NSCLC New Advances in Treatment 2002-2005

STAGE-1 NSCLC

 $T_1 N_0 M_0 T_2 N_0 M_0$

- Sx is TOC
- Lobectomy > Segmentectomy/Wedge Resection
- Ass with \$\frac{1}{2}\$ Locoregional recurrence
 However, no overall survival difference.
- Inoperable disease but sufficient Pul. Reserve

\downarrow

RT with curative intent

- Adjuvant Therapy
 - Sx \rightarrow RT in St. I & II ass. \downarrow survival
 - $Sx \rightarrow CT$

INT. ADJUVANT LUNG CANCER TRIAL [IALT]

St III: 39.3%

- 1867 Patients
- St. I: 36.5% St. II: 24.2%
- Cisplatin + Etoposide 56.5%
 - Vinorelbine 26.8%
 - Vinblastine 11%
 - Vindesine 5.8%
- Sx: Pneumonectomy- 34% Lobectomy: 64%

<u>Conclusion:</u> Cisplatin based adjuvant CT improves survival amongst completely resected NSCLC *NEJM 2004; 350: 351-60*

JAPAN LUNG CANCER RESEARCH GROUP

- 979 Patients.
- St I; 75% (adeno carcinoma)

Conclusion :

•

UFT

- Adjuvant UFT improved survival among patients with St. I adeno carcinoma
- uracil-tegafur
- anti-angiogenic effect
- orally

NEJM 2004; 350: 1713-21

ADJUVANT LUNG PROJECT, ITALY

Median OS	55.2 mths	48 mths	
Median	36.5 mths	28.9 mths	
Progression			
Free survival			
Differences not Statistically Significant Conclusion: Failed to confirm statistically significant role of adj. CT in completely resected NSCLC.			
	J Natl. Car	ncer Inst. 2003; 95: 1453-61	
Results from F	<u>RCT:</u> Adj. CT shoul Ib or II NSCL	ld be considered strongly in C	

RADIO THERAPY

ACCELERATION

Netherland Cancer Institute

Dose/# : 2.25 Gy

Time : 6 weeks (5 days/wk)

:30

3D CRT : higher dose delivered to tumor, sparing (N) tissue

55 Patients (26 St. I & II, Rest locally advanced)

rMLD = MLD/prescribed tumor dose [Measure for RR to develop Radiation Pneumonitis]

Gr. I: St. I & II (13 patients) 87.8 GyGr. II/III: (29 patients) \rightarrow 81 GyIV: (11 pts) \rightarrow 74 GyDose limiting toxicity: 3 pts (Gr III/IV Pneumonitis)

Results	$: 6 \rightarrow CR$
	$38 \rightarrow PR$
	$6 \rightarrow$ stable/progressive disease
Acceleration	: No additional toxicity

(Radiother Oncol 2003; 66: 119-26)

HYPOFRACTIONATION

Few, Large # over limited time period

Radiological effects:

- 1. \downarrow Risk of Accelerated Repopulation by Shortening overall t/t time
- 2. Late toxicity: High (Lung/Spinal cord) because of high #
- 3. Useful in small tumors

2 years OS: 46 – 81%

Local control rates equivalent to conventional RT

25 Patients Medically Inoperable : St.I/I - 9 Patients : St. III – 16 Patients 11 Patients \rightarrow Induction CT Hypofractionated Accelerated RT 72 Gy/24 Daily # (i.e. 3 Gy/#) 22 Patients evaluable for Long term toxicity CR : 7 Patients PR : 8 Patients Stable Disease : 5 Patients Progression : 2 patients

AC Toxicity:	Gr. III Esophagitis	- 2 Patients
	Gr. III Pnenuonitis	- 1 Patient
	Gr. III Haemat toxicity	- 1 Patient
Long term toxicity:	Gr. I Pneumonitis	- 4 Patients
	Gr. I Esophagitis	- 1 Patients
Conclusion:	Feasibility of this schedule in	n NSCLC

Racliother Oncol 2004; 71:163-166

STEREOTACTIC RT

- Most extreme from of hypofractionation

Single # stereotatic radio Sx (SRS)

- Originally: Intra cranial lesions
- Fractionated Stereotactic RT:
- Tumor localization & Immobilized as in SRS
- Radiation-Multiple few #
- Accurate Tumor localization & Immobilization: Crucial

Reasons: 1. T/T delivered in smaller

- \therefore Missing a part of tumor in one # \rightarrow Greater effect.
- 2. Disproportionate \uparrow in late (N) tissue toxicity

Accurate Localization

Frame-Based SRT (Custom built frame for immobilization)

Image guided SRT (CT Scanner, Fluroscopic simulator, Linear Accelerator)

Resp. motion: Reduced by

- Shallow breathing
- Mech. means: Diaphragm control system, Abd. belts
- Breath holding
- Resp. gating

Hara R et al

- Stereotactic single high dose irradiation \downarrow Resp gating.
- 23 pts. Malignant peripheral tumors Tumors < 4 cm.
 F/u : 3-24 mths.
- 7 pts: Primary lung tumors (NSCLC) Rest: Mets with Primary in Breast/Liver/Bladder.
- Dose: 20-30 Gy to 22-35 Gy
- Local Regrowth: 3/10 pts : < 30 Gy

1 pt : 30 Gy

- No significant toxicity
- Conclusion: 30 Gy controls tumor with diameter < 4 cm.

(Radiother Oncol 2002; 63:159-163)

Whyte R et al

- 23 pts \rightarrow 15 : Primary Lung tumors
 - 8 : Metastatic
- CT guided percutaneous placement of 2-4 small metal fiducials
- 15 Gy single #
- 9 pts : Breath Holding technique
 - 16 pts : Resp gating
- Tumor size : 1-5 cm
- Complication with fiducial placement: Pneumothorax 3 pts.

- F/u: 1-26 mths
- No radiation related complications: Gr 3-5 severity

CR	: 2 pts.
PR	: 15 Pts
stable	: 4 pts
progression	: 2 pts

Conclusion: single # SRS safe & feasible

Ann Thorac Surg 2003; 75: 1097-101

Timmerman R et al

- 37 pts
- $T_1/T_2 N_0 M_0 NSCLC$
- Inoperable
- SRT: 3 # over 2 weeks
 - -0.8 Gy 20 Gy per # (Toal 2.4 Gy 60 Gy)
- OR: 87% (CR 27%)
- Median Fu
 - 15.2 mths: 6 pts \rightarrow Local failure
 - (Dose < 18 Gy/#)
- Complication: 1 pt Gr. 3 Pneumonitis
- Conclusion: Very high dose t/t tolerated

Chest 2003; 124: 1946-1955

RADIOFREQUENCY ABLATION (RFA)

- Radiowaves emitted from probe placed directly into tumor percutaneously (Image guided)/Surgically
- Mo A: Radiowaves \rightarrow Heat \rightarrow Coagulative necrosis
- Complication: Pneumothorax $\rightarrow 30\%$ 50%

 $(10-15\% \rightarrow ICT)$

PE, Pneumonitis, Fever

- Combined with Brachytherapy in NSCLC not amenable to Sx/EBRT
- Successful Radioablation: Tumor size 3-4 cm.

Hematol Onclol Clin N Am 2005; 19 (2): 237-61

STAGE-II NSCLC

 $T_1 N_1 M_0 \qquad T_2 N_1 M_0 \qquad T_3 N_0 M_0$

- $Sx \rightarrow TOC$

- Inoperable St. II: RT with curative intent

3year. Survival: 20%

- Adj. CT useful

STAGE-III A

$T_1 N_2 M_0 \qquad T_2 N_2 M_0 \qquad T_3 N_{1-2} M_0$

- RT,CT, Sx and combination of these modalities.
- CT combined with RT improves survival (cisplatin based)
- Neoadj. CT effective (↑ survival)
- Neoadj. $CT + Sx \rightarrow$ chest RT considered in pts with good performance status.
- Resected St. III a \rightarrow Benefit from Adj. CT (Cisplatin based)
- Post-op RT in Node +ve \rightarrow
- Improve local control
 - ? Improve Survival

STAGE-III b NSCLC

 $Any T N_3 M_0 T_4 Any N M_0$

- CT + RT [cisplatin based chemo RT → ↓ Risk of death by
 10% C/W RT alone]
- Concurrent Chemo $RT \rightarrow Resection$
- Performance status good: Combined modality
- Poor Performance Status: palliative RT
- CT alone

IIIrd Generation CT with RT [concurrently]

- •Combination: New Rx for locally advanced St. III inoperable NSCLC.
- •Local failure rates : 55-85%
 - 5years SR : 5 15%
- Paclitaxel Chemoradiation
 - Chen Y et al.
- Pulsed low dose paclitaxel & RT
- 41enrolled \rightarrow 33 completed t/t
- St. III A -15 pts III B -22 pts St. I + II -3 pts
- Paclitaxel: Thrice/week

	Dose	RT
Gr. I	15 mg/m^2	60-65 Gy
Gr. II	$20 \text{ mg/ } \text{m}^2$	(1.8 Gy/#)
Gr. III	25 mg/ m ²	6 wks
Response Rate	CR = 14%	
	PR = 86%	
Tumor Shrinkage:	$83 \pm 7\%$	
Conclusion:	Pulsed low dose Paclita	xel radiosensitization
	has a good control rate.	M/b useful in poor
	performance/old age	
	Clin Cancer	Res 2003; 9 : 969-975

XRT : 66	Gy (2 Gy/day)
+ 2 cycles	concurrent CT

CR	8%	19%	16%
PR	60%	47%	53%
Stable	16%	17%	20%
Progression	6%	9%	5%

Survival

2year28%29%40%Conclusion:Induction CT added to chemo RT improves
survival

J Clin Oncol 2002; 4191-98

Trodella L 36 pts (Stage III- 72% IV- 11%) Gem. Weekly x 5 weeks RT : 50 Gy (1.8 Gy/day) -4 pts CR PR - 18 pts Progression -2 pts No Change – 9 pts J Clin Oncol 2002; 20: 804-810 Yameda M **31** Patients Irinotecan & carboplatin wkly x 4 wks $RT \rightarrow 60 \text{ Gy}/30 \text{ #}$ Irinotecan Dose $(30 - 60 \text{ mg/m}^2)$ CR - 3 ptsPR - 15 ptsMedian survival : 14.9 mths Survival Rate 1 year : 51.6% 2 years : 34.2% Rec. dose for irinotecan - 50 mg/m^2 Conclusion: Therapy active against inresctable NSCLC Br. J Cancer 2002; 87: 258-63

- \therefore IIIrd gen CT \rightarrow
- Independently active against NSCLC
 - \rightarrow Potentiate RT effects
 - → ↑ Pneumonitis/Esophagitis with concurrent Chemoradiation
 - \rightarrow Multi agent Chemoradiation \uparrow toxicity.
 - Tumor response rates similar to single agent use.
 - $\rightarrow \qquad \text{Induction CT} \rightarrow \text{Chemoradiation improved} \\ \text{survival & disease control.}$

STAGE IV

Any T Any N M₁

- Cisplatin based CT provide modest survival benefit in short term survival C/W BSC.
- Taxane + Platinum Compound \rightarrow High response rate

Better 1year survival

Palliation of Symp

- No specific regimen can be regarded as Std. therapy
- CT recommended: Good performance status who desire t/t
 RT: Palliating local Symp, progressive disease while on CT, Not fit/decline CT

-	Untreated Me	tastatic NSCL	C	
	• Median Surv	vival: 4-5 mths	5	
	• 1 year Survi	val: 10%		
-	Metanalysis:	- Older Chem	otherapy reg	imens for adv.
		$NSCLC \rightarrow be$	etter survival	C/W BSC.
	BSC	Older CT	2 nd Gen	3 rd Gen Taxaxes/ Topoisomerase (-)
Median	4-5 mt	ths 5-6 m	ths 6mths	8-9 mths
Surviva	al			
1year surviva	5-10% 1	10-15	% 20-25%	o 35-40%

- 1st line therapy: Platinum based regimen \rightarrow Std. Of care
- Triplets not more effective than Doublets

- More toxic & expensive

- 4 cycles \rightarrow Sufficient
- Poor PS : ↑ toxicity/Few Benefit
- 2nd line therapy : Docetaxel extensively studied & approved.

NCI. Canada 50	03 Patients	
NSC	LC St. III/IV	
•		•
Cis/Vin	Cis/Gem	Gem/Vin
n = 252	n = 126	n = 251
n = 252		
Median Survival	38 wks.	32 wks
Response Rate	30%	25%
QOL Improved	63%	62%
Worse	37%	38%
SE: Gr. III/IV Myelosuppress	sion 30%	15%
Vomiting	65%	36%
Conclusion: - Global QOL no	ot improved with Gem/	vin

- Global QOL not improved with Gem/vin

- Gem/vin less toxic than Cisplatin based therapy.

J Clin Oncol 2003; 21: 3025-34

Georgoulias V

Multicentre Ph. III trial

Gr. 2/3 Anemia	33%	16%
Febrile Neutropenia	9%	8%
Conclusion:	- Doc/Cis higher RR - OS similar in both gr.	
	- Doc suitable front line CT for pts. who cannot tolerate Cis.	
	J Clin Oncol	2004; 22: 2602-9

EORTC 08	975		
Ph. III trial	2	80 pts. NSCLC	
	↓ Pac/Cis	Gem/Cis	↓ Pac/Gem
	(n = 159)	(n = 160)	(n = 161)
Median Survival	8.1 mths	8.9 mths	6.7 mths
RR	31.8%	36.6%	27.7%
Gr. III	34%	43%	30.4%%
Neutropenia	ı		
Conclusion	-Gem/Cis, -T/T well t	Pac/Gem donot ↑ olerated, most QC <i>J Clin O</i>	survival c/w Cis/Pac DL parameters similar. <i>Incol 2003; 3909-3917</i>

RECURRENT NSCLC

- Solitary cerberal mets after resection of primary NSCLC

Sx Excision + Post op whole Brain RT

- Metastatic Disease \rightarrow CT

- Good performance status: Platinum based CT

- Platinum based $CT \rightarrow Relapsed$

IInd line $CT \rightarrow Docetaxel$

Erlotinib defitinib defitinib

NOVEL THERAPIES IN LUNG CANCER

EGFR (HER 1; erb B-1)

- Over expressed in 40-80% NSCLC
- Ass. With poor prognosis
- EGFR (-) \rightarrow
 - \downarrow Cell proliferation
 - ↑ Apoptosis
 - \downarrow Angiogenesis

- RTK inhibitors: compete with ATP for intracellular catalytic site
- Administered Orally
- Toxicity:- -Acneiform rash
 - Diarrhea
 - ILD less commonly

Gefitinib [Iressa]

- First targeted therapy approved by FDA
- Used alone & in combination with cytotoxic drugs

Ideal-1 (Iressa Dose Evaluation in Advanced Lung Cancer)

RCT, Double blind multicenter Ph-II 43 centres [Europe/Australia/SA/Japan]

IDEAL – 1

AE: Mild- skin reaction /Diarrhea More frequent in 500mg gr. Withdrawal due to drug related AE 1.9% & 9.4% Conclusion: Meaningful anti-tumor activity 250 mg/d → favourable AE profile (J Clin Oncol 21:2003;2237-46)

IDEAL-2

IDEAL-2:Response Rate of Gefitinib as IIIrd line therapy216 Patients; 30 Medical Centres in US

FDA approved Gefitinib for NSCLS Patients who failed therapy with Platinum + Docetaxel.

INTACT – 1

Gefitinib Combined with Std CT regimens

- INTACT-1. (Iressa NSCLC Trial Assessing Combination Treatment)
- -Ph-III, double blind placebo controlled multi-centre trial.
- -Unresectable stage III/IV NSCLC
- -Cisplatin/Gemcitabine

-Gefitinib	250	500	Placebo
n	362	365	363
Median survival time	9.9	9.9	10mths
Response rates	51.2%	50.3%	47.2%
(CR + PR)			

(J Clin Oncol 2004;22:777-84)

INTACT - 2

Ph-III, randomized placebo controlled double blind trial

(J Clin Oncol 2004;22:785-94)

These 2 trials: No clinical benefit in survival on adding Gefitinib to combination CT

- Response noted in Women

Adeno Ca histology

Non- smokers

Patients of Asian descent

ERLOTINIB (TARCEVA)

-EGFR tyrosine kinase (-)

-Approved by FDA in NSCLC

-Placebo controlled double blind RCT

-Stage III/IV NSCLC received 1/2 Previous CT

ERLOTINIB (TARCEVA)

Conclusion

- Erlotinib prolong survical in NSCLC after 1st/2nd line CT *NEJM 2005; 353: 123-32*
- Two RCT Ph III (TALENT and TRIBUTE)
- Erlotinib + (Cisplatin/Gemcitabine)
- Erlotinib + (Carboplatin/Paclitaxel) as 1st line therapy in advance NSCLC
- No advantage in response rates/survival
- Other EGFR TK (–) in pipeline
- EKB-569, CI-1033, 6W-572016, PKI-166

MONOCLONAL AB AGAINST EGFR EXTRACELLULAR DOMAIN

- <u>Cetuximab:</u> Binds EGFR

(-) EGF RTK activation Cetuximab + Cisplatin/Vinorelbine C/V

 RR
 53%
 26%

 Disease
 93%
 77%

Control Rate

- <u>Panitumumab:</u> Human monoclonal Ab

Similar action.

• Combination EGFR TKI + EGFR Monoclonal Ab

↓ Maximize EGFR (-) ↓ Higher Response Rates.

HUMAN EPIDERMAL GROWTH FACTOR-2/neu

- HER 2/neu- over expressed in 25-30% NSCLC, Breast tumors
- Transtuzumab [Herceptin]
- Humanized monoclonal Ab against Her 2/neu
- ECOG trial Ph-II study

```
52 \text{ Patients} \downarrow
Transtuzumab + Paclitaxel/Carboplatin
(Wkly)
OR \qquad : \qquad 24.5\%
Median \qquad : \qquad 10.1mths
```

survival

(J Clinical Oncol 2004; 22:1180-7)

<u>C-Met</u>

- Involved in cellular proliferation & motility.
- Expressed in 72% Adeno ca; 38% Sq. cell ca
- Ass. With poor prognosis.
- c-Met (-): Pre clinical stages

SU 11274 \rightarrow cell cycle arrest, apoptosis PHA 665752 \rightarrow (-) tumor growth

ANGIOGENESIS INHIBITORS

Tumor growth & metastasis		
VEGF & VEGFR \rightarrow	Endothelial Cell Proliferation	
	Formation of new blood vessels	
	Vascular permeability	
- \uparrow levels:	Poor prognosis in Lung/Breast/Colon Ca.	
Bevacizumab:	Humanized monoclonal Ab + CT [Carb /Pacl]	CT alone
RR	31.5%	18.8%
	2.8 mth \uparrow in survival	
SE	Haemoptysis 6/67	
	$4 \rightarrow Fatal$	
	[Sq. cell ca]	

VEGF RTK inhibitors: Vatalanib SU 668 ZD 6474 Ph I/II trials

Retenoid Signalling Pathways

Retinoic Acid Receptors [RAR] Retenoid X-Receptors [RXR] + Retenoids [Nucleus]

Influence cell growth, Division, Reproduction, Differentiation

RETENOID PATHWAY

↓ expression RXR, RAR → NSCLC RXR (-) Tumor growth ↓ expression: Poor prognosis

Bexarotene: Selective RXR retenoid \downarrow (+) RXR Ph-II trials: Combination of Baxarotene + CT Ass. with \uparrow survival & better RR.

PROTEASOME INHIBITOR

"cellular housekeepers"

Degrade cellular proteins (cyclins, cyclin dependent kinases, nuclear factor kB (NFkB)

•<u>Bortezomib:</u> - Inhibition of Proteasomes

- Cell Cyle arest in G2-M phase
- ↑ Apoptosis
- Combined with CT in NSCLC cell lines

80% cells killed

- Sequential administr of Bortezomib after cytotoxic agents(Gemcitabine/Carboplatin) more useful

CYCLIN DEPENDENT KINASES (CDK)

- RB protein phosphorylation is important in cell cycle progression.
- RB phosphorylation: Regulated by CDK
- Aberrant Expression of CDK: Malignant tumor
 - Flavopiridol:
 (-) ATP binding site of CDK

 ↓

 (-) CDK activity

 ↓

 Cell cycle arrest

 Pre-clinical date : synergistic cytotoxicity with taxanes.

TUMOR VACCINES

• Gene modified vaccines:

 38 Patients with metastatic NSCLC Tumor tissue from Lung/LN obtained
 Tumor cells infected with Adenovirus that enclosed GM-CSF
 Patients Vaccinated with these tumor cells Immune reaction seen in 18 patients
 S/E: - Local skin reactions, Flu like symptoms (J Clin Oncol 2003; 21: 624-30)

- SRL172 Vaccine (Suspession of killed M. Vaccae) several immune modulating functions