ADJUNCTS IN TREATMENT OF ARDS

Dr. AKASHDEEP SINGH
DEPARTMENT OF PULMONARY
AND CRITICAL CARE MEDICINE
PGIMER CHANDIGARH

ABJUNCTS IN TREATMENT OF ARDS

- 1. Ventilatory Strategies other than Lung Protective Strategy.
 - Prone Ventilation
 - Liquid Ventilation
 - High Frequency Ventilation
 - Tracheal Gas Insufflation
 - Extracorporeal Gas Exchange
- 2. Hemodynamic Management Fluids, Vasopressors.
- 3. Selective Pulmonary vasodilators.
- 4. Surfactant replacement therapy.
- 5. Anti-inflammatory Strategies.
 - a) Corticosteroids.
 - b) Cycloxygenase & lipoxygenase inhibitors.
 - c) Lisofylline and pentoxifylline.
- 6. Antioxidants NAC : Procysteine
- 7. Anticoagulants.

PRONE VENTILATION

Effect on gas exchange

Improves oxygenation – allows decrease Fio₂; PEEP

- Variable
- not predictable

response rate – 50-70%

Proposed mechanism – how it improves oxygenation

- 1) Increase in FRC
- 2) Improved ventilation of previously dependent regions.
- (a) Difference in diaphragmatic movement
- supine: dorsal and ventral portion move symmetrically
- prone : dorsal > ventral

Supine +2.8

prone +1.0

P _{PL} at dorsal	Higher	Less
TP pressure	Lower	More
Result	Atelactasis	opening

- c) Decrease chest wall compliance in p.p

 Redistribution of tidal volume to atelactatic dorsal region.
- d) Weight of heart may affect ventilation.
- 3. Improvement in Cardiac output
- 4. Better clearance of secretions
- 5. Improved lymphatic damage

CONTRAINDICATION

- Unresponsive cerebral hypertension
- Unstable bone fractures
- Left heart failure
- Hemodynamic instability
- Active intra abdominal pathology

TIMING ARDS > 24 hrs./ 2nd day

FREQUENCY Usually one time per day

DURATION 2 to 20 hrs/day.

OUTCOME

Improvement in oxygenation

No improvement in survival

POSITIONING ACHIEVED BY

Circ Olectric, bed (Late 1970s).

Manual 2 step

Light weight portable support frame (Vollman prone positioner)

NO. OF PERSONS 3-5 POSITION OF ABDOMEN

allowed to protude; partial/complete restriction

POSITION OF HEAD

Head down/ Head up position.

ADEQUATE SEDATION +/- NMBA COMPLICATIONS

- pressure sore
- Accident removal of ET; Catheters
- Arrhythmia
- Reversible dependent odema (Face, anterior chest wall)

Gattinoni et al, in a MRCT evaluated the effect of 7 hr / day prone positioning x 10 day

improvement in oxygenation, no survival benefit

NEJM 2001, Vol 345 No 8 568-573

PARTIAL LIQUID VENTILATION

In ARDs there is increased surface tension which can be eliminated by filling the lungs with liquid (PFC).

Perflurocarbon:

- Colourless, clear, odourless, inert, high vapour pressure
- Insoluble in water or lipids
- MC used perflubron (Perfluoro octy bromide) (Liquivent)
- Bromide → radiopaque

ANIMAL EXPERIENCE

- Improved
 - Compliance Gas exchange (dose dependent)
 - lung function Survival
- Anti-inflam. properties
- Decrease risk of nosocomial pneumonia.
- Reduces pulm. vascular resistance.
- Little effect on central hemodynamics.

Mechanism of action

- i) Reduces surface tension
- ii) Alveolar recruitment liquid PEEP. Selective distribution to dependent regions.
- iii) Increases surfactant phospholipid synthesis and secretion.
- iv) Anti Inflam. Properties
- A. IndirectMitigation of VILI
- B. Direct
 - a)decrease endotoxin stimulated release of TNF; IL-1; IL-8.
 - b)decrease production of reactive oxygen species.
 - c) Inhibit neutrophil activation and chemostaxis.
 - d)Lavage of cellular debris.

Technique of PFC Ventilation:

- 1. Total liquid ventilation
- 2. Partial liquid ventilation

	TLV	PLV
1. Ventilator	Liquid	Conventional
2. Tidal volume delivered of	Oxygenated PFC	Gas
3. Lungs are filled	Completely by PFC	Filled till FRC by PFC
4. Feasibility	Expt.	Yes
5. Disadvantage		Loss of gas by evap., cost.

Recommended dose of PFC

-20 ml/kg

Beyond this dose – decrease co.

More clinical trials are req. to demonst. efficacy.

Additive effect of PLV has been shown in combination with:

- NO Surfactant
- HFOV
 prone ventilation

2 published adult trials of PLV in ARDS have confirmed its safety but not efficacy.

Hirschl et al JAMA 1996, 275; 383-389

Gauger et al, CCM 1996, 24; 16-24

TRACHEAL GAS INSUFFLATION (TGI)

In ARDS/ALI

- Increase physiological dead space
- OLS / permissive hypercapnia

DURING CONVENTIONAL VENTILATION:

Bronchi and trachea are filled with alveolar gas at end exhalation which is forced back into the alveoli during next inspiration.

IN TGI

Stream of fresh air (4 to 8 L/min) insufflated thr. – small cath. or through small channel in wall of ET into lower trachea flushing Co₂ laden gas.

COMPLIC.

- 1) Dissecation of secretions
- 2) Airway mucosal injury
- Nidus for accumulation of secretions
- 4) Auto PEEP

HIGH FREQUENCY VENTILATION

Utilizes small volume (<V_D) and high RR (100 b/min)

- Avoids over distention (Vili).
- Alveolar recruitment.
- Enhances gas mixing, improves V/Q.

APPLIC.

- 1. Neonatal RDS.
- 2. ARDS.
- 3. BPF.

COMPLIC.

- 1. Necrotizing trachebronchitis.
- Shear at interface of lung.
- 3. Air trapping.

Two controlled studies (113 and 309) no benefit.

Carlon et al, 1983, Chest 84; 551-559

Hurst et al, 1990, Ann Surg 211; 486-91

Comparison of HFV Vs Conv. Ventil.

	JET	Oscillator	Conventional
Freq avail	upto 600 b/min	300-3000 b/min	2-60 b/min
Tidal volume delivered	<or> V_D</or>	< V _D	>> V _D
Expiration	Passive	Active	Passive
Potentiation of intrinsic PEEP	3+	2+	1+
VT x f product for effective V _A	>> Conv	>> Conv	
P _{PK}	< Conv	< Conv	
P mean	<or> conv</or>	<or> conv</or>	

EXTRACORPOREAL MEMBRANE OXYGENATION

Adaptation of conventional cardiopulmonary bypass technique.

Oxygenate blood and remove CO₂ extracorporally.

TYPES

- 1. High-flow venoarterial bypass system.
- Low-flow venovenous bypass system.

Criteria for treatment with extracorporeal gas exchange Fast entry criteria

 $PaO_2 < 50 \text{ mmHg for } > 2 \text{ h at } FiO_2 1.0; PEEP \ge 5 \text{ cmH}_2O$

Slow entry criteria

PaO₂ <50 mmHg for >12 h at FiO₂ 0.6; PEEP \geq 5 cmH₂O maximal medical therapy >48 h Q_s/Q_t > 30%; CTstat <30 ml/cmH₂O

Schematic drawing of a low-flow venovenous ECMO circuit.

Complication

Mechanical

Oxygenator failure

2. Circuit disruption

3. Pump or heat exchanger mal functioning.

4. Cannula placement/removal

Year

1966 - 1975

1980 onward

Patient related Problem

Bleeding

Neurological complications

Additional organ failure

Barotrauma, infection,

metabolic

Survival

10-15%

40-50%

Critical care 2000, 4; 156-168

HEMODYNAMIC MANAGEMENT

Controversial
Restriction of Fluid
Benefit

Obs. Studies Show

↓pulm. edema formation

↑ compliance, lungs fn.

Improved survival

Negative fluid balance is associated with improved survival Humphrey et al., 1990 Chest 97; 1176-80.

Net positive balance <1 lt. in first 36 hrs. a/w improved survival decrease length of ventilation, ICU stay and hospitalization.

Shorter duration of mech. venti., stay in ICU in pat. managed by fluid restriction directed by EVLV c/w PAOP. No mortality benefit.

Mitchell JP, Am Rev. Respr. Dis. 1992; 145; 990-998.

Detrimental

Ineffective Circulatory Volume (Sepsis). Reduced co & ts perfusion.

Goal

- Correct Volume deficit
 - Guidelines for management of tissue hypoxia International consensus conference
 - (AJRCCM- 1996)
- 1. Promote oxygen delivery
 - Adequate volume CVP 8-12 mmHg
 - PAOP-14-16 mmHg (Optimal co; less risk of Edema)
- Crystalloids vs Colloids
- ❖ Transfuse < 10 gm/dl</p>
- 2. Reduce oxygen demand:
 - a) Sedation : Analgesia, NMBA
 - b) Treat Hyperpyrexia
 - c) Early institution of mech. vent. (shock).

No role of supraphysiol. oxygen delivery

Vasopressors

- Following fluid resuscitation
- Norepinephrine vs Dopamine
- GOAL to achieve MAP 55 to 65 mmHg

Inotropes

Co. is low

PULMONARY VASCULAR CHANGES IN ARDS/ALI

- 1. Reduced pulmonary vasoconstriction in hypoxic shunt areas, along with vasoconstriction in well ventilated areas.
- 2. PAH (Pulm. Vasoconst.; Thromboembolism; Interstitial edema)
 - PAH aggravates edema by increasing inflow pressure.
 - So role of pulm. vasodilators

Selective Pulmonary Vasodilators:

- 1. Inhaled Nitric oxide (iNo)
- 2. iv almitrine with/without iNo.
- 3. Aerosolized prostacyclins.
- 4. Inhibition of cyclic nucleotide phosphodiesterase.
- 5. Inhalation of Endothelin receptor antagonists.

Inhaled Nitric Oxide How it is beneficial in ARDs

- 1. Improves Oxygenation
 - Selective vasodilatation of vessel a/w better ventilation → (decrease shunt)
 - Improves v/q mismatch.
- 2. Reduction in pulmonary artery pressure
 - Improves oxygen
 - direct smooth muscle relaxation
 - improved RV Fn.
 - reduced capillary leak.
- 3. Inhibit platelet aggregation and neutrophil adhesion.

Selectivity of iNO

Rapid inactivation on contact with hemoglobin.

♦ 60 % of pat respond to iNo by increase in PO₂ >20%.

* DOSAGE

<u>Effect</u> <u>Dose</u>

Increase PaO₂ 1-2 ppm to <10 ppm

decrease PAP 10-40 ppm

Time of Response

- <10 min to several hours.</p>
- * Response to iNo is not static phenomenon.

Intra-individual variation in response:

- lung recruitment
- Coexistent pathology
- resolution of inflammation

Mortality Benefits - None

S/E

Minimal

- 1. Rebound pulm. hypertension & hypoxemia
- 2. Methemoglobinemia
- Toxic NO₂; Nitrous & Nitric Acid

 Prevent by decrease contact time & conc. of gas.

Table 1 Randomised controlled trials of inhaled nitric oxide (NO) in patients with ARDS

Author	No of patients	Diagnosis	Blinded	Inhaled NO dose (ppm)	Duration	Outcome
tund in <i>et af</i> (1999) ⁵⁵	260	All (American European Consensus Conference) and 18-96 hours ventilation with Pao ₂ /Fio ₂ <22 kPa, PEEP at least 5 cm H ₂ O, mean airway pressure >10 cm H ₂ O and I:E 1:2-2:1	No	2-40	30 days	180 randomised responded to N.O. The frequency of reversal of AU did not differ from controls. Development of severe respiratory failure less (2.2% v 10.3%) in NO treated group. Mortality not aftered (44% v 40% control).
Dellinger et af (1998) ¹¹	177	ARDS (American-European Consensus Conference) within 72 hours of onset and PEEP at least 8 cm H ₂ O and Fio ₂ >0.5	Yes	1.25-80	28 days	Pao ₂ increased > 20% in first 4 hours in 60% of patients treated with NO and 24% of controls. Fio ₂ and intensity of ventilation could be reduced in first 4 days. No difference in mortality (30% v 32-38% in NO treated groups).
Michael et af (1999) ¹³	40	ARDS (American-European Consensus Conference) and Flo ₂ at least 0.8 for 12 hours or 0.66 for 24 hours	No	5-20	3 days	NO improved PAO ₂ /FiO ₂ by at least 20% and allowed a decrease in FiO ₂ of at least 0.15 only in the first 24 hours in more treated patients than controls.
Troncy (1998) ¹⁴	30	Murray score at least 2.5	No	0.5-40	30 days	NO improved oxygenation only in the first 24 hours in more treated patients than controls. Mortality (60% v 67% in control) not altered.

Almitrine

- iv : low dose
- Potentates hypoxic vasoconstriction
- Decrease shunt, improved oxygenation

Has additive effect with

iNo

iNo + prone position

3. Aerosolized Prostacyclin

- iv prostacyclin decrease pulm. a. pressure (non selective vasodilatation) can increase shunt; worsen oxygenation.
- Inhaled prostacyclin selectively vasodilates the well perfused areas
- Selectivity in dose of 17-50 ng/kg/min.
 PGI₂- Not metabolized in lung so selectively lost at higher doses.
 - PGE₁- 70-80% is metabolized in lung.

4. <u>Inhibition of cyclic nucleotide phosphodiesterases</u>

a) No \rightarrow increase CGMP \rightarrow Protein G-Kinase

Calcium gated potassium

Channels

 \downarrow

Vasodilatation

PDE prevent degradation of CGMP (PDE-5)

PDE -5 Inhibitors

Dipyridamole; Sildenafil

Ziegler et al. 1998

11 paed PAH

Augmentation of iNoinduced vasodilate by dipyridamol in 50% pt.

Sildenafil

- Oral or iv
- Animal Exp. decrease P_{PA}

Inhaled PGI₂ → CAMP

PDE-2, PDE-3 : PDE-4 – Selectively degrade CAMP.

Inhalation of Endothelin receptor antagonist

In ARDS – increased Endothelin levels

ENDOTHELIN

 $\mathsf{ET}_\mathsf{A} \to \mathsf{Vasoconst.}$

 $\mathsf{ET}_\mathsf{B} \to \mathsf{release} \, \mathsf{No}; \, \mathsf{PGI}_2$

Non Selective ET antagonist Bosentan (oral)

Selective ETA₂ antagonist LU-B135252 (Neb)

SURFACTANT REPLACEMENT THERAPY

In ARDs there is deficiency and fn abn. of surfactant

- 1. Decrease production (injury to type-2 pneumocytes)
- 2. Abn. composition (decrease phosphatidyl choline, phosphotidylglycerol, Sp.A & Sp. B)
- Inhibitors of surfactant fn (TNF- α , reactive oxygen sp. Peroxynitrite, neutrophil elastases)
- 4. Conversion of large to small surfactant aggregates
- 5. Alteration/Destruction caused by substances in alveolar space (plasma, fibrinogen, fibrin, alb; Hb)
- Impaired surfactant fn \rightarrow 1) Atelactasis / collapse
 - 2) Increase edema formation

In experimental ALI models surfactant replacement.

Improved lungs fn., compliance, oxygenation.

Surfactant of possible therapeutic use:

	Class	Origin	Example
1.	Natural	Amniotic	Human amniotic fluid surfactant
2.	Modified Natural	- Bovine	Infasurf, alveofact BLESS, Survanta
		- Procine	Curosurf
3.	Synthetic		Exosurf, ALEC, KL ₄ Surfactant, Venticute

DOSE

Sufficient dose should reach alveolar environment

TIMING

- As early as possible [<48 hr]
- Little benefit at 3 to 5 days [Fibrosis already set]

Surfactant Delivery Techniques

Instillation	·Lavage	Aerosolization
 Rapid Can deliver large volume Homogenous distribution Efficacious in clinical trials 	 May remove toxic subst. Can deliver large vol. Homogenous distrib. Lab studies suggest efficacy 	Continuous smaller vol. Non uniform distribution. Lab. Studies show efficacy
Techn. Not standardizedShort term impairment in ventilation	 Vol. recover can be poor Short term impairment in ventil. 	Slow, no optimal device, Filters may plug.

GLUCOCORTICOIDS IN ARDS

Two meta analysis of short course (\leq 48hr) of high dose methyl pred. (30mg/kg/d) in early sepsis and ARDS found no evidence of beneficial effects.

- LEFERING et al CCM 1995, CRONIN I et al., CCM 1995

In a Recent Randomized control trial prolonged administration of methyl pred. in patients with unresolving ARDS was a/w improved LIS, MODS, mortality

JAMA 1998 Vol. 280; 159 –165.

Randomized double blind, placebo controlled trial 24 pat. with severe ARDS who failed to improve LIS by 7th day of mech. ventil.

16 received methyl pred. while 8 rec. placebo 4 pat. whose LIS failed to improve by at least 1 point after 10 days of treatment were blindly crossed over to alternate treatment.

SIGNIFICANT IMPROVEMENT IN:

- LIS (1.7 v 3.0)
- Pao₂/Fio₂ (262 v 148)
- ↓ MODS score (.7 v 1.8)
- Successful Extubation (7 v 0)
- ↓ mortality (0 v 62 %)
- No signif. differences in nosocomial episode

PROTOCOL

Day	Dose (Methy. Pred.)	
	(mg/kg/d)	
1-14	2.0	
15-21	1.0	
22-28	0.5	
29-30	0.25	
31-32	0.125	

HOW STEROIDS ARE BENEFICIAL:

- i. Inhibit transcriptional activation of various cytokines.
- ii. Inhibit synthesis of phospholipase A₂: cycloxygenase.
- iii. Reduced prod. of prostanoids, PAF, No.
- iv. ↓ fibrinogenesis

LISOPHYLLINE AND PENTOXIFYLINE

PDE-L

Inhibit neutrophil chemostaxis and activation.

Lisophylline inhibit release of FF from cell memb. under oxidative stress

NIH ARDS trial no benefit.

CYCLOOXYGENASE INHIBITORS

TxA₂ and Prostaglandin produced from AA by Cyclooxygenase pathway.

Cause

- 1) Neutrophil chemostaxis and adhesion
- 2) Broncho constriction
- 3) ↑ vascular permeability
- 4) platelet aggregation

Animal studies shown that C.I

- Attenuate lung injury
- Improve pulm. hypertension and hypoxia

Bernard et al. 1997 RDB PCT iv Ibuprofen 455 sepsis

No reduction in mort.,duration of shock; ARDS

Arons et al. 1999

Subgroup
analysis of
above study

In hypothermic pt
Ibuprofen - trend
towards ↑ in no. of
days free of MODS.
Sig. ↓ in mort.

KETOCONAZOLE

TxA₂

- 1) Pulmonary vasoconstriction
- 2) Platelet and neutrophil aggregation

Blockade of Tx synthesis or receptor antagonism ameliorates experimental lung injury

Ketoconazole

- 1) Specific inhibitor of thromboxane synthetase
- 2) Inhibits 5 Lipoxygenase [LTB₄ & procoag activity]

Summary of trials of Ketoconazole in ALI/ARDS

Study, yr	No. of Pat.	Outcome
Slotmann, 1988	71 high risk surgical	 Reduced Incidence of ARDS, ICU stay, cost No improve in mortality
Yu & Tomasa, 1993	54 sepsis	Reduced incidence of ARDSSignificant lower mortality
NIH ARDS Network, 1997 Trial	234 ALI/ARDS	No – Mortality benefit No effect on lung function, duration of Ventilat.

ANTIOXIDANTS

Reactive oxygen metabolites derived from neutrophils, macrophages and endothelial cells

OXIDANTS INCLUDE

- Super oxide ion (0₂-), hydrogen peroxide (H₂O₂)
- hypochlorous acid (Hocl), hydroxyl radical (OH^{..})
 Interact with proteins, lipid and DNA

ENDOGENOUS ANTIOXIDANTS

- · Superoxide dismutase, Glutathione, Catalase
- Vit E & Vit C
- Sulfhydryls

IN EXPERIMENT (ANIMALS)

A: ENZYMES

SOD – Variable response

CATALASE – some benefit

REPLENISH GLUTATHIONE

- 1) Glutathione itself
- 2) Glutathione ethyl esters
- 3) Cysteine derivatives
 - a) NAC
 - b) Procysteine

SUMMARY OF TRIALS OF NAC IN ALI/ARDS

Study, yr	No. of Patients	Therapy	Outcome
Jepsen, 1992	66	Placebo, NAC	No effect – Pao ₂ /Fio ₂ time to improve LIS. Improve – compl.*NS. Mortality – No diff.
Suter 1994	61	Placebo, NAC	Improve – Pao ₂ /Fio ₂ ; Lis; need for M.V. <u>Mortality – No diff.</u>
Bernard 1997	48	Placebo, NAC OTZ	Improve – ALI free days & cardiac index ↓ new organ failure. Mortality – No diff.
Domenighetti, 1997	42	Placebo, NAC	Improved – LIS No effect – Pao ₂ /Fio ₂ , mortality.

ANTICOAGULANT THERAPY IN ALI/ARDS

- In ARDS Fibrin deposition intra-alveolar and interstitial.
- Local procoagulant activity and reduced fibrinolysis.

↑ Procoagulant	↓ <u>Fibrinolysis</u>
↑TF (VII _a)	Fibrinolytic inhibitors
	↑ PAI–1 ; PAI-2, α2 antiplasmin

↓ urokinase and tPA

↑ Fibrin

- 1) Inhibit surfactant \rightarrow atelactasis
- 2) + Fibrinonectin → Matrix on which fibroblast aggregate
- 3) +N Fibroblast proliferation
- 4) Potent chemotactic (Neutrophil recruitment)
- 5) Lung vasculature → PAH

TF PATHWAY INHIBITORS AND FACTOR VII ai

In Expt studies

- → Fibrin clot
- ↓ Sepsis related organ damage
- .↓ LIS
- Improved survival

20 % RR reduction in 28 days all cause mortality and improvement in organ dysfn. in patient with severe sepsis.

ABRAHAM E, ; CCM 2001 29 2081

HEPARIN

Effectiveness in blocking fibrin deposition debatable.

In Expt. animals large doses of UFH reduced fibrin deposition; prevent ↑ EVLV; improved Pao₂/Fio₂

Human data lacking.

ANTITHROMBIN

Broad spectrum serine protease Inhibitor.

Action of Antithrombin

- 1. Inhibits
 - a) Thrombin
 - b) Inactivates T_F VIIa complex
- (2) Stimulate prostacylin release
- (- plat. aggreg. neut. activation, cytokine rel.)

In animal studies

↓vascular injury; leukocyte accumulation ; vascular permeability.

Kybersept trial, 2314 pat. with severe sepsis

No reduction in 28 days all cause mortality but excess rate of bleeding events in pat. receiving concomitant heparin prophylaxis.

Expl.

- i) AT levels below expected levels.
- ii) Heparin prophylaxis must have influenced efficacy. Improvement in 90 days survival rate in pat. receiving antithrombin without heparin.

Warren BL et al; Jama 2001; 286; 1869-1878

PROTEIN- C

- i) Inactivates Va & VIIa limit thrombin generation.
- ii) Inhibit PAI-1 activity 1 fibrinolysis.
- iii) Anti-inflam. ↓ cytokines, inhibit apoptosis.
 In the PROWESS study APC administ. Improved survival.
 28 days absolute risk reduction in mortality 6.1%. 19.4% reduction in relative risk.
- Risk of bleeding (3.5% vs 2.0%)
 Faster resolution of respiratory dysfun.
- ventilatory free days (14.3 vs 13.2 days)

Bernad GR; NEJM 2001; 344; 699-709

ENHANCED RESOLUTION OF ALVEOLAR EDEMA

Alveolar clearance of edema depends on active sodium transport across the alveolar epithelium

β 2 adrenergic stimulation :

- Salmetrol
- 2. Dopamine
- 3. Dobutamine

ENHANCED REPAIR:

Mitogen for type-II pneumatocyte:

- 1. Hepatocyte growth factor
- 2. Keratinocyte growth factor.