Exhaled Biomarkers Asthma & COPD

AS Paul DM Seminar 30 March 07

Introduction

- Diagnosis and course of COPD/Asthma
 - Clinical information
 - Pulmonary function tests
 - Arterial blood gases
 - Chest X-rays
- No direct measure of lung inflammation is routinely used

What are biomarkers?

 Biomarkers are objectively measured and evaluated indicators of normal biological processes, pathogenic processes or pharmacological responses to a therapeutic intervention

- Exhaled gases eg NO
- Exhaled breath condensate markers
- Exhaled breath temperatures

Why is this so exciting?

- Many diseases are characterized by chronic inflammation and oxidative stress
- Asthma, COPD, bronchiectasis, cystic fibrosis and ILD are examples
- Inflammation is not directly measured by any routine investigation done at present
- Measuring biomarkers may make this possible

Asthma

- Bronchial biopsies are the "gold standard"
 - invasive
 - cannot be routine
 - cannot be repeated often
 - children and those with severe disease
- BAL
 - Invasive
 - Infection
 - Impair gas exchange
- Symptoms are a poor indicator
 - Perception
 - Masking by SABA/LABA

Exhaled Breath Condensate

- Epithelial lining fluid contains 200 volatile substances and various nonvolatile substances
- Initial focus on volatile substances particularly NO
- Studies are now focusing on nonvolatile substances e.g. proteins, lipids, oxidants and nucleotides

- Determining host inflammatory responses to injury in the lung
- Possible single noninvasive sampling method for point-of-care real-time analysis

Collection of EBC

- Exhaled breath is saturated with water vapor which can be condensed with cooling
- Aerosol particles from the lower tract are also present
- Source: alveoli vs. airway e.g. H₂O₂ is from airways (flow dependent)

- 0.1-4 particles/cm³
- Mean diameter < 0.3µm
- Number depends on
 - Velocity
 - Surface tension
 - Turbulent flow

A Collection Apparatus

Problems

- Glass/polystyrene/polypropylene
- Ice/Dry ice/ liquid nitrogen
- Nose clips open nasopharyngeal velum
- 5-10 min to get 1-3 ml of EBC
- Contamination
 - Exhaled air (two way non-rebreathing valve)
 - Saliva (trap, mouth rinsing, salivary amylase)

EBC: Inflammatory mediators detected

Condition	Compound
Cigarette smokers	H ₂ O ₂ , 8-isoprostane
COPD	H_2O_2 , 8-isoprostane, serotonin, cytokines (IL-1, sIL-2R, TNF- α)
Asthma	H ₂ O ₂ , 8-isoprostane, nitrotyrosine thiobarbituric acid-reactive products, leukotrienes, pH
Chronic bronchitis	Leukotrienes
Bronchiectasis	H ₂ O ₂
Cystic fibrosis	H ₂ O ₂ , nitrite, 8-isoprostane, IL-8
ALI/ARDS	H ₂ O ₂ , 8-isoprostane, PGE ₂

Smoking

- H₂O₂ a measure of oxidant activity
- Levels in smokers 5x higher
- Male smokers > Female smokers
- Levels in EBC are lower than in alveoli as there is removal by the anti-oxidant system
- Higher levels may indicate risk of developing smoking-related disease

FENO

- NO levels are increased in bronchial asthma (Alving et al 93)
- Pro-inflammatory mediator with immunomodulatory effects. Predisposes to the development of AHR in pathological situations
- A weak mediator of sm relaxation in physiological situations
- Originates in airway epithelium

FENO

- May rise in a large number of conditions but is most marked in allergic airway disease
- Portable inexpensive meters can measure it easily
- More relevant direct measure of inflammation which complements PFT

Rationale for F_ENO measurement

- High degree of correlation with eosinophilic airway inflammation
- Eosinophilic inflammation responds to steroids
- Raised levels predict steroid responsiveness in pts with non-specific symptoms
- ICS treatment results in a fall in levels in a dose dependent manner

Asthma vs non-asthma

- Helps to discriminate asthma from nonasthma
- Viral illnesses can give false positive results (wait 6 wks)
- More sensitive than spirometry and therefore will pick up disease where lung fn is still normal

Non-specific respiratory symptoms

- Role in assessing undiagnosed respiratory symptoms
- Eosinophilic bronchitis, cough variant asthma, post-viral hyperresponsiveness,
 Post-nasal drip, GE reflux, VCD, COPD
- A rise in FENO predicts steroid responsiveness

Pre-school children

- Diagnosing asthma from non-asthma in wheezy infants using F_ENO either offline or online.
- Evidence for reliability as a screening tool is mixed
- May allow better targeting of antiinflammatory therapy

Influence of atopy

- Levels are raised in atopic individuals even in the absence of symptoms suggesting low levels of airway inflammation
- Complements skin testing and correlates well with IgE levels
- No evidence to treat asymptomatic individuals

- Predicting exacerbations
- Predicting outcomes of ICS withdrawal
- Adjustment of ICS dose

H₂O₂ and TBAR

- Increased levels in asthma
- High correlation between the two
- Increase in levels associated with a drop in FEV₁

Antczak A, Nowak D, Shariati B, Krol M, Piasecka G, Kurmanowska Z. Increased hydrogen peroxide and thiobarbituric acid-reactive products in expired breath condensate of asthmatic patients. Eur Respir J 1997;10:1235–1241.

Antczak A, Kurmanowska Z, Kasielski M, Nowak D. Inhaled glucocorticosteroids decrease hydrogen MEDICI peroxide level in expired air

condensate in asthmatic patients. Respir Med 2000;94:416-421.

H₂O₂ levels in children

- Correlate well with symptoms
- Decrease with ICS treatment
- May be a good measure for monitoring improvement with treatment

Dohlman AW, Black HR, Royall JA. Expired breath hydrogen peroxide is a marker of acute airway inflammation in pediatric patients with asthma. Am Rev Respir Dis 1993;148:955–960.

Nitrotyrosine

- A stable end product of peroxynitrite
- Mild (steroid naïve)
- Moderate (on ICS)
- Severe (on oral CS)
- Increased levels were found in the first group

Hanazawa T, Kharitonov SA, Barnes PJ. Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am J Respir Crit Care Med 2000;162:1273-1276.

Isoprostanes

- Compounds formed by non-enzymatic peroxidation of membrane phopholipids during oxidative stress
- Levels are elevated in all asthma with higher levels in more severe disease
- Correlation with PFT however is not good

Montuschi P, Corradi M, Ciabattoni G, Nightingale J, Kharitonov SA, Barnes PJ. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 1999;160:216–220.

Leukotrienes

- Airway smooth muscle contraction, microvascular leakage, mucus hypersecretion
- Increased levels of LTB4 in asthma which increase with severity
- No correlation with FEV1

Becher G, Winsel K, Beck E, Steremann E. Leukotriene B4 in breathing condensate of patients with bronchopulmonary diseases and of normal patients. Appl Cardiopulmon Pathophysiol 1995;5:215–219.

pH

- Acute asthma associated with pH decline of two-log
- Normalised with corticosteroid therapy
- Suggested that serial measures can help titrate therapy
- Hampered by poor reproducibility

Palaiologou A, Loukides S, Papatheodorou G, Panagou P, Xronas G, Kalogeropoulos N. pH in expired breath condensate of patients with asthma. Eur Respir J 2000:16:40s.

Future Prospects for EBC in asthma

- Some markers persist despite ICS
- Leukotriene pathway is not suppressed by steroids
- Persistent elevation of leukotrienes may be used to initiate therapy with specific inhibitors
- Lack of correlation with FEV₁ does not preclude the use of these markers
- If rise in markers precedes physiological changes greater utility is likely

Inflammation in COPD

- Chronic inflammation throughout the airways, parenchyma and pulmonary vasculature
- Macrophages, T-lymphocytes (CD8+) and neutrophils
- Tissue eosinophils (unlike asthma not degranulated)

- Exhaled NO: most used and standardised
- Exhaled CO
- Exhaled Ethane

Exhaled Nitric Oxide

- A gas which regulates vascular and bronchial tone
- Alveolar macrophages synthesize it after stimulation by endotoxin and cytokines; part of host defence
- Converted to peroxynitrite: a potent epithelial toxin
- Promotes proliferation of T lymphocytes

Synthesis of NO

NO levels

- Healthy subjects: 3-7 ppb
- Lower in smokers
- No difference between healthy individuals and stable COPD/ lower in those still smoking.
- Increased levels in unstable disease owing to neutrophilic inflammation
- Increased levels in subsets with an asthmatic component to disease.

- Levels decrease with treatment with ICS (probably the effect on some eosinopholic inflammation also present)
- Levels correlate with sputum eosinophil levels.
- Inverse correlation with FEV₁ levels in stable patients

- Increased levels
 - Asthmatic subset
 - Exacerbations
- Smoking reduces levels confounding the picture

Exhaled CO

CO

- CO is produced in alveoli, nose and paranasal sinuses
- Environmental levels affect measurements
- Higher in stable COPD
- Smoking has the greatest effect 8ppm
- URTI also raises levels
- Healthy subjects 1-8ppm

- Also increased in asthma
- No data exist on correlation with ICS use
- Limited utility as a marker because of wide variation with environmental levels and smoking

Exhaled alkanes

- Oxidants can cause injury by lipid peroxidation
- ROS and H₂O₂ released by activated inflammatory cells can induce peroxidation of polyunsaturated membrane fatty acids
- This impairs function and inactivates receptors and enzymes, increases permeability and causes airflow limitation

Ethane

- Easier to measure
- Analyzed by gas chromatography
- Expensive and time consuming
- Environmental contamination has to be avoided
- Age does not affect levels
- 0.88 ppb is the normal level
- Increased in smokers and those with airway obstruction. Decreased with steroid use

Biomarkers in EBC

- Biomarkers which are not gases cannot be measured directly
- Hydrogen peroxide
- Isoprostanes
- NO metabolites
- TBARS
- Salivary contamination is a problem

Exhaled Hydrogen peroxide

- Airway inflammation causes a " respiratory burst" producing ROS
- H₂O₂ levels reflect oxidative stress in the lung
- Measurement is based on reaction with suitable substrates leading to the release of color, light or fluorescence
- Normal levels are almost undetectable

Hydrogen peroxide

- Collection and storage is a source of error
- Exercise increases levels
- Food and beverages increase levels
- Levels vary widely with repeated measurements
- Healthy young non-smokers 0.01-0.09mmol/l
- Increased in stable COPD/ increased further during an exacerbation
- Lower levels in current smokers
- Levels decrease with ICS/NAC
- Standardization is poor and large intraindividual variability exists.

Isoprostanes

- Reduction of bicycloendoperoxide intermediates (from arachidonic acid reacting with oxygen radicals)
- Stable in body fluids
- No diurnal variation
- Higher levels in smokers
- Higher in COPD regardless of smoking status

 Also high in healthy smokers, asthma and ILD which may confound its use for diagnosing or monitoring COPD

Nitric oxide metabolites

- NO is highly reactive and has a short life in vivo
- Stable end products include nitrite and nitrate.
 Peroxynitrite results from a reaction with superoxide
- Nitrotyrosine and nitrosothiols result
- All can be measured in EBC
- Increased directly after cigarette smoking/in COPD /asthma
- Steroids reverse the increase in asthma

Thiobarbituric acid reactive substances (TBARs)

- Volatile products of lipid peroxidation
- Undetectable in healthy non-smokers
- Raised in smokers with no relation to other inflammatory markers
- Raised in stable COPD with no difference with smoking status
- Also increased in asthma to a higher degree with significant correlation with H2O2 levels

Advantages

Advantages

- Simple, point-of-care intervention
- Inclusive rather than intrusive (e.g., healthy children, mechanically ventilated neonates)
- Domkillary
- 4. Longitudinal sampling
- 5. Nonvolatile compounds associated with pulmonary pathophysiology
- 6. Amplified DNA and RNA from prokaryotic and eukaryotic cells
- 7. Pharmacokinetics/pharmacodynamics of drugs
- 8. Solute dearance

Limitations

Limitations

- 1. Lack of standard breath-sampling method
- 2. Not anatomic site specific
- Lack of evidence for the origin of the aerosol particles (bronchi versus terminal airways)
- 4. Concentration artifact (due to evaporation of samples)
- 5. Feasibility and utility of biomarkers unrelated to oxidative stress not tested
- 6. Little information on biomarkers of interstitial lung disease

Conclusions

- EBC has potential as a non invasive real time technique in the future
- Lack of standardisation in collection and analysis for most markers makes comparison of studies and clinical application difficult at present
- Collected fluid is not anatomic site specific
- Reference data for healthy individuals needs to be available
- Smoking status affects different markers in different ways
- Data on reproducibility and variability is scarce
- Effect of treatment on different markers needs to be determined before they can be used for follow up

Take home message!

- Biomarkers may be a useful non invasive adjunct in the diagnosis and follow-up of patients with various pulmonary inflammatory conditions at the point of care in real time
- Further work is needed to validate standardize and better define the clinical utility of this emerging instrument in pulmonary disease

