller size → Phagocytosed by RES after passing into systemic circulation
- T1/2 : 2-3 hrs
- Dose: 60,000-400,000 particles/dose

PROTOCOL FOR TECHNETIUM-99M MACROAGGREGATED ALBUMIN PERFUSION SCINTIGRAPHY

Patient preparation and precaution

- Right-to-left shunts are a relative contraindication
- Pregnant women: Adjust dosage and observe requirement for a minimum of 60,000 particles
- Pulmonary hypertension or pneumonectomy: Reduce number of particles to 60, 000

Dosage and Route of Administration

- □ Tc-99 MAA: 4 mCi (148 MBq) adult dosage
- Intravenous administration over several respiratory cycles with the patient supine

Procedure

Use a wide-field of-view gamma camera with a low energy high-resolution or all-purpose collimator and a 20% window centered at 140keV

Obtain anterior, posterior, right lateral, left lateral and right and left lateral posterior oblique images (anterior oblique images optimal)
 Obtain 500K to 750K counts/image

Precaution Avoid drawing blood into syringe Avoid spurious "Hot Spots" Agitate syringe before inj. Avoids setting out and aggregation of particles

APPEARANCE OF NORMAL SCINTIGRAMS

Ventilation Scan

Wash in image equilibrium phase washout phase

- : Homogenous distr. of Xe¹³³
- : Homogenous
- : Progressive/uniform ↓ in activity from lung

Aerosol Study

Distr. Similar to gas study

Perfusion Scan
Normal/healthy individual

Homogenous uniform distr.

Extra pul. Activity:

Positive- Rt. - Lt. shunt
Radiopharmaceutical contaminant in preparation

PULMONARY EMBOLISM

V/Q Mismatch Concept V/Q match both scintigrams abnormal defect of equal size V/Q mismatch Abnormal perfusion in an area of normal ventilation or much larger perfusion abnormality then ventilation defect

Terminology for V/Q scanSegmental defect

 Characteristically wedge shaped and pleural based, segmental anatomy of the lung Large segmental defect >75% of a lung segment Moderate segmental defect - 25%-75% of a lung segment Small segment defect - <25% of a lung segment Non-segmental defect Not conform to segmental anatomy, not appear

– Not conform to segmental anatomy, not appear wedge shaped or neither conforms to segmental anatomy nor appears wedge shaped

Causes of Non-segmental Defects Tumors Pleural effusion Trauma Hemorrhage Bullae Cardiomegaly Mediastinal and hilar adenopathy Atelectasis Pneumonia Aortic ectasia or aneurysm

Revised PIOPED Criteria	PIOPED II V/Q Scan Criteria
High probability (>80%)	High Scan probability
Two or more large mismatched segmental perfusion defects or the equivalent in moderate or large and moderate mismatched defects	Two or more large mismatched segmental defects or the equivalent in moderate or large and moderate defect
Intermediate Probability (20%-79%)	Intermediate-indeterminate scan probability
One moderate to one half large mismatched segmental perfusion defects or the equivalent in moderate segmental perfusion defects	One half to one and one half segmental equivalents, difficult to categorize as high, Multiple opacities with associated perfusion
Single matched V/Q defect with clear chest radiograph	defects
Difficult to categorize as low or high, or not described as low or high	
Low probability (<19%)	Low Scan Probability
Non-segmental perfusion defects	A single matched V/Q defect
Any perfusion defect with a substantially larger chest radiographic abnormality	More than three small segment lesions Probable pulmonary embolism mimic: one
Perfusion defects matched by ventilation abnormality provided that there are a clear chest	lung mismatched (without) with absent perfusion, solitary lobar mismatch
radiography and some areas of normal perfusion in the lungs	Mass or other radiographic lesion causing all mismatch, moderate-sized pleural effusion
Any number of small perfusion with a normal chest radiograph	Marked heterogeneous perfusion

	Very low Scan probability
	Non-segmental lesion
	Perfusion defect smaller than radiographic lesion
	Two or more V/Q matched defects with regionally normal chest radiograph
	One to three small segmental perfusion defect
	Stripe sign present around the perfusion defect
	Pleural effusion of one third with no perfusion defect
Normal	Normal perfusion Scan
No perfusion defect	No perfusion defect

High probability scan : Likelihood of PE: 80% (N) perfusion scan : Likelihood < 5%</p> Accuracy – PIOPED trial : Specificity - 97% Sensitivity - 41% - Occurrence of PE in: Low probability - 12% : Normal study – 4%

D/D of V/Q mismatch

- Acute pulmonary embolism
- Chronic pulmonary embolism
- Other causes of embolism (drug abuse, iatrogenic)
- Bronchogenic carcinoma (other tumors)
- Mediastinal or hilar adenopathy with obstruction of pulmonary artery or veins
- Hypoplasia or aplasia of pulmonary artery
- Swyer-James syndrome
- Post radiation therapy
- Vaculities
 - Chr PE: Most common cause of false +ve interpretation
 - Hilar mass compressing pul artery \rightarrow mimics PE

V/Q Match Abnormalities

- Chronic obstructive pulmonary disease
- Bronchitis and bronchiectasis
- Blebs and bullae
- Congestive heart failure
- Pulmonary edema
- Pleural effusion
- Asthma
- Pulmonary trauma, hematoma
- Inhalation injury
- Mucus plugs
- Bronchogenic carcinoma (other tumors)

PIOPED STUDY

933 recruited

■ 931 \rightarrow V/Q scan $755 \rightarrow Pul.$ Angio.

■ $PE \rightarrow 251 (33\%)$

High probability

Intermediate probability

Low probability

Normal Scan excluded PE

88% had PTE 33% had PTE 12% had PTE

[JAMA 1990; 263: 2753-59]

Systematic review and meta analysis of strategies for Dx of suspected PTERoy PM et al

- 48 articles analyzed
- 11004 pts with suspected PTE
- 3329 pts had PTE (30% prevalence)
- Mod. High pre-test probability
 High Probability V/Q
 Spiral CT +ve
 CSG +ve
- Low clinical probability above results req. confirmation by Pul. Angio.

 Low – Mod clinical Probability
 – Negative quantitative D-Dimer test (<500µg/L)

- Spiral CT –ve
- CSG –ve

<5% post test probability

Normal/near normal lung scan

■ High clinical probability → above results req. confirmation by Pul. Angio.

BMJ 2005; 331: 259-63

V/Q scan & Helical CT in Suspected PTE Hayashino et al Meta analysis of Dx performance 12 article included Pooled sensitivity for Helical CTPA – 86% Specificity – 94% V/Q scan – High probability Normal Sensitivity 39% 98.3% Specificity 97% 4.8%

- Conclusion:
 - Helical CT has greater discriminatory power than V/Q scan with (N) threshold to exclude PTE
 - Helical CT & V/Q scan with high probability Similar discriminatory power in Dx. of PTE

GALLIUM & OTHER AGENTS

Use of Ga⁶⁷ declined over last decade Reasons : Lack of specificity

- : Delay between injection and imaging time
- : Relatively poor imaging characteristics

PET/SPECT has replaced Ga scans as tumor imaging agent of choice

MECHANISM OF UPTAKE: TUMOR & INF./INFL.

Gallium – 67 Citrate
Used since 1869
Acts as Iron analogue
Transported in blood bound to transferrin
Tumors:

Inflammation

- - [Lactoferrin released by leucocytes & Bacteria]
- Highly conc. in sub-acute/chr. inf./infl. than acute processes

Normal Distr.

- Liver/spleen/skeletal system/colon varying degrees: salivary / laccrimal glands, nasal region, genitalia
- Excreted: bowels 80%

kidneys – 20%

Study Performed

- Ga⁶⁷ IV 8-10mCi
- Whole body/localized imaging after 24-48hrs
- Imaging can be repeated upto 96-120hrs.

Pt. Preparation

No dietary restr.

 No BT/Gad MRI in previous 24hrs. : interfere with normal Ga⁶⁷ distr.

Thalium-201 ChlorideMech. Of uptake

- Analogue of K⁺ uses ATP pump
- Co-transport mech. in tumor cells inv. K⁺, Na⁺, Cl⁻
- Leaky capillaries
- Mainly accumulates at sites of tumor Min. uptake in infl. focus
- Study performed
 - TI201 IV 3-5mci
 - Imaging started at 20min. and continued to 60min.
 - Lymphoma, kaposi's sarcoma
 - \checkmark
 - Delayed images

Pt. Preparation

- 4 hrs. fasting (to min. salivary and splanchinic uptake)
- Avoid physical exertion for at least 4 hrs. (to min. skeletal muscle and cardiac uptake)
- (N) uptake liver/heart

Clinical Application

- Diff. between benign/malignant disease
- Grade of malignancy
- Response to therapy/Recurrence

Technetium 99m Sestamibi

- Useful identifying primary tumor: Parathyroid adenoma, Breast, lung, bone, brain
- Uptake depends on blood flow/leaky capillaries/ ^Permeability

Neuroendocrine Imaging Radiotracers

- Used for imaging Pheochromocytomas, carcinoid tumors, neuroblastoma and other neuroendocrine tumors
- Carcinoid tumors: I¹²³ MIBG 80% sensitive
 I¹²³-MIBG :10mCi IV followed by whole body imaging at 24 hrs.

Pt. Preparation

- KI (2dr. BD) x 1-3 days
- No dietary restr.

Octreoscan

- Tumors esp. endocrine high density of somatostatin receptors
- In¹¹¹ labelled somatostatin analogue effectively localizes tumor
- Tc^{99m} depreotide (Neotect), somatostatin receptor binding agent helpful in evaluation of Pul. Nodules
- 6mCi IV Whole body imaging 6hrs. & 24hrs.
- Well hydrated

Gallium in Cancer

- Most avid uptake in lymphoma/Lung cancer/ sarcoma/melanoma
- Lymphoma
- Staging

	<u>Sensitivity</u>
HD	86-97%
NHL	86-92%

<u>Specificity</u> 100% 100%

Residual disease
 <u>Ga Scan Vs</u> <u>CT thorax</u>
 Sensitivity 96% 68%
 Specificity 80% 60%

 Specificity reduced by inflammatory changes (benign activity lower than malignant activity more often B/L and symmetric)

TI²⁰¹ Vs Ga⁶⁷

 Good tool to evaluate malignant bone lesions Sensitivity – 88% Specificity – 94% Inferior to Ga in staging lymphoma

Lung Cancer

- Ga has high affinity for lung cancer
 Sensitivity : 85 97%
- Superseeded by FDG for tumor identification staging
- Absence of FDG availability: Response to therapy
- Neotect useful in SPN evaluation
 - Sensitivity 97%
 - Specificity 73%
- Mesothelioma
 - Ga reliable for assessing extent of Pl. inv.
 Only when Pl thickening > 6mm
Carcinoids

- -Don't take up Ga, FDG
- -Octreoscan and I¹²³ MIBG used
- -Useful for staging
- In summary
 - With advent of PET
 - Role of Ga in staging response to therapy Has reduced
 - Useful when there is no access to PET

Inflammation/Infection

- Ga uptake generally associated with cellular infiltration rather then fibrosis
- Sarcoidosis: signs on Ga scan that suggest Dx
 - Lambda Sign: Rt. Paratracheal, B/L Hilar adenopathy resembles letter lambda
 - Panda Sign: Uptake in B/L lacrimal & parotid glands resembles panda bear
- Either or both of these patterns on Ga scan with symmetric B/L Hilar LNE or B/L interstitial opacities are highly sensitive & specific for sarcoidosis however,
- Ga scan in isolation 48% overall diagnostic sensitivity

Panda Pattern may be seen

- HIV
- Sjogren's syndr.
- -RA
- SLE
- Head & neck RT for lymphoma
- Uptake due to

 - In corporation by activated infl. cell
- Various studies: Sensitivity of Ga scan for Dx 60-90% with poor specificity

■ Ga scan helpful in cases when Bx is necessary for Dx but Pt. is a poor candidate for FOB→ extra thoracic site identification for safer Dx Bx

Combination of negative Ga scan & SACE levels virtually excludes the Dx of sarcoidosis

Ga scan more sensitive than SACE in identifying pts. with active sarcoidosis
 Clinical scenarios in which Ga scan is useful:

- Assisting in Dx of difficult cases esp. those with isolated extra-thoracic disease
- Identify active sites for Bx
- Differentiating active disease from fibrosis in a lung transplant candidate

Drug toxicity & Radiation pneumonitis Routine use not recommended May precede CXR changes Useful in establishing Dx in difficult cases Not very sensitive in Ac. Radiation Pneumonitis Infl./Occupational/Chr. Lung disease Ga uptake sec. to - Ac. Infl. Component - **Alveolar capillary permeability** Asbestosis : Ga uptake +ve in pts. With (N) CXR HRCT +GA scan:Helpful when clinical exam, CXR, PFT equivocal

CVD: Ga scan may provide estimation of location of inflammation & help guide BAL/Bx
Ust routinely used

Not routinely used

Summary

- Ga scan sensitive indicator of non-infectious, infl. lung disease
- However, not specific, inconvenient imaging necessitating multiple visits to Nuclear Med. Dept.
- Relegated to problem solving role rather than routine practice

Infectious Disease

High sensitivity for detection of active disease

- Helpful in diff. active disease from fibrosis

- Other pul. inf: Difficult situations where inf. not readily appearent (PUO)
- Ga scan preferred over WBC scan in leucopenic pts., pediatric population

AIDS

Diffuse Ga uptake in PCP has high sensitivity (80-96%) but poor specificity

 Negative Ga scan in pts. with (N) CXR has high negative pred. value in excluding Pul. disease
 Not routinely in PCP w/u

Reasons:

Poor specificity Delayed imaging (24-48hrs) HRCT favoured (sensitivity-100% specificity-89%, accuracy-90%)

- Ga scan reserved for situations where sputum analysis/BAL/HRCT – Non-diagnostic, empiric therapy not preferred
- A negative Ga scan with abnormal CXR highly suggestive of Kaposi sarcoma as KS is not Ga avid
- CMV mimics PCP but may have accompanying adrenal, lacrimal, colonic inv.
- Pul. & Parotid uptake (+) LIP
- Pul. & skeletal uptake (+) actinomycosis/nocardia

Summary

- Not used routinely
- Used occ. in distinguishing active diseases from scarring or when there is no other source of infection apparent

LUNG CANCER

Single Photon Radionuclide Imaging in Lung Cancer

Wide availability of single photon equipment

- Ga⁶⁷ Not useful in detecting lesions < 1.5cm</p>
 - False negative scan in upto 22% pts. of lung ca.

High PPV, low NPV

Specificity for med. staging – 38-100%

 No current role for characterization of SPN & staging of lung ca

T|201

- Like Ga cannot detect lesions <2cm
- Poor imaging characteristics
- Not widely accepted in assessment of SPN
- Tc^{99m} tetro fosmin, Tc^{99m} MIBI scan
 - < 1cm lesions Poor sensitivity</p>
 - Poor to FDG-PET in primary tumor visualization & detecting med. lymph mode metastasis
- Somatostatin receptor imaging
 - High affinity somatostatin receptors (+) variety of malignancies including SCLC
 - Lower frequency of expression in NSCLC
 - NSCLC constitutes majority of lung cancer
 - ... This may hamper detection of malignancy within SPN
 - However studies showed sensitivity of upto 96% in lung cancer detection

PET in NSCLC

Basics

- FDG is a glucose analogue
- Facilitated transport into cells via glucose memb. transporter [GLUT-1 to GLUT-7]
- Within the cells
 - FDG

 \downarrow Phosphorylation by hexokinase

2 deoxy-glucose-6- Phosphate (Accumulates as no further metabolism takes place)

NSCLC

- Increase in GLUT-1, and GLUT-3 expression
- $-\uparrow$ glucose use by tumor cells
- Upregulation of hexokinase levels, down regulation of glu-6 phosphatase

Deoxyglucose retention with in cells

SPN 20-50% malignant Existing diagnostic modalities – Radiology : Benign etiology suggested by Prolonged stability smooth control Calcification: Central/diffuse/Laminated/ Popcorn - However, majority of SPN after CT, remain indeterminate Dual energy CT/contrast enhanced dynamic CT

- Sensitivity : 98%
- Specificity : 58%

Histologic sampling Indeterminate lesions Obtain tissue Bx FOB: cytology & Bx $-\uparrow$ yield for - central lesions - endobronchial component - Bronchus entering prox. part of lesion TTNB: Better for – Peripheral lesion, FOB not available Sensitivity – 71-100% complications – Pneumothorax (61%) 5-27% req. ICT Haemorrhage

Thoracoscopy

- Peripheral lung lesions
- Complications : Mean hospital stay 2.4-5.7 days

: Duration of ICT: 1.8-3.3 days

- Open thoracotomy
 - No definitive Dx. inspite of all less invasive diagnostic procedures

FDG PET

- PPV
- Sensitivity : 83-100%, Specificity
 - : 92.6%, NPV

: 52-100% :87%

- Accuracy : 91.3%
- FDG-PET is more sensitive & Specific in characterization of SPN than any other currently available non-invasive method
- Either semi-quantitative/visual methods used for diff. bet benign & malignant SPN
- Most common semi-quantitative measurement is standard uptake value [suv]
- SUV of 2.5 at 1hr used to diff. bet benign and malignant SPN

False positive cause of FDG are pred. inflammatory in origin

Causes of False-Positive Findings with FDG-PET for characterization

Granulomas Histoplasmosis Tuberculosis Schwannoma Chronic inflammation Aspergillus infection Abscess Acute blastomycosis Sarcoidosis Cryptococcus neoformans Wegener's granulomatosis Aggressive neurofibroma Coccidiodomycosis

False negative: small size (0.5cm) well diff. malignancies (carcinoids, well diff. adeno ca, BAC)

Current clinical algorithm for the use of FDG-PET in characterization of SPNs

Accuracy of PET for Dx of Pul Nodules/Mass Gould MK et al

- Meta analysis
- 40 studies
- 1474 focal pul. lesion
- Sensitivity/specificity 91.2%
- In current practice: Sensitivity-96.8% Specificity-78%
- No diff. in Dx. accuracy of Pul nodules C/w lesion of any size
- Conclusion:
 - Accurate non-invasive imaging test for Dx of Pul.
 Nodules/Mass lesion

JAMA 2001; 285: 914-924

Summary of Major Studies on FDG-PET in Characterization of SPN

- Studies between 1990-2001
- 2079 pts
- 73.1% malignant lesions
- Sensitivity 95.9%
- Specificity 79%
- PPV 92.6%
- NPV 87%
- Accuracy 92%

Seminars in Nucl. Med. 2002; 240-271

STAGING OF NSCLC

Existing Staging Procedures CT

- Useful in T staging
- N stage esp. mediastinum inv. Node >1cm in short axis
- By using above criteria
- CT has sensitivity 78%
- Specificity 79% for LN mets
- CT may over/under stage upto 40% pts.
- Useful in detection of distant mets
- Cerebral CT: if clinical exam reveals focal neurodeficit on finding of disseminated disease

- If solitary lesion identified Bx preferred in v/o false positive (11%)
- Bone Scan: Skelatal mets identification
- Mediastionoscopy
 - Inoperable cases
 - Large Med. LNE
 Complications 23%
 False Neg. upto 10%
 - TBNA
 - Sensitivity 53% Specificity – 99% Complications – Haemorrhage

Pneumomediastinum

Other Modalities

- MRI useful for staging med LNE
- Useful in assessment of indeterminate adrenal masses
- FDG-PET Staging the Primary
 - Poorly suited to assess the stage of primary tumor (T).
 - CT better suited \rightarrow Reason: Better resolution, provides more anatomatic detail
- Staging the mediastinum
 - Sensitivity : 83.3%
 - Specificity : 92.2%
 - False positive usually d/t inflammatory pathology

Causes of False-Positive findings in FDG-PET thoracic Lymph node staging

- Bronchiectasis
- Upper respiratory tract infection/bronchitis
- Rheumatoid disease
- Proximity of tumor to mediastinum
- Pneumoconiosis
- Anthracosis/silicoanthracosis
- Hyperplastic lymph node/reactive hyperplasia/active
- Inflammation/Nonspecific inflammation
- Aspergilloma with reactive nodes
- Active granulomatous disease
- Active inflammation due to poststenotic pneumonia

False Positive \rightarrow

Relatively infrequent, may result in denying a pt. potentially curative Sx

- .:. Recommended: Invasive Sx staging
- False Negative
 - Nodes immediately adjacent to primary tumor
 - 2 or more LN adjacent to each other but at diff. LN stations → PDG-PET not able to resolve them separately
 - Normal size nodes with microscopic foci of tumor

Assessment of Distant Metastasis

- Able to detect 94% distant mets
- Superior in detection of distant mets c/w other modalities
- FDG-PET relatively insensitive for cerebral mets
 Reason: High Background caused by normal cerebral
 FDG uptake
 - [CT/MRI considered superior]
- Osseous mets: Bone scintigraphy vs FDG-PET
- - Sensitivity
 90%
 90%

 - Specifity
 66%
 98%
- Adrenal mets: for indeterminate lesions
 - Sensitivity 80% and Specificity 80%

Hepatic mets

- Able to detect unsuspected hepatic mets
- Characterizes the hepatic abnormalities identified on CT

Management Change

 Several studies have reported an overall management change between 24-40%

Cost effectiveness

- Major potential for cost saving is via
 - Minimizing invasive staging of mediastinum
 - Avoidance of inappropriate Sx in those with inoperable locally invasive or metastatic disease

FDG-PET is most cost effective when performed on pts. With CT negative for nodal metastases with Bx to confirm PET positive results

Current clinical algorithm for use of FDG-PET in staging of NSCLC

Test performance of PET and CT for mediastinal staging in pts. With NSCLC Meta analysis 39 studies 1959 pts Mediastinal staging CT **FDG-PET** Sensitivity 61% 85% Specificity 79% 90% PET more sensitive & less specific where CT showed enlarged nodes [100% & 78%] than when CT showed no LNE [82% & 93%] Conclusion FDG PET more accurate than CT for Med. Staging Ann. Intern. Med. 2003; 139: 879-92

Utility of Tc^{99m} Depreotide C/W FDG-PET & surgical staging in NSCLC Kahn D et al 166 pts Detection of malignant disease PET Tc^{99m} depreotide – Sensitivity <u>96%</u> 94% - Specificity 71% 51% FDG-PET correctly stage 55% of pts C/W Tc^{99m} depreotide (45%) Conclusion Sensitivity equal for both modalities Specificity superior for PET Chest 2004; 125: 494-501

Utility of PET in staging potentially operable NSCLC **Reed C et al** 303 pts, 22 institutions underwent PET after routine staging **Detection of** PET CT N_1 42% 13% N_2/N_3 58% 32% ■ NPV for Med. node – 87% Mets identified in 6.3% Conclusion: PET prevents non-therapeutic thoracotomies +ve finding confirmed by mediastinoscopy Mets require confirmation by biopsy J Thorac Cardiovasc Surg 2003; 126: 1943-51

Delayed FDG-PET scan for Diff. between malignant and Benign lesions Nakamoto Y et al 47 pts suspected pancreatic Ca – PET scan Malignant Benign 27 20 $\uparrow 22$ lesions $\downarrow 17$ lesions SUV at 2hrs. ■ SUV cut off of 2.5 – 1 false –ve, 7 false +ve Dx accuracy – 83% Delayed FDG-PET scan at 2hrs post inj. May help diff. between benign and malignant lesions Cancer 2000; 89: 2547-54

Detection of Recurrent disease

- Sensitivity : 97-100%
- Specificity : 61.5-100%
- False positive results
 - Radiation pneumonitis [preferable wait for 6mths

Atleast – 3mths after completion of RT before performing PET scan

False positive uptake declines with time

 Some role of repeating PET scan if false +ve suspected
 [curvilinear uptake S/o false +ve]
PET IN NON-MALIGNANT THORACIC DISORDERS

Pnemoconiosis

- FDG-PET studies revealed 1 uptake
 1 uptake d/t infl. Cell macrophages fibroblasts
- Specific radiotracer that localizes to fibroblasts and not in infl. Cell: 18F-fluoroproline
- Fluoroproline PET studies → ↑ uptake in early fibrosis

Infection/Inflammation

Infl. Cells at site of infl./inf. show 1 FDG uptake
 Infl. Cells show lower level of FDG uptake C/W malignant cells

- tuptake is d/t
 - $-\uparrow$ GLUT expression
 - Cytokines & growth factor 1 affinity of GLUT to FDG
- Sensitivity: 92%, Specificity: 100% in infl./inf. lesions

- Major role of PET imaging
- Identify correct location for further inv. Bx, Aspiration, or other modalities
- Sensitivity & specificity of PET in localizing lesions in AIDS pts. 92% & 94% respectively

FUO

- Useful tool in this setting
- Identifies lesions responsible for fever in >50% of pts.
- FDG-PET compares favourably with Ga⁶⁷ studies in PUO evaluation
- FDG-PET may replace Ga⁶⁷ as it gives quicker results

Sarcoidosis

- Useful in Mx of Pts with sarcoidosis
- CXR Ab. (N) ↑ACE levels with (N) PET → may remain well without t/t
- Not useful in Dx as findings may be confused with lymphoma
- Monitoring disease process and response to therapy
 - FDG-PET useful for this purpose in
 - TB/Aspergillosis Alveolar echinococcosis /MAI

Role in pleural disease

- Useful in Dx & Staging of malignant mesothelioma
- Useful to determine whether there is malignant transformation of reactive pleural disease
- More accurate than CT to identify extent of disease, stage of disease in mediastinum, detect occult extra thoracic metastasis
- FDG-PET can be use to diff. benign from malignant PI. thickening and for Dx & staging of mesothelioma
- Study can identify other focal area of metastasis or even primary in pts. with malignant PI. effusion with unknown primary tumor
- Alternate diagnostic method to invasive tests in suspected malignant PI. effusion esp. in pts. with equivocal findings on CT/Negative finding on pl. cytology after thoracocentesis